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Towards Thermodynamics of Spatiotemporal Chaos

Kunihiko KANEKO

Institute of Physics, College of Arits and Sciences
University of Tokyo, Komaba, Tokyo 153

Thermodynamics of spatiotemporal chaos is discussed, with the use of coupled map
lattices. Structural stability of fully developed spatiotemporal chaos (FDSTC) is confirmed.
The stability is sustained by the destruction of all windows through spatiotemporal inter-
mittency and supertransients. [n FDSTC, spatial and temporal correlations are found to
decay exponentially, as are measured by mutual information. The existence of finite correla-
tion length assures the density of thermodynamic quantifiers. In FDSTC, it is possible to
obtzin the thermodynamical densities only from measurement within a subspace. On this
purpose, subspace Lyapunov spectra are introduced. Only from data of the dynamics within
a subspace, thermodynamic quantifiers such as Kolmogorov-Sinai entropy density, Lyapunov
dimension density, and scaled Lyapunov spectra are estimated. Application of this approach
to the diagnosis of experimental data of spatially extended systems is proposed. To study
the fluctuation of Lyapunov spectrum, sub-spacetime Lyapunov exponent is introduced. It
provides a way to distinguish chaotic region from ordered region in spacetime. Distribution
of sub-spacetime Lyapunov exponents is calculated which characterizes the change of pattern
dyvnamics clearly. As a theoretical approach to spatiotemporal chaos, self-consistent
Perron-Frobenius operator is introduced.  The invariant measure in a subspace is obtained as
the fixed point function for this operator. Some applications to spatiotemporal intermittency
transitions and pattern dynamics are presented.

Contents

Introduction

Stability of fully developed spatiotemporal chaos : destruction of windows and
spatiotemporal intermittency

Fully developed spatiotemporal chaos

Destruction of windows : spatiotemporal intermittency

Destruction of windows: spatiotemporal intermittency and supertransient tur-
bulence

Mutual information

Subspace Lyapunov spectrum

Possible diagnosis of experimental data

Sub-spacetime Lyapunov exponent

Self-consistent Perron-Frobenius operator

Summary and discussion

References




264 K. Kaneko

§ 1 Introduction

Spatiotemporal chaos is complex dynamical phenomenon with many degrees of
freedom, emerging in spatially extended systems. It appears in a broad area of
natural phenomena, including fluid turbulence, chemical turbulence, solid state
physics such as Josephson junction array, charge density wave, and spin density wave,
liquid crystal convection, biological information processing, and so on. Qualitative,
quantitative and theoretical understanding of spatiotemporal chaos remains one of
the most important problems in nonlinear dynamics.

As a simple model for spatiotemporal chaos, coupled map lattices (CML) have
been proposed.”™ Studies of spatiotemporal chaos by CML have been growing
rapidly within these few years."™'¥ '

A CML is a dynamical system with a discrete time, discrete space, and continuous
state.™'¥  Although there are various kinds of couplings between nearby lattice
points which may be used in a CML, we restrict ourselves here to the following

diffusive coupling case here:
I:H-l(l’):(l - G)f(.rn(l‘)) + G/Q[I‘(In(l.'*' l))+f(xlz(l_ 1))] s (1)

where 1 is a discrete time step and 7 is a lattice point (=1, 2, -, ¥ =system size) with
a periodic boundary condition. Here the mapping function f(z) is chosen to be the
logistic map /{x)=1—ax’ (coupled logistic Jattice). Results to be presented here are
applied to other maps and couplings.

Separation of procedures is important in the construction of CML. In the above
model. local nonlinear transformation and diffusion process are separated : The
dynamics consists of xx(i)—x'()=£(za(?)) and then the discrete Laplacian operator
x,‘+.(i)=(l—e)x’(z’)+(e/2)(z’(i+1)+x'(z’—1)). As has been discussed, this separa-
tion of procedures is essential to the modelling "'

Merits of CML are as follows: (i) It is numerically efficient, since it is semi-
coarse-grained description: (ii) Dynamical systems theory and quantification of
Jow-dimensional chaos are extended to include spatial degrees of freedom: (iii)
Statistical mechanical treatment is possible: (iv) It captures the essence of
spatiotemporal chaos.

The original motivation of the introduction of CML has been to understand
turbulent behavior as (hyper)” chaos. In other words, it is invented in the endeavor
towards the synthesis of Landau's picture on turbulence®® and Rossler’s hyper-
chaos’® Landau regarded turbulence as a direct product of periodic states (that is
a quasiperiodic state with many incommensurate frequencies). Unfortunately, this
direct product state is unstable, and is easily locked to a lower-dimensional torus,” or
attracted to a nearby strange attractor.®® On the other hand, it may be possible to
construct a turbulence model as a direct product of chaos ((hyper)” chaos), if it 18
stable. For this motivation, CML has originally been introduced.””

Not only Landau's high-dimensional quasiperiodic state but also low-dimensional
chaotic state is structurally unstable. In the logistic map, for example, chaos cannot
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exist in an open set in the parameter space. Periodic windows are dense, although
the chaotic state also has positive measure in the parameter space. Quantifiers such
as Lyapunov exponent, have infinitely many drops, if plotted as a function of bifurca-
tion parameter. Chaotic state is structurally unstable, even if it is observable.

As will be seen in § 2, fully developed chaotic state in our model is structurally
stable. All windows are destroyed for almost all initial conditions. Mechanism of

this destruction turns out to be spatiotemporal intermittency”¥® and super-

transients.'”

In fully developed spatiotemporal chaos, spatial correlation decays exponentially.
Then, two points distant farther than the correlation length & move independently.
Our system is roughly approximated by a direct product of (N/€) independent systems.
Then the number of positive Lyapunov exponents, Kolomogov-Sinai entropy and the
dimension of attractors are expected to be proportional to the system size N2
This existence of extensive quantifiers assures well-defined existence of ther-
modynamic densities, as is discussed in § 3.

If such densities exist, it is expected that the information of thermodynamic
quantities can be obtained only from the data in subspace. On this purpose, subspace
Lyapunov spectra are introduced in §4. Only from the timeseries within a small
subspace, one can estimate the thermodynamic densities of the total system. Applica-
tion of this method to experimental data is discussed in § 5.

By extending this method to subspace and sub-time (finite time), it is possible to
quantify the strength of chaos in spacetime. Application of sub-spacetime Lyapunov
exponents to spatiotemporal intermittency will be discussed in § 6. Fluctuation of
Lvapunov exponeats in spacctime is obtained from the disiribution of sub-spacetime
Lyapunov exponents. Based on this distribution, one can expect the statistical
treatment analogous to the large deviation theory of low-dimensional chaos.

In fully developed spatiotemporal chaos, we can expect the construction of
statistical mechanics. Through the statistical mechanical formulation, we may
relate various thermodynamic quantifiers with each other. As a simple step towards
a theoretical formulation. a self-consistent Perron-Frobenius operator is introduced.'®
Application to spatiotemporal intermittency is discussed in § 7.

§ 2. Stability of fully developed spatiotemporal chaos:
destruction of windows and spatiotemporal intermittency

Fully developed spatiotemporal chaos .

As has been investigated in detail,’*"* our CML exhibits the following phase
changes: (i) periodic states with kinks, (ii) frozen random pattern with localized
chaos, (iii) pattern selection, (iv) spatiotemporal intermittency transition and (v)
fully deveioped spatiotemporal chaos (FDSTC).

In FDSTC, all quantifiers change smoothly with parameters for almost all initial
conditions. In Fig. 1, we have plotted Kolmogorov-Sinai entropy and maximal
Lyapunov exponent as a function of bifurcation parameter a.

Figure 1 is in strong contrast with the graph for the bifurcation in the single
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Fig. 1. Kolmogorov-Sinai entropy (a) and max-
imal Lyapunov exponent {b) of our logistic Destruction of windows: spatiotemporal

lattice (1), as a function of a, calculated from 1'71{er)ni[tc)zc.v
the Lyapunov spectra (see §4 for details). . . . .
Why do windows in the logistic map

The spectra are obtzined from 3000 steps after ) ] )
discarding 2000 transicnts, starting from a ran- disappear in coupled systems: If z

dom initial condition. ¢=.2 and V=04 =.1',*(j=1. 2, -, /)) is a stable cycle of

the period p for the logistic map in a

window, spatially homogeneous and temporally periodic state z()=x,* is linearly

stable, as can be easily checked. This window should be observed for initial condi-

tions in the vicinity of the homogencous state. For most initial conditions, however,

windows are not observed. This means that we have to investigate the basin volume

of such homogeneous attractor, and the transient time before our system is attracted
into the homogeneous attractor.

As a simple example, let us consider the period-3 window in the logistic map.
Period-3 cycle is stable for 1.75< @< 1.76--- for logistic map. InFig. 2, F¥x) is plotted.
We have three stable fixed points x.*, x*, z3* of fX(z) corresponding to the period-3
cycle in the logistic map. In our logistic lattice the homogeneous period-3 state (x(2)
=r.*) is stable for this parameter range. However, the basin volume ratio for such
homogeneous state is extremely small.* We have never encountered with the
attraction into this homogeneous state, as far-as we take arbitrarily chosen initial
conditions.

The homogeneous period-3 state has basin of attraction only in the vicinity of
such homogeneous initial conditions. Let us denote the unstable period-3 cycle by xi,
x4 and 3 (in other words the unstable fixed points of f°(x)) and introduce the interyal
I; as I;=[z,%, x}] (see Fig. 2). Define an initial condition curve zo(7) as a piecewise:
linear connection of xo(:) (i.e.. To( )= zo(7)} +(xo(j +1) = 2o(7)) X (7 — ) for ;= r<j+1).

*) Iere the “basin” for a given state means the sct of initial conditions which are attracted to the state
within a non-astronomical time. that is less than the order of exp{const X V).
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If 2o(s") is confined in a unique /. initially
1 (in other words, all of the xo(:)'s belong
to a unique interval I.), our lattice is
attracted to the homogeneous cycle
within non-astronomical time steps. On
the other hand, if an initial condition
zo{7) covers at least two intervals /i and
L (j=i), it is not attracted into the
homogeneous state within non-
astronomical time steps. For such an
- " initial condition there are lattice points
which take a value between /¢ and /.

x The local dynamics of logistic map gives
Fig. 2. f%(x) of the single logistic map. a=1752. transient chaos at this range of value.

If the initial value of x lies in /,, z. is attracted The lattice point should move chaoti-

to ., a fixed point of /¥z). without any cally in time. If the coupling is not

e s, Sl e omot) oremely sl (spically fager than

between 7, and .. The existence of  the order of 0.001), this chaotic region

topological chaos without chaotic attractor in propagates to neighboring lattice points.

the local map is nccessary to create the See Figs. 4 and 6 of Ref. 1b) for the

spatiotemporal in.lcrmiuency in a coupled sys- propagation of the chaos by this ma-

tem. chanism. This mechanism is called
spatiotemporal intermittency."  Thus we can say that windows in local dynamics
are extinguished by spatiotemporal intermittency for a coupled system.  This is why
all physical quantities change smoothly with a parameter in FDSTC.

The volume ratio of the condition with ¥ zo(/}Eunique I; decreases exponentially
with the system size N. Thus the probability to hit the homogeneous attractor goes
to zero with the increase of system size.

We note that topological chaos is essential to spatiotemporal intermittency. If
there is no topological chaos in the local dynamics, the above argument does not hold.
Indeed, a cycle with period 2" is stable with kinks." Since there is no topologial
chaos in the parameter regime for period 2" in the logistic map, the kink dynamics
between the values of /; and [; does not exhibit any chaotic behavior. Kinks are thus
stabilized and pinned at its position.

To sum up, Coupling periodic local dvnamics with TOPOLOGICAL CHAOS
inditces spatiotemporal intermittency.

In a one-dimensional map, Li and Yorke have proved the famOus phrdse ‘Period
three implies chaos”.? Since the chaos in their proof is topological chaos, but not
necessarily observable chaos, this phrase is not alwavs valid to observable (physical)
chaos. On the other hand, we can conclude the following statement on spatiotempor-
al chaos, by combining the above summary with Li-Yorke's phrase: “Coupled period-
3 implies observable spatiotemporal chaos”.

Destruction of windows: spatiotemporal intermittency and supertransient trbulence

Here we show that spatiotemporal intermittency is not the final attractor but
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201 w0
n/105 ( per 105 time steps) ‘

Fig. 3. Spatial derivative plots for the coupled logistic lattice (1), with €=0.001, N¥=30 and starting
with a random initial condition. Every 105th step is plotted. If |xa(i +1)—x.(7)| is larger than .3,
the corresponding spacetime pixel is painted as black, painted as gray if it is between .1 and .3,
while it is left blank otherwise. Around the time step 36000, intermittent transients disappear and
our system is attracted into the homogeneous period-3 cycle.

’ ' N ' type-II supertransient turbulence.
0-“"1"-”'.*'-‘\“”‘* W”“W’ﬁﬁw#’kﬁkw}k’f Type-II supertransient is found and
L defined by Crutchfield and the author.®
0.2f C i Definition of type-II supertransient tur-

bulence is as follows:(1) the length of
3 transient time diverges with system size
oF . exponentially or faster; (2) in the tran-
] sient time steps, the motion is chaotic
with many positive Lyapunov expo-

u nents; (3) there exists quasi-stationary

measure; no decay is observed in the

transient regime, and the termination of

transients is abrupt.

Fig. 4. Short-time Lyapunov exponent of our ITCC us StL.lEiy COUplec.] logistic lattice
(1) with @=1.752. At this parameter the

logistic attice (1), plotted as a function of time. . L .
Using the N-dimensional Jacobi matrix J of attractor of the single logistic map 1S

our lattice dynamics, short-time Lvapunov period-3 cycle. If the coupling is smal-
exponent A(!) is defined by the logarithm of the ler than e<e.~8X107*, our CML is
largest eigenvalue of IT3Li/m:.;. M is chosen attracted into this period-3 state with
to be 60. ¢=1.752, 6=00011, and =30 and kinks within few time steps. If €> €,
starting with a random initial condition. . . 1

our svstern exhibits spatiotempora

intermittency as is discussed in the previous subsection.*’

In Fig. 3, spacetime diagram for a small lattice is shown. After many time steps,
our system is finally attracted into the homogeneous period-3 state if €<Eéc. As
shown in the figure, our system exhibits typical spatiotemporal intermittency in the
transient time regime."”” '

To show the existence of quasistationary measure and of the rapid escape to
periodic state, we have plotted shori-time Lyapunov exponent as & function of time.

The maximal Lyapunov exponent is calculated by the average over given M time
ails will be

Lyapunov ¢xp, (ave. over 600 steps)

0 100 200 300 400 500 €00
tine { per £30 steps)

the

*) To be precise, there is small parameter regime e <e<e¢’c of type-l supertransients. Det
reported elsewhere.
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steps, without taking A—oo limit (see also §4). In Fig. 4, we have chosen 4/=600
time steps. The existence of quasistationary measure and a very rapid escape is
clearly seen. In the figure, spatiotemporal intermittency terminates around 620 X600
time steps, and is attracted to the fatal attractor, period-3 cycle.

In Figs. 3(a)~(c), average transient time steps before our system is attracted into
period-3 state are plotted as a function of system size N.

For e>e., the transient length increases with the system size as

Tv=const X exp(7V) .
Here the coefficient » increases with € as
7’0C((l—'[lc)7 .

The exponent 7 is related with the exponent for the correlation length. The
exponential divergence of the transient length is understood as follows: If our system

Length of Transients

10°

10

System Size N

(c)
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T
10'} b
Q Fig. 5. Average transient length versus system
size N, Average time steps before our system

is attracted onto period-3 cycle are calculated
from 100 randomly chosen initial conditions.
Coupled togistic lattice with a=1.752.

(a) Semi-log plot for ¢=.0004 (O), .0006 (D)
and .0008 (+). :

(b) Semi-log plot for =.0009 (0), 001 (CT)
and 0013 (+) The slopes are .0015 (e
=.0009). .0032 (¢=.001) and .03 (e=.0013).

(¢) Semi-log plot for €=.0013 (O), .0015
(Q), 002 (&), 003(+). and 005 (x). The
slopes are .047 (=.0013), 076 (¢=.002), 1.0 (¢
=.003) and 1.4 (e=.003).




270 K. Kaneko

has a finite correlation length £, two elements distant farther than & move essentially
independently. Then our system is divided into (N/£) subunits. Asa simple approxi-
mation we can assume that each subunit takes either Laminar (L) or Turbulent (7°)
state. As long as there exists a turbulent site, it can propagate into neighboring sites.
If all of our lattice points happen to hit Laminar state (LLL--LLL), our system
remains the LLL---LLL state. Thus the transient time before our system enters into
the periodic state is approximated by the average waiting time before our system finds
the LLL---LLL state. Using the single-point probability p. that an element takes
Laminar state, and neglecting the correlation in neighboring subunits, the probability
that all elements take L is given by (p.)¥"*. The average time to find the state
LLL---LLL is inversely proportional to the above probability. Thus the transient
length 7'v obeys

Tyoc(p) "¢ ccexplconst X N/2). (4)

c

If we follow the common sense of critical phenomena, the correlation length &
diverges as fo<(a—ac)™*. Our critical exponent 7 of transients is expected to be
equal to the exponent ¢. '

Near ex ¢, transient length increases with some power; Ty=N". This power-
law dependence is also expected from the power-law decay of correlation at the

transition point.

§ 3. Mutual information

Chaotic dvnamics exhibits the information flow in the bit space.”” In
spatiotemporal chaos, the information flows both in real and bit spaces. DMutual
information is a powerful tool to measure the correlation and the information flow in
spacetime. Here we use two-point mutual information flow in spacetime, to study the
spatiotemporal correlation.*’

Let us introduce a single point distribution function p(2(7)) and two-point proba-
bility function P(za(s), xu-(i+m)). p(z(2)) is the probability function that the lat-
tice site / takes a value (i), while P(z4(i), Tnse(i+m)) is the probability that the
lattice site 7 takes a value z.(7) at time » and the site ; + takes Zn+e(i+m) at time
n+t. Mutual information between the two lattice points 7 and ¢+ is defined by®

(¢, m z')=ﬁogp(x(z’))dx(z’)+flogp(r(i+nz))a*'x(i-!—m)

= [108P(xa(1), Tns (i +m))dxa(i)dxas (i +m) . (5)

Temporal mutual information is the mutual information at the same lattice point
with two different time steps /(¢ ; {)=17(¢, 0; 7). Spatial mutual information is that
of two different lattice sites at the same time; /°(me; 2)=7°(0, m; 7).

In numerical calculation of the probability function we have to use a finite bin

*) It is also important to introduce multi-point probability function and to study the cylinder entropy and

spacetime patch entropy.
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Fig. 6. Temporal mutual information flow for the Fig. 7. Spatial mutual information flow for the

logistic lattice (1): calculated using the bin logristic lactice (1), calculated in the same man-
number A =64 and 300000 time step sampling, ner as Fig. 6. e€=3, M=32, and ¥=1000. «
after discarding 100000 step transients. N =172, ¢=178, «=1.8, a=185 and a=19.

=1000, e=.3. 2=178 1.79. 18, 181, 1.82 183
1.81, and 1.88 from top to bottom. The site
dependence is negligible here.

size, and replace the integral by the summation over bins. Taking the partition
number A/ for the interval [—1.1), the above probability functions are computed
through the bins [=1, —=1+2/1f]), [—1+2/3, =1+4/31), -, [=1+20/M, —=1+2(n
+0)/A), - [1=2/a1,1].0

Temporal mutual information /(¢ ; i) for FDSTC is shown in Fig. 6. It decays
exponentially with time. The function is independent of sites, showing the spatial
ergodicity. These two features are in contrast with the results for the phases “Pat-
tern Selection” and “Frozen Random Pattern”.***' [n these two phases, the decrease
of mutual information stops at some value, and its functional form depends on sites.

The rate of the exponential decay decreases as the nonlinearity is decreased, till
t goes to zero at the intermittency transition. The decay is roughly fitted by the
bower-law decay near the transition parameter.

Spatial mutual information is shown in Fig.7. InFDSTC it decays exponentially
vith the distance ». The rate of decay decreases as the parameter approaches the
ransition point. _

As is seen in Fig. 7, a smaller periodic modulation is added in the mutual informa-
ion. It comes from the domain structure. Indeed, the domain size selected in the
attern selection phase has this wavelength. The above modulation shows the trace
f this domain structure in the chaotic regime.

The mutual information with different time and space has originally been
ntroduced in Ref. 3), as co-moving mutual information flow (COMIF). The mutual

*! Increase of the above mutual information with the partition number M gives the rate of information
creation.  We can measure the spacetime flow of information creation. Although the creation rate is
an important quantifier, we will not discuss it here. We fix M =6/ throughout the paper.
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information I°(¢, #/v; 7} with a given velocity v quantifies the information propaga-
tion with the speed ». In soliton turbulence® soliton-like excitations remain in
turbulent states. In this case, COMIF I*(¢, t/v; i) has a peak at a velocity of such
soliton. In an open-flow problem,”® there exists propagation of kinks to downflow.
COMIF has a sharp peak at the speed of kink. The peak decays slowly with time.
This decay is originated in the chaotic interaction with other kinks.

§4. Subspace Lyapunov spectrum

Lyapunov spectra characterize how a small disturbance in tangential space is
amplified or contracted. In an N-dimensional dynamical system, there are N in-
dependent tangential vectors. Corresponding to them there exist N eigenvalues,
which form the spectrum.

In our CML, Lyapunov spectra can be defined by the product of Jacobi matrices.
The logarithm of the eigenvalues of the product, divided by time steps » with the limit
n—o give Lyapunov exponents. The exponents A; ordered from the largest to the
smallest, give a spectrum. The maximal Lyapunov exponent A characterizes the
rate how arbitrarily small disturbance is amplified. Sum of positive Lyapunov
exponents give the amplification ratio of an N-dimensional tangential volume. It is
equal to Kolmogorov-Sinai (KS) entropy which is originally defined as the increase
rate of variety of symbal sequences.

Another useful quantity obtained from Lyapunov spectrum is Lyapunov dimen-
sion. It is defined by

D4
Dc=jp+ 2

=1
Aj+l

(6)

’

where j, is the largest integer which satisfies 3172,4,>0. According to Kaplan-Yorke
formula,?” the Lyapunov dimension gives an estimate on the dimension of attractor.

As has already been discussed,” the spectrum has a scaled form: A(z)=As:
converges to a single curve, independent of &, if N is not too small. The existence
of this scaled form assures the existence of Kolmogorov-Sinai entropy density
=(1/N)ZJ=4; and Lyapunov dimension density di=[j,+(2%2.4,)/(A+1))/N.

A drawback in the study of these quantifiers lies in the necessity of long computa-
tion time. Although we can calculate the whole Lyapunov spectrum for CML within -
reasonable computational time, the calculation requires much longer time in PDE. In
real experiments, it is practically impossible to get the spectrum if the system size and
the dimension are large.

When the spatial correlation decays exponentially, two elements distant farther
than the correlation length move essentially independently. It is expected that we
can construct the thermodynamics of our whole system only from the information of
a subsystem within the size of the order of the correlation length.

In the present section, we argue a possible way to reconstruct the whole
Lyapunov spectrum from the measurement within a small subsystem. We introduce
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the subspace Lyapunov spectrum here.*’

Take a subsystem S[j, L), subspace consisting of sites 7, j+1, -, j+L—1, and
define Lyapunov spectra at the subspace S[/, L). We calculate how a tangential
vector in this subspace 8x(j), éx(j+1), -, 6z(+L—1) evolves. From the eigen-
spectrum of this evolution of tangential vectors, Lyapunov spectra are obtained, in the
same manner as usual Lyapunov exponents. Here the amplification/contraction of
small disturbances at the boundaries (x(j—1) and x(;+ L)) is neglected. Boundary
effect comes in only through the motion of z(;) and z(+L—1).

In our CML, the spectrum is calculated by the product of Jacobi matrices at site /,

TS0 =(1— ) f (xn(i+7—1))0

+(E/2)(fl(xn(i+j))8i+l.k +f'(-’rn(i +7— 2))5.’-1.1«); (7)
(8% is Kronecker delta with 800=0c+1..41=0). Logarithms of the eigenvalues of the
product lima-«(1/7)logl] »"/= give the subspace Lyapunov spectrum.

Does the subspace Lyapunov spectrum give a good estimate for the whole spec-
trum?  We can expect the affirmative answer if we adopt a heat-bath picture: Take
2 subsystemn, and assume that the effect from other regions is replaced by a noise

senerated by spatiotemporal chaos.
In Fig. 8, scaled Lvapunov spectrum is plotted with the increase of subsystem size

Fig.
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5(e) 10(0), 15(a) and 20 (+). The curve
shows the Lyapunov spectrum for the entire
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They are calculated from the subspace
Lyapunov spectra for the logistic lattice with @
=19, €e=04 and V=100, starting from a ran-
dom initial condition. The lines are drawn by
the least square fit for 10< L<20. The siopes
are .75 (for KS entropy) and 7.2 {for l.yapunov
dimension).

' A one-dimensional case is explaired here. The extension to higher dimensions is straightforward.
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L. Asis seen, it gives a good coincidence with the whole spectrum as L is increased.
The convergence is fast for positive exponents. For negative exponents, the conver-
gence is rather slow, due to the boundary effect for the subspace. The subspace
Lyapunov spectrum provides a simple way to estimate the density, such as
Kolmogorov-Sinai entropy density and Lyapunov dimension density.

Subspace KS entropy H(L) and Lyapunov dimension D.(L) are straight-
forwardly defined by replacing Lyapunov spectra by the subspace Lyapunov spectra.

We propose here that
H(L)=hL+const and  D.(L)=d.L+const,

if the subspace size L is large enough. This proposition provides a simple and
efficient method to estimate the KS entropy and Lyapunov dimension densities. In
Fig. 9, H(L) and D.(L) are plotted as a function of L. The slopes of H(L) and Di(L)
in Fig. 9 are .75 and 7.2 respectivelv. On the other hand, 2=.74 and d.=7.3 from the
calculation of whole N-dimensional Lyapunov spectrum. As is expected, our slopes
give good estimates for these densities.

§5. Possible diagnosis of expcerimental data

The subspace Lyapunov spectra can be estimated from experimental data, if we
adopt Takens-Packard embedding™ and Sano-Sawada-Eckmann-Ruelle algorithm®
for Lvapunov spectra. We propose the following algorithm for the diagnosis of
experimental data of spatiotemporal chaos.™

(i) From experimental data x(r, ¢) in space r and time {, measure the spatial
and temporal correlations using mutual information, on the basis of the method in
§ 3. Here we assume that the correlation function decays fast enough to have
a well-defined correlation length ¢ and & (typically they decay exponentially as
exp(—¢/r) and exp(— /&) for large ¢ and 7).

(ii) From z{r, {), we extract discrete sets of values xx(7) at discrete time and

space with the interval n and 0. Here % and & should be smaller than, and the order
of r and & respectively. Now we have a discrete set of z»(7) with 7= #/r and i=rf&M

(iii) Choose a subsystem with the size of R=2%7. Now we have a finite set of
data Xa=z:(), 2:(+1), -, zu(j+ M —1). Following the idea of Packard et al. and
Takens® we reconstruct the dynamics of this subsystem by taking an embedding
dimension X. Now we have MK-dimensional phase space [Xu, Xn+1, =, Xnsar- 1)

(iv) Apply conventional methods to the above MK-dimensional time series: (a)
algorithm to estimate the dimension (e.g., Grassberger-Procaccia algorithm™): (b)
algorithm to estimate the Lyapunov spectrum (eg. Sano-Sawada-Eckman-Ruelle
algorithm®”). Here we confine ourselves to the estimate of Lyapunov spectrum. k)

(v) Following the previous section and the above algorithm, we obtain

*) Here again, a one-dimensional case is used. The extension to higher dimensions is straightforward.

**) [t is not yet resolved what the optimal choices for m and % are.  As test choices. ©=1 and &=3 may
be recommended.
***) See Ref. 12) for the estimate of dimension density.
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Lyapunov exponents for MK-dimensional dynamical systems; A{k=1,2, -, MK).
Subspace Lyapunov dimension a’L(K) and subspace Kolmogorov-Sinai entropy 2(4)
are calculated from the spectrum.

(vi) Increase the number of spatial points M fixing X, and carry out the same
procedures (iv)~(v). We expect the following characterization:

(a) Plot (M) and check if it is fit by a linear increase form. If it is fitted,
measure the slope (assume to be dd. for large M). The value 8d./& gives the
Lyapunov dimension density.

(b) Plot 2(M) and check if it is fit by a linear form. If it is fitted, measure the
slope (assume to be &4 for large Af). The value 8//% gives the Kolmogorov-Sinai
entropy density.

(c) The scaled Lyapunov exponent A(x)=Aux fits on a single curve.

Since the estimate of negative Lyapunov exponents mayv be rather difficult, the
Lyapunov dimension and the negative part of the scaled spectrum may be practically
inaccurate.  Still, we can hope to obtain KS entropy density and the positive part of
scaled spectrum. The convergence of these two quantifiers distinguishes
spatiotemporal chaos from random data.

§6. Sub-spacetime Lyapunov exponent

In the previous section we have assumed the spatial ergodicity. This assumption
is valid to FDSTC, but it is also important to distinguish strongly chaotic spacetime
region with weakly chaotic one. Here we introduce sub-spacetime Lyapunov expo-
nents to stucy the spatiotemporal differentiation of chaos.

Take a subspace of the size #/=2L+1 and calculate Lyapunov exponents only
over finite time steps 7. The exponents form the sub-spacetime Lvapunov spectrum.
In our CML, the sub-spacetime Lyapunov exponent at time= », site=/ is calculated by
the products of Jacobi matrices for [2n(/— L), zu(j—L+1), =, za(j+ L~1), zu(j + L)]
over m=n, n+l, -, n+T~=1. Theboundary effect of amplification at x.(;— L) and
za(j+ L) is again neglected.

To be specific, we calculate the product of the Jacobi matrices J,SV-42£+1 (Eq. (7))
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Fig. 10. Spacetime Lyapunov diagram : Sub-spacetime Lyapunov exponents with subspace size M=3
and sub-time length £=8 are calculated for the lovgistic lattice with =03 and N=100. The
gray-scale of the spacetime pixel represents the value of the exponent at the spacetime point.
(a) a=15, (b) a=165 (¢} u=174 {(d) a=
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over time steps n=¢, ---t+ 7. Sub-spacetime Lyapunov exponents are given by the
logarithms of the eigenvalues of the above product of jacobi matrices.

In Fig. 10, maximal sub-spacetime Lyapunov exponents are plotted in spacetime
with the use of subsystem size L=1 and T =8.

For frozen random pattern and pattern selection phases, spatial dependence of the
exponents is clearly seen in Figs. 10(a) and (b). In spatiotemporal intermittency, we
can distinguish burst and laminar regions clearly (see Fig. 10(c)). In FDSTC, fluctua-
tion in spacetime is much smaller (Fig. 10(d)).

By sampling sub-spacetime Lyapunov exponents over the total lattice and many
steps, we get the distribution of exponents P(1). The distribution provides a useful
measure of statistical property of spatiotemporal chaos. In Fig. 11, the distribution
of sub-spacetime Lyapunov exponents is shown.

In the frozen random pattern phase,” the distribution is widely scattered, re-
presenting the existence of different domain sizes with different strength of chaos
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Fig. 11. Distribution of sub-spacetime Lyapunov exponents. Sub-spacetime Lyapunov exponents
with subspace size 3/ =5 and sub-time length £=38 are calculated for the lattice sites 10, 20, 30, -+,
100 and for 80000 steps per 8 steps. Totally 10X 10000 exponents are obtained. From these data,
histcgram is sampled with the use of window size .01. Logistic lattice with e=.3 and N =100 from

a random initial condition.
(a) a=148, (b) a=154, (c) a=16, (d) a=166, (e} =172, {f) a=174, (g) a=1.84, (h) a=1.94.
For (), (b) our systems are in frozen random phase, for (c), {d) in pattern selection phase, for

(e). {£) in intermittency, and for (g), (h) it is in FTSTC.
Semilog plots are shown in (a’), (¢"). (f"), and (K'), corresponding to (a), (c), (f) and (h)

respectively.

(Figs. 11(a), (b), (2")). In the pattern selection phase, the distribution has few peaks
(Figs. 11(c), (d), (¢). Note the peaks at negative values, showing the suppression of
chaos” clearly. Peaks at positive exponents get lower as the nonlinearity a is
increased and the selection process proceeds.

At spatiotemporal intermittency, the distribution splits into two parts peaks at
negative values and smooth distribution at positive values (Figs. 11(e), (f), (f)). This
clear splitting means that the burst motion and laminar motion are well separated in
our intermittency. As chaos is developed, the portion of the latter smooth distribu-
tion increases (Figs. 11{(g), (h), (h")). The smooth distribution is not exactly Gaussian,
but the tail of distribution decreases with exp{—const X (A—2,)%). The width of the
distribution becomes narrower with the increase of nonlinearity.

In future it will be of importance to apply the large-deviation-theory framework
(Refs. 31)~35)) to our distribution of sub-spacetime Lyapunov exponents, in order to
characterize the fluctuation in spacetime quantitatively.

§7. Self-consistent Perron-Frobenius operator

Is it possible to have a statistical mechanics formulation of spatiotemporal chaos?

So far there are two approaches towards this direction.
The first approach is an inclusion of spatial degrees of freedom to the statistical
mechanical theory of chaos. According to Refs. 32) and 33), chaos with one positive
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Lyapunov exponent can be mapped to the statistical mechanics of a one-dimensional
spin system. Then we may expect that a CML of d-dimensional lattice may be
mapped into the statistical mechanics of a (d +1)-dimensional spin system. If this
mapping is possible, we can construct Gibbs measure for our CML. We can also hope
to map our phase transitions of pattern dynamics in CML onto the phase transition in
a (d +1)-dimensional spin system. A cautionary comment here 1s that the interaction
of this (d+1)-dimensional spin system should be strongly anisotropic, since the
temporal direction of interaction and the coupling of spatial direction take completely
different forms.

The first explicit construction of Gibbs measure for CML is carried out by
Bunimovich and Sinai.'” They have constructed the measure for a CML of an
everywhere-expanding map with “almost”-diffusive coupling.

The second approach is the use of Perron-Frobenius (PF) operator.™® In low-
dimensional chaos, the PF operator has been useful] for the study of the statistical
mechanics. Since the PF operator is applied to the probability measure o(x(1), 2(2),
-+, z(V)) for the whole N-dimensional phase space, it is practically intractable for our
CML with (large) N degrees of freedom.

On the other hand, the heat-bath picture is valid, especially in FDSTC, as has been
discussed in previous sections. Our dynamics in a given subspace can be approximat-
ed by the dynamics of the subspace and the stochastic process at the boundary. To
determine the nature of stochasticity, we adopt the self-consistent approximation
here. The strategy is as follows: By applying the PF operator to a subspace with a
noisy boundary, we obtain the measure for the subspace. The noise at the boundary
is determined by the measure self-consistently.*

The PF operator for the entire dynamical svstem is given by

O I o ey B ®

where the sum takes over all possible sets of (¥(1)), preimages of z(7) (i.e., y(i)—z()
by the map (1)). J((0), -, ¥(N—1)) is the Jacobian of the CML transformation (1).

The preimages of our system are easily calculated as in Refs. 5) and 13). First
we introduce the inverse of the tridiagonal diffusion matrix D, ;=(1—€)d:.,
+(e/2)(8r5s1+8:51). It is given by ‘

RN =L _ "Stexp(2ika(l—7)IN)
()= EE)D“ z(l)= f?{)(l/j\r)go 1-2esin*(ka/N) z(1). ®)

The preimages in Eq. (8) are given by
(@)= N =F(ZDR2 (1)), 10)

where f7'(z) is inverse functions of f(x) (for the logistic map it is given by
*/(1—-x)/a). Using the chain rule, we get the following expression for the entire PF
operator:

*) Here we discuss l-dimensional tattices with diffusive coupling. Extensions of our formulation to the
open-flow CML model,” and higher-dimensional lattices® are straightforward.
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H"o(z(1), 2(2), -+, z(N))=(detD)"" DI pl%y,ﬁll)lf(ﬁg‘;)’l)) : (11)

Yy
o

where 2y, Tuns over all possible solutions of Eq. (10).
Projection onto the k-dimensional subspace (z(1), z(2), -, x(k)) is carried out by
integrating out other lattice points than 1, 2, -+, £:

o(x(1), 2(2), -+, z(k))
= [+ [az(O)du(l+ 1)dx(k+2)-+dz(N —1)o(z(0), 2(1), -, 2(N—1))

In order to integrate out Eq. (11) by dz(0)dz(k+1)dzx(k+2) dz(N—1), we need
the information at the boundary at 0 and £+1. For this, we have to introduce the
following conditional probability:

P(y(2), y(3), -+, y(B)ly(k+1))
=0(3(2), ¥(3), -, y(k), y(k+1))p(x(2), (3), -, w(k)). (12)

Neglecting spatial correlation longer than # in p(z(0), -+, (N —1)), we obtain the
following expression for sukspace distribution function:

Hp(2(1), 2(2), -, 2(k)=(det D)™ [y rd(0)dy(k+1)

p(y(1), =, (N P((2). v(3). -, y(B)y{k + 1) P((1). $(2). ---. vi&=1)v(0))
IERTECTeD]] '

(13)

The preimages (y(1), y(2), ---, y(£)) are given by the solution of
Y0) =1 D5 Z (/20O + /(5 +1)61)) (149)

The matrix D'(k) is the £-dimensional diffusion matrix Dy of size £ without a periodic
boundary (i.e., (1 - €)3;,j+(6/2)(5;+1.j+ 5;-1.;)). .

The above equation is easily interpreted as the PF operator for the CML of size A
k with the boundary at z(0)=y(0) and x(k+1)=y(k+1). The probability that x(0)
and z(£+1) take y(0) and y(k+1) is calculated by o(¥(0), (1), -+, ¥(£—1)) and o((2),
¥(3), -, ¥(k+1)) self-consistently from our k-dimensional probability distribution
function.

The projected invariant measure p*(z(1), -, z(£)) onto a £-dimensional space is
obtained as the fixed point function of the above operator.

For =1 (one-body approximation), the self-consistent PF(SPF) operator is given
by

SPF (1 — ! p(y)p(}’o)»o()’z) . =
H™o(z)=(1 €) ff.v=/-‘((z—e/zaﬂz)))/(b—s)J_U;'_(yT_dyOd}z' (15)

where the sum over preimages y are given by the solutions of y=f"(x—¢€/2(3

+y2))/(1—e¢)).

For £=2 (two-dody approximation), it is given by
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SPF 72N Y S S P AT A P(J’h}’Z)P(J’m)’l)p(}'z.ys) ,
o o, 2= (= =0 [ BELTG NGl @ 09

yiy2
where p(32)=/0(», y:)dy and the preimages (31, ») are given by the solutions of
Fo)=(1— &)+ e(f(z)+30)[2; fy)=(1— )z F e(f(z)+y)/2. '

Extensions to a larger k-dimensional subspace are quite straightforward. In
the following, we briefly present some applications of 1-body and 2-body SPF to phase
transitions in CML.

Let us discuss the spatiotemporal intermittency at the period-3 window in our
logistic lattice (2=1.752) (§2). At €=.0008, spatiotemporal intermittency phase
transition occurs, as is discussed in §2. By our SPF operator, the transition occurs
at €~.0008. Even in this one-body approximation the coincidence is within 10%.

0.086 T 1
{  Fig 12. One-body distribution function of o(x).
- 0.05F H The solid line gives a 1-body distribution func-
;Sj tion obtained from numerical integration of
§ 0.04F b our self-consistent approximation, while the
.E dotted line gives that obtained from a direct
S o3k i simulation of (1). For the calculation of distri-
_:: bution, 320 mesh points are used for the inter-
E. 0.0zt i val (-1,1.1) (dr=2.1/320). The logistic
% i i fattice with 2=1.752 and €=.002. For the
& i! 1] direct simulation, data are sampled over 30000
0.01¢ I| o /T time steps after 10000 transients, over the total
})"‘\_____ f"‘—\..,_,,,,,,ﬂ«-"' lattice points with the size N=1000, and start-

0—1 - ——(; . | ing from a random initial condition.
X
1 1

............

8

X 1 11 ! 1
(a) {b)

Fig. 13. Two-body distribution function of p(x. r2), obtained from the numerical integration of Eq.
(16). For integration 64 meshes are used for (—1,1) (dr=2/64). In the figure, a side of a square
is proportional to o{z., 12) at the corresponding site. (a) a=184, e€=.1 (the maximum of o(z,
12)(4x) is 0.0061; the corresponding pixel is left blank if plae., 22X J2)?<0.001). (b) a=19, e=.1
(the maximum of o{z., r:)(4r) is 0.0015; the pixel is left blank if ol 2)(4x)?<0.0001).
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The invariant measure o{x) vanishes for &l for e<e. For €>e, o(x) is a
continuous measure. The invariant measures obtained by. our SPF and by direct
simulation are plotted in Fig. 12. As is seen, the above one-body approximation is
fairly accurate in FDSTC.

The next example is the phase transition with pattern dynamics in our logistic
lattice (1).¥ To see the ordered pattern with a domain size of /, we reed at least
[-dimensional distribution function. The simplest transition is that from a zigzag
pattern (/=2) to a turbulent state at e=.1. In Fig. 13, two-point distribution func-
tions p(x(1), z(2)) are shown. We can see a transition from a zigzag state to a
turbulent state. This kind of transition is seen even in a coupled-logistic map of two
elements (Ref. 38)). In the treatment here, the effect of other sites than the 2-lattice-
point subspace is included as a self-consistent heat bath.

Besides theoretical aspects, our SPF has numerical merits. The convergence to
a fixed point function here is exponential and quite rapid (in our examples within
10-30 steps), while in the direct simulation, the covergence is 1/~W and requires
more than 10000 steps.

If we take a larger subspace, it is expected that our approximation of the measure
would be better. Since the spatial correlation decays exponentially in FDSTC, our
SPF is expected to be accurate if the subsystem size is larger than the correlation
length.

Once we get the distribution p(x(1), 2(2), -+, (%)), it is possible to calculate the
mutual information in space, and estimate the subspace Lyapunov exponents and
Kolmogorov-Sinai entropy density with the use of subspace Jacobi matrix (Eq. (7).

The two-point distribution P(z(1), x(%)) and one-point distribution p{x) in Eq. (5)
are straightforwardly obtained by the integrations as

P(z(1), z(£)= [ f o(z(1), - (k) dz(2)dz(3)dz(k—1).

Spatial mutual information is directly obtained from this probability distribution.
Spatial patch entropy is calculated directly as

‘fp(x(l), - (k) oge(x(1), -+, (k) dx(1)--- dx(k) .

§8. Summary and discussion

In the present paper we have discussed thermodynamics of spatiotemporal chaos,
with the emphasis on the fully developed spatiotemporal chaos (FDSTC). First,
stability of FDSTC is confirmed. Windows of local dynamical systems are destroyed
by spatiotemporal intermittency. It is found that the spatiotemporal intermittency
here belongs to type-II supertransient turbulence. In type-lI supertransients, the
length of transients diverges exponentially with system size; exp(»V). The
coefficient r increases with € as » =<(¢—¢:)”. The quasistationary measure exists in
;he transient regime. FDSTC is sustained for large N by this supertransient turbu-
ence.
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In FDSTC, spatial and temporal correlations decay exponentially, as are measur-

ed by mutual information. We can adopt the heat-bath picture; approximate reglace-
ment of our dynamics by local chaos in a subspace and the heat bath from boundaries.
When this heat-bath picture is valid, we can estimate thermodynamical densities from
subspace Lyapunov exponents. An algorithm for the analysis of experimental data
is proposed on the basis of the embedding and subspace Lyapunov exponent.

Sub-spacetime Lyapunov exponents are introduced. By the exponents, one can
distinguish chaotic and laminar regions in spacetime. Distribution of the exponents
gives a statistical measure of the fluctuation of chaos in spacetime. In spatiotempor-
al intermittency, for example, the separation of chaotic burst and ordered motion is
clearly seen in this distribution.

As a step towards theoretical analysis, self-consistent Perron-Frobenius operator
is studied. It gives a fairly accurate approximation for the invariant measure.

Here we note that this self-consistent formulation is not a mean-field theory.
The mean-field theory in the original sense should be derived as a global coupling
model for our lattice system, i.e., xn+1(z')=(1—e)f(.rn(i))-i-(e/N)E,f(xn(j)). See Ref.
17) for three phases in this globally coupled map corresponding to the pattern
dynamics of our short-ranged lattice systems.

Through thermodynamics of spatiotemporal chaos, we hope to find possible
relations among quantifiers, e.g., correlation length and time, KS entropy density,
Lyapunov spectrum, and so on.

In chaos with a single positive Lyapunov exponent, it is argued that mutual
information and Lyapunov exponent are related by I1(8)~ I°— Amux! for small $®
For larger ¢, the decay of mutual information is related with the diffusion process in
phase space. So far, no relation of this diffusion with Lyapunov exponent is known.

In spatiotemporal chaos, no explicit relations are known even between mutual
information and Lyapunov spectra. If the diffusion process in phase space 1s related
with KS entropy density /, the correlation time (1'(¢#)~exp(—¢/r)) can be related
with £ In numerical data, ¢ and & are strongly correlated in FDSTC, but the
proportionality between the two does not hold.

In FDSTC, our system is approximated by the dynamics of (N/£) independent
subunits. If chaos in a single subunit were characterized just by the maximal
Lyapunov exponent Amax, KS entropy density # would be proportional to Amax/E. In
numerical data, this proportionality does not hold correctly, but can work as a first
approximation. :

Construction of thermodynamics of spatiotemporal chaos and search for relations
among quantifiers still remain to be important problems in future.
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