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Many flows in nature are “open flows™ (e.g. pipe flow). We study two open-flow systems driven by low-level external noise: the
time-dependent generalized Ginzburg-Landau cquation and a system of coupled logistic maps. We find that a flow which gives
every appearance of being chaotic may nonetheless have no positive Lyapunov cxponents. By generalizing the notions of convec-
tive instability and Lyapunov exponents we define a measure of chaos for these flows.

1. Introduction

If a dynamical system is such that two nearby tra-
jectories in phase space diverge exponentially on the
average, the system is usually defined as being cha-
otic. In other words the system has at least one posi-
tive Lyapunov exponent [1-6]. Fluid systems for
which this definition can be applied without any
problems - at least in principle - are the so-called
“closed-flow” systems, examples of which are Tay-
lor-Couette flow and Rayleigh-Bénard convection.
However, as we shall see, problems can result in
applying this definition to systems which have a mean
flow velocity such as “open-flow” systems, examples
of which are fluid flow in a pipe and fluid flow over
a flat plate *'.

In this paper we consider two open-flow systems
which are driven by low levels of external noise: the
time-dependent  generalized Ginzburg-Landau
equation (in the stationary frame of reference) and
a system of coupled logistic maps. Since perturba-
tions may grow or decay depending on the frame of
reference [8,9], one may expect problems in apply-

' Present and mailing address: National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307-3000, USA.

2 Permanent address: Institute of Physics, College of Arts and

v Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153,
Japan.

! For some discussion on “‘closed flow” and “open flow™ fluid
systems sce ref. [7].

0375-9601/87/$ 03.50 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

ing the usual definition of Lyapunov exponents o
these systems; and indeed we find that a system which
gives every appearance of being chaotic may none-
theless have no positive Lyapunov exponents. Con-
sidering that many of the flows in naturc arc open
flows, it 1s important to have a measure of chaos for
such flows. By generalizing the concept of convective
instability [8,10-12] (to include perturbations about
a general state) and by generalizing the definition of
Lyapunov exponents, we define a measure of chaos
for these flows 2,

2. The Ginzburg-Landau equation

The time-dependent generalized Ginzburg-Landau
equation in the stationary frame of reference is

dv_ 0w Py 2
% _aw—Lgax+bax2—C|V/| v. (1)

where the dependent variable y(x, f) is in general
complex; a, & and ¢ are constants which are in gen-
eral complex, and , is the group velocity. Real and
imaginary parts are subscripted with r and i respec-
tively. The term with the first order spatial deriva-
tive is a convective term and is responsible for the
“mean flow”. The boundary conditions are ¥ =0 at

# A preliminary study on contents of this paper has appeared in
ref. [13].
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the left boundary and d?w/dx?=0 at the right
boundary to approximate an open boundary. (This
approximates an open boundary since the value of i
at the boundary point is given by a linear extrapola-
tion from the values of y at two inner grid points
[14].) Eq. (1) has been studied for the case y,=0
[15-19] and for the convectively (i.e. spatially)
unstable case where , is greater than a critical value
(v,>21b](a/b)'"?) [8]. Two fluid systems with
nonzero group velocity to which eq. (1) isrelated are
plane Poisseulle flow [20] and wind-induced water
waves [21]. It is also related to many other systems
[15,22-24].

Under conditions when the equilibrium state is
convectively unstable, eq. (1) is numerically solved
in the presence of low level external noise starting
with the initial condition (x, 0) =0. (A convective
instability is one in which a small localized pertur-
bation moves spatially such that the perturbation
grows only in a moving frame of reference, eventu-
ally damping at any given stationary point
[8,10-12].) Second order Runge-Kutta is used in
the time differencing (with Atr=0.01) and fourth
order differencing is used in the space differencing
(with Ax=0.3) except at the grid points adjacent to
the boundaries where second order differencing is
used. Noise is introduced into the system by adding,
at cach time step, random numbers uniformly dis-
tributed between —r and r to y, and w; at all grid
points except the boundary points. This amounts to
adding a noise term 7(x, ¢) to eq. (1). If noise is added
at only the left boundary the final resuits will be the
same. Cray single precision (14 digit accuracy) is used
in the calculations.

Fig. 1 shows a plot of , as a function of x for a
particular ¢ after the system has reached a statisti-
cally steady state. The noise near the left boundary is
spatially and selectively amplified resulting in the
formation of spatially growing waves. At some spa-
tial point the waves become macroscopic and non-
linear effects become important causing the waves to
saturate (assuming ¢, > 0) producing a structure. The
nonlinear dynamics causes the structure to change in
a chaotic fashion with time. This may be seen in fig.
2 where . is plotted as a function at ¢ at x=210. For
x> 150 the flow appears to be fully developed. For
more details the reader is referred to ref. [8]. (The
fact that the irregular behavior is generated mainly
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Fig. 1. Plot of ¢, (in Ginzburg-Landau equation, eq. (1)) as a
function of x for a given ¢ (1= 500) after transicnts have settled
down. a=2, v=6, b=1, bj=—1, ¢,=0.5, ¢;=1. Noise level
=r=10"". The microscopic noise near the left boundary grows
spatially to macroscopic proportion resulting in the observed
structure. The usual largest Lyapunov exponent for this flow is

negative even though the flow appears to be very chaotic (see fig.
2).

by the nonlinear dynamics may be seen by imposing
periodic boundary conditions instead and by remov-
ing the noise. Under these conditions the qualitative
behavior of the periodic system is essentially identi-
cal to that of the fully devcloped region of the origi-
nal system.)

Let di(x, ¢) be an infinitesimal perturbation about
the state y(x, ¢). This perturbation satisfies the fol-
lowing equation:

By 68u/ 328y
at =ady — & ox ox TP dx? (2)

—2c|y | %3y —cy dy*.

Consider an initial perturbation d(x, 0) localized
in the region {x,, x,}. We may define a velocity-
dependent Lyapunov exponent (the largest one) as
follows:

C(v AI’X"‘ 1))
’ - " (v, X, %2, 0) ) 3
Ao x, x) = ’llnl,]n<¢’(u,x,,x2.0) ' )
where
M
, ,/ \ 'I g ‘J' '| ' ' ‘l'~ f
;.'h' f b'| 1 Wl l"l |
s (AR
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t

Fig. 2. Plot of ¥, as a function of ¢ at x=210 (see fig. 1). a=2,
ll=6. br= l, b;= -1, C,=0.5v = 1.
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Here vrefers to the velocity of the frame of reference
from which the system is observed. For v> 0 the def-
inition assumes that the system is unbounded in the
+ x direction. For v=0 and for x, and x, correspond-
ing to the boundaries of the system this definition
reduces to the usual definition for the largest Lyapu-
nov exponent, Let g,,, be that » which gives the max-
imum value of M{v; x;, x,). If lv.,: x|, X2) >0, we
say that the system is chaotic in the region {x, +v,,t,
X2+ vnt} and that v, x,, x;) is a measure of that
chaos . The term chaos is appropriate here since the
separation of trajectories — in some frame of refer-
ence — is generated by the deterministic dynamics.
Since the concept of convective instability is usually
associated with perturbations about a stationary staic,
eq. (3) generalizes this concept by considering per-
turbations about a general stale.

If the usual definition for the largest Lyapunov
exponent is applied to the system of figs. 1 and 2 we
find that the exponent is negative (i.c. A0; O,
300)=—2.55%+0.02) even though the flow seen in
figs. 1 and 2 appears to be chaotic. The behavior
described here occurs for a wide range of parameter
values and is not restricted to the parameter values
of figs. | and 2. 4 was calculated by solving eq. (2)
along with eq. (1). We note that noise is added only
toeq. (1) and not to eq. (2) since the noise added to
eq. (1) is independent of ¢ and thus does not con-
tribute a term to eq. (2) when y is varied. If the def-
inition (3) is applied to a fully developed portion of
the flow (x, = 180 and x,=300) with v=0 we get the
same value (i.e. 1(0; 180, 300) = —2.55+£0.02). The
same value occurs since, for large ¢, 3y is significant
only in a region near the right boundary. The reason
that these values are negative is that, even though the

'3 The definition (3) should only be applied to fully developed
flows. For example, it would not be applied to convectively
unstable stationary states or convectively unstable periodic (in
time and space) states just as the usual definition of Lyapunov
exponents is not applied to unstable fixed points or unstable
periodic orbits. Also (although here we are interested only in
the largest exponent) the other velocity-dependent exponents
can be calculated in the same fashion as the speetrum of usual
Lyapunov exponents.
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perturbation 8 may be initially growing, the pertur-
bation is moving at a sufficiently large velocity so that
both edges of the perturbation are moving in the same
direction, allowing 8y behind the perturbation to
approach zero (i.c. lim,_ 0w (x, t)—0 for an arbi-
trary fixed value of x in the interval {x,, x»}). Thus
the bulk of the perturbation eventually moves out
through the right boundary leaving only its trailing
edge which decreases with time.

As v is increased from zero, w(v; x|, X;) will
increase until it becomes positive, eventually reach-
ing a maximum (corresponding to the region {x, +ut.
X, + vt} moving on the average with the growing per-
turbation), and then decrease until it again becomes
negative (corresponding to the region {x, +vt, x,+ vt}
“outrunning” the perturbation). An obvious diffi-
culty in directly applying definition (3) with v>01s
that the system must be very long in order to get an
accurate value for A since the region {x, +ut, x,+ vt}
wil eventually reach the right boundary of the sys-
tem. To circumvent this difficulty we transform egs.
(1) and (2) for the region {x, + u,t, x> +v,¢} to a frame
of reference moving at v=v, (from symmetry the
maximum value of A will occur at v=1;). This reduces
to solving eqs. (1) and (2) without the convective
term. We take boundary conditions to approximate
open boundaries at both boundaries of this region
(i.e. d*w/dx*=0) and take x,—x, sufficiently large
so that the boundary conditions will have an insig-
nificant effect on the value of i and so that  is inde-
pendent of x, and x,. Here we took x, —x, = 180. We
then find A(y,)=0.466+0.004, where we have
dropped the dependence on x, and x,. This value is
also independent of noise level for sufficiently low
noise level. Since A is positive we conclude that the
fully developed portion of the flow in fig. | is chaotic
and that i=0.466 + 0.004 is a measure of that chaos.

Since experimentalists many times have only sin-
glc time series at their disposal, an important ques-
tion is whether velocity-dependent Lyapunov
exponents can be calculated from reconstructions of
single time series . Exponents resulting from a
reconstruction of a single time series in the station-
ary (i.e. laboratory) frame of reference for an opcn-
flow fluid system will clearly not give reasonable val-

** For algorithms for the calculation of Lyapunov exponents for
some physical fluid systems see refs. [6.25].
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ues for velocity-dependent Lyapunov exponents. In
fact, the largest Lyapunov exponent calculated for
such a time series for a turbulent system will be posi-
tive (since the time series is aperiodic) even though
nearby trajectories may be converging on the average
in the stationary frame of reference. (For example,
the largest Lyapunov exponent calculated from a
reconstruction of the time series of fig. 2 will be posi-
tive since the time series is aperiodic, even though
the largest velocity-dependent Lyapunov exponent in
the stationary frame of reference is negative). This
reflects the fact that, on the average, there is a con-
stant flow of new fluid particles through the region of
interest. However, in a frame of reference moving
with the average velocity of the fluid this will no
longer be a problem, and a reconstruction from a time
series obtained in the moving frame of reference
should give a reasonable value for the maximal value
of the largest velocity-dependent Lyapunov expo-
nent and therefore a reasonable value for the meas-
ure of the chaos. For example, for fluid flow in a pipe.
the laser (assuming measurements are made with
laser Doppler techniques) could be mounted on a cart
which moves parallel to the pipe at a velocity equal
to the average velocity of the fluid.

3. A system of coupled logistic maps

As another example of a chaotic open-flow system
we now consider a coupled map lattice system with
asymmetric coupling. A coupled map lattice system
is a spatially extended dynamical system that is dis-
crete in both time and space [9,26-34]. It is numer-
ically more traclable than a partial differential
equation (while still preserving the essential fea-
tures) and thus allows us to directly calculate the
velocity-dependent Lyapunov exponent for a range
of velocities. For examples of map lattice systems that
are convectively unstable see refs. [9,34].

The coupled map lattice systemn considered here is:

Xi=(-dRXS
QXS )+ (L= e)f(XS )] +eol. (4)

where f(X)=1—aX? is the logistic map and
i=1,2,...,N. nand { are integers representing discrete
time and space variables respectively. Here we choosce
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Fig. 3. Plot of X" (for a portion of the coupled map lattice sys-
tem, eq. (4)) as a function of / for a given value of »n after tran-
sients have settled down. a=1.5, d=0.4, a=1. Noise level
=€e=10"° The largest velocity-dependent Lyapunov exponent
A(v) for this flow is plotted as a function of :in fig. 4.

a=1 (one-way coupling) to modcl a first order
derivative. Similar behavior occurs for other values
of a as long as the system is sufficiently asymmetric.
The boundary condition is chosen 1o be X0 = X*
where X* 1s the unstable fixed point
X*=({/1+4a—1)/2a of the map X' =f(X). The
term eg'” represents white noise where 7, is a ran-
dom number uniformly distributed between —0.5
and 0.5. We let the system evolve from the initial state
X§” = X* under conditions when the system is con-
vectively unstable. As with the Ginzburg-Landau
cquation, the noise near the left boundary is amphi-
fied spatially resulting in a structure. Fig. 3 shows a
plot of X{? as a function of i for a portion of the sys-
tem (far into the fully developed region) for a partic-
ular value of 2 after the system has reached a statis-
tically steady state. This system also undergoes a
spatial period doubling in a region to the left of the
fully developed flow [34].

Instcad of directly using definition (3) appropri-
ately modified for discrete time and space (i.c. (—
i, Xx— 0 vi—[on], dw(x, 1)-8X?, and, J-3F) we
formulate the problem using jacobian matrices. Here
[vn] means the integer part of vr, 5 X" is an infini-
tesimal perturbation about the state X.”, and
0<v< (i.e. v=j/k where j=0,1...., or k). First we
calculate the jacobian matrix J, =
XYy g x Y+ e for eq. (4) for i\ <i' <iy
and /,<j <€/, This matrix maps X’ for
L+ [wm]<igi+[vn] into sX{1, for
i+ [v(n+1)]) <igi;+ [v(n+1)]. Therefore, as the
iteration number n increases from zero, the region
{i,+[vn], i.+[vn]} will move “downstream” (i.e.
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Fig. 4. Plot of the largest velocity-dependent Lyapunov exponent
A(v) as a function of v for the flow seen in fig. 3. i,=1000,
{»=1200. v=0/30, 1/30, 2/30, ..., 30/30. The exponent is seen to
be negative for the stationary frame of reference (i.e. =0) and
positive for some moving frames of reference.

to larger values of i) with an average velocity of v.
We choose 7, and i, such that this region is in the fully
developed portion of the flow and take i, —/, suffi-
ciently large so that A(v) is independent of /, and /.
We then have 4(v) =lim,, . ., log y where y is the larg-
est eigenvalue of J,,_,J,_5...J5.

Fig. 4 shows a plot of A(v) as a function of v. This
behavior is not restricted to the parameter values of
fig. 4 but occurs for a wide range of parameter val-
ues. Also the plot is insensitive to the noise level for
sufficiently low noise level. We see that 4 is negative
for v=0. As vis increased from 0, A increases until it
reaches a positive maximum at v=d, and then
decreases until it again becomes negative. Since the
maximum value of A=0.1665%0.004 > 0 we say that
the fully developed portion of the flow is chaotic and
that /=0.1665+0.004 is a mcasure of that chaos.

4. Conclusions

We have studied two open-flow systems that are
driven by low levels of external noise - a partial dif-
ferential equation and a coupled map lattice. We have
shown that the usual definition of Lyapunov expo-
nents is inadequate as a measure of the chaotic
dynamics for such systems and therefore have gen-
eralized the definition of Lyapunov exponents and
the concept of convective instabilily to define a
measure of chaos for these systems. The basic source
of the inadequacy of the usual definition results from

PHYSICS LETTERS A

12 January 1987

the following: even though two nearby trajectories
may exponentially converge on the average in the sta-
tionary frame of reference, a moving frame of refer-
ence may exist in which nearby trajectories
exponentially diverge on the average.

There are many open-flow fluid systems with a
mean flow velocity, such as fluid flow in a pipe.
channel flow, and fluid flow over a flat plate. The
notion of a velocity-dependent Lyapunov exponent
is therefore important in the understanding of the
turbulent behavior of such systems. Although this
quantity is straightforward (though time consum-
ing) to calculate for numerical solutions of the
Navier-Stiokes equations, a challenge is to develop a
practical algorithm for the calculation of this quan-
tity (for valucs other than the maximal value) for
experimental fluid systems (see footnote 4).
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