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ABSTRACT

The diversity of pattern generation in spatially-extended systems is investigated
with lattice dynamical systems. These consist of local discrete-time dynamical systems
coupled in a spatial lattice. Examples with one spatial dimension are discussed in detail,
including period-doubling and phase lattices with bidirectional and unidirectional
coupling. These lattices exhibit a wide range of spatio-temporal behavior including:
intermittency in space and time; domains and walls; spatial period-doubling; pattern
competition; spatial quasi-periodicity; soliton propagation, interaction with phase shift,
annihilation, and turbulence; and exponentially long-lived transient spatial chaos. These
examples support the contention that complexity in spatially-extended dynamical
systems is governed by two deterministic mechanisms: the temporal amplification of
information and its spatial transmission.

The rich phenomenology is illustrated with temporal, spatial, and space-time return
maps, space-time diagrams, and site and pattern bifurcation diagrams. Special topics
include the spatial self-similarity of patterns and finite-size scaling of periodic behavior
and transients. As appropriate, analytical properties are presented.

Keywords: Chaos, coherence, complexity, coupled map lattices, critical phenomena,
dimension, domains, entropy, information theory, intermittency, kinks, lattice dynamical
systems, Lyapunov characteristic exponents, period-doubling, phase transition, power
spectra, scaling, solitons, spatially-extended systems, transient chaos, turbulence

“Appearing as a chapter in Directions in Chaos edited by Hao Bai-lin, World Scientific Publishing
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Phenomenology
of

Spatio-Temporal Chaos

James P. Crutchfield Kunihiko Kaneko
Physics Department Institute of Physics
University of California and College of Arts and Sciences
Berkeley, California 94720 University of Tokyo
USA Tokyo 153, JAPAN

1. COMPLEXITY AND STATISTICAL MECHANICS OF DETERMINISTIC
BEHAVIOR

The continuing advancement of science and technology depends to a large degree
on the development of a theoretical framework for and a practical appreciation of highly
complex systems, as they occur in natural and human-engineered systems. One important
avenue of study in this larger endeavor is the investigation of nonlinear dynamical
systems with spatially-distributed degrees of freedom. The latter is not an entirely new
line of inquiry, rather it has flourished on a number of research frontiers over the last
several decades. Nonetheless, the recent rapid progress in understanding unpredictable,
or chaotic, systems in low dimensions suggests a new look at spatial nonlinear dynamics.
This is the goal of the present discussion. Here we review some of the rich
phenomenology found in spatial systems composed of a large number of low-

dimensional chaotic systems.” The diversity of behavior in this simple class of lattice
dynamical systems is often reminiscent of well-known behavior in a range of fields in
which spatial dynamics plays a significant role.

To motivate our inquiry into spatial dynamical systems, it is worthwhile to recall
some fields where spatial extent is an important aspect of behavior. We comment briefly
on fluid turbulence, ergodicity in statistical mechanics, pattern formation in natural
systems, solitons, excitations in solids, neural networks, parallel computation, and, lastly,
digital signal processing.

The long-standing problem of fluid turbulence, especially as it relates to flows
labeled “‘fully-developed’, has been a recurrent motivation in the development of
nonlinear dynamics. Chaos, as it is now understood, provides a suggestive conceptual
framework: the state space representation of a turbulent flow may be a strange
attractor.>* Upon closer inspection, however, one realizes that chaos indicates nothing
about spatial structure. This is a significant omission, as corroborated by a number of
allied questions at the forefront of turbulence experiments: the mechanism by which
fluctuations may be spatially amplified; the occurrence of spatial patterns amidst

turbulence; intermittency in space and time;5 and dislocation dynamics.6 On the

“This chapter reviews the authors’ work on spatial chaos during the last four years.!'2 Much of JPC’s
work presented here, although already presented in lectures, is previously unpublished. Reference’s to




theoretical front, tools from dynamical systems theory lead to estimates of the
dimensionality of fully-developed turbulence and the existence of the Lyapunov spectra

density has been investigated for the Navier-Stokes equation.7 Unfortunately, at present
there is little geometric understanding of how the latter abstract results bear on the
former experimental observations of complex spatial dynamics.

In the classical picture of statistical mechanics, it is believed that a large number of
degrees of freedom is necessary for ergodicity. The recent paradigm of low-dimensional
chaos has shown that a limited statistical mechanics can be constructed for systems with
few degrees of freedom, if sufficient nonlinearity exists. In these low-dimensional
systems, however, the distribution of states is far from ‘‘equipartition” and is replete
with highly-probable states, even ‘‘singularities”’. The exact requirements of
equipartition are not met, except for a small set of atypical chaotic systems. Furthermore,
it is not clear how these distributions behave as the number of degrees of freedom grows
in the thermodynamic limit nor is it self-evident how spatial extent affects their spatial
structure. Perhaps both elements are necessary for the proper foundation of statistical
mechanics: the creation of local chaos by a low-dimensional mechanism and the spatial
transmission of information and energy to a large number of modes.

Numerical investigations8 of ergodicity in a nonlinear chain of oscillators led to the

discovery of particle-like solitons® That continuum systems admit stable, localized
excitations has provided a powerful metaphor in a number of disciplines, such as,
elementary particles, excitations in solids, and water waves, to name a few. In a rigorous
sense, the term ‘‘soliton’” refers only to energy conserving dynamics that admits
dispersionless collisions of propagating perturbations. In a rough sense, though, the term
can be usefully applied to any stable elementary excitation. With this in mind, it is
helpful to study the interactions among ‘‘solitons’” in a wide range of dissipative systems
in order to understand the common features of their structure and persistent stability. In
some systems, solitons are seen to pair-create and annihilate in a chaotic or turbulent
fashion. It is just such highly nonlinear phenomena that are inaccessible, at present
anyway, to entirely analytical methods.

Many phenomena in solid state physics occur in spatially-extended systems and are
associated with the interaction and propagation of elementary excitations. Typically,
these systems are nonlinear so that one may not analytically investigate the full range of

observed behavior. Examples abound: spin wave turbulence in ferrites,'®!! the
appearance of complex domains and walls in two-dimensional magnets,'? magnetic
bubble lattices,'> strip and arrays of Josephson junctions, charge density waves,!*
nonlinear transmission lines,!? coupled systems of optically bistable elements, video
feedback, chains of electronic nonlinear oscillators,ls' 17 electron-hole plalsmas,18 and
ferrofluid dynamics.!20

The formation of spatial patterns plays an important role in natural systems.?!

Heuristically, one pervasive mechanism responsible for this involves a spatially-local
instability and its propagation by diffusion or transport. This has been studied in spinodal

decomposition, in dendritic growth,22 in video fcedback,23 and in more general reaction-

KK’s publications can be found throughout the text.



diffusion systems. The latter are used to model chemical®* and biological® oscillations

and morphogenesis.2® Turbulent, spatially-complex growth is a common phenomenon in
these fields.

The recent extension of associative memory models?’ to “‘neural networks’’ relies

on the basin structure of fixed point attractors to store and retrieve patterns.®? This has
provided a model for biological computation that employs some of the geometric flavor
of dynamical systems theory. Indeed, these networks are lattice dynamical systems with
a high *‘interconnectivity’’ dimension (Defined below). At the present, most studies
focus on highly-discretized cellular-automata-like architecture with binary-thresholding
local dynamics. To date, these models allow a single neuron only two, or a few, states
and it cannot have its own complex time-dependent dynamics. This is in direct contrast
to recent experiments that indicate single neurons can have rich dynamics: more than a
few states can be stored and even chaotic behavior may appear. The other extreme has
been to investigate neural networks as pattern generating systems, ignoring their

computational capabilities.>® The study of a network of local nonlinear systems as
presented here will be an important prerequisite to modeling and interpretation of
realistic neural networks.

The coincidence of technological advances and the need for substantial
improvements in computational speed and storage has lead to the construction of very
large and highly parallel computers. One of the interesting problems presented by these
distributed processing systems is how to program them efficiently. While at one time an
important motivating factor in their development, simulations of spatially-extended
dynamics may also lead to algorithmic metaphors for understanding more complex
processing in highly parallel machines. For example, lattice dynamical systems provide
a quantitative test-bed for studying the informational architecture of parallel machines
and for the further development of parallel computation theory.

Finally, we note that many digital signal processing algorithms admit a quasi-spatial

lattice formulation,3! even if the signal does not explicitly depend on space. The most
often-used processing methods are linear: frequency domain filtering, adaptive linear
models, power spectral density estimates, and so on. Digital signal processing is
commonly described using signal ‘‘flow’’ graphs. It is not mere coincidence that a
similar descriptive statistical technique for chaos and especially spatially-extended

dynamical systems is based on the ‘‘flow”’ of information.’? Although these two
perspectives are not so different in intent, in digital signal processing the prototype
problems fall short of addressing genuine nonlinearity. In contrast, in nonlinear
dynamics the attempt is to describe manifestly nonlinear behavior and its qualitative
dynamics in terms of the flow of information. In digital signal processing the
computational elements are clear; unfortunately, dynamical systems theory provides little
insight at present into the underlying state space structures.

Nonetheless, some insight is obtained in viewing the action of nonlinear spatial
dynamics on input patterns, or initial conditions, as analogous digital signal processing
operations. Conversely, the study of nonlinear lattice dynamics should bring a
concomitant broadening of our understanding and use of digital signal processing to
encompass nonlinear problems. Digital and analog phase locked loops are concrete
examples of a fruitful cross fertilization. To end this digression, we mention two




questions that shall be of increasing importance to designing with dynamical systems. In
what sense can a, lattice or any other, dynamical system be said to be performing a
‘“‘computation’’? And, what are the associated state space structures for this? The
following discussion of a wide range of spatio-temporal dynamics should be seen as an
indirect, preliminary attempt to ‘‘engineer’’ complex nonlinear dynamics, by first
appreciating the diversity of tools.

Dynamical systems theory developed during the last decade largely through the
study of low-dimensional systems. In the pursuit of an equivalent geometric
understanding in the fields just described, however, the progress to date forms just the
first steps. Previous investigations of (say) low-dimensional chaos, although suggestive,
by no means provide a useful, let alone complete, picture at present. To be of use to
these fields, dynamical systems theory must be extended to space and time. This chapter
attempts to do this along a particular line of inquiry.

In the following, we present a class of prototypes for space-time dynamics and
explore the qualitative behavior of some of its members. Given the present state of our
ignorance, we must start with a heuristic and phenomenological investigative style based
on extensive simulations and using several different methods of visualizing the high-

dimensional dynamics.” The logical and complementary next step beyond this is the
development of thermodynamic quantifiers appropriate to spatio-temporal statistical
behavior. These include extensive and intensive forms of dimension, entropy, and mutual
information. To complete the geometric picture of the deterministic dynamics involved,
these quantifiers must then be related back to the pattern dynamics. Lastly, to provide

the link from theory and numerical work to experiments, ‘‘reconstruction’” methods>
must be generalized to space and time. The following sections present only a brief
review of the phenomenological aspects of spatio-temporal chaos. The other steps just

outlined can be found in other work by the present authors.3%3433.36

The basic definitions of lattice dynamical systems are laid out, initially, along with
the characteristics that distinguish them from arbitrary systems. The phenomenology
starts with period-doubling lattices, behavior that is relatively easy to anticipate from
knowing the structure of the local dynamics. Next, the competition between spatial
modes illustrates a new route to spatio-temporal chaos via quasi-periodicity, that is not so
apparent. A wide range of particle dynamics is then investigated in soliton-bearing
lattices. Several types of intermittency are then covered; most noteworthy is a new type
due to the competition of spatial patterns. Spatial amplification of fluctuations is studied
in unidirectionally-coupled systems. Finally, the occurrence of apparently chaotic, but
very-long-lived transient patterns is illustrated in a lattice model of a dripping handrail.

“The simulations were performed with Ids, a lattice dynamical system simulator. Currently, /ds runs
on Sun Microsystem Workstations. Given sufficient interest, this simulator will be made available for Ap-
ple Macintosh II workstations. Contact the first author for further information on the simulator.
Arpanet/Internet mail address: chaos@gojira.berkeley.edu.



2. LATTICE DYNAMICAL SYSTEMS: PROTOTYPES FOR SPATIO-
TEMPORAL COMPLEXITY

The difficulty with a naive dynamical systems interpretation of spatially-extended
systems lies not so much in the raw number of degrees of freedom, which is problematic,
but that the degrees of freedom are spatially distributed and that any useful description
must incorporate this structure. Indeed, the spatial nature of these systems is a translation
symmetry. This symmetry in turn suggests the possibility of a description of complex
spatially-extended systems simpler than that of systems with the same number of degrees
of freedom which are not spatially-extended. In this section, we shall first discuss the
nature of a spatial system and distinguish this from a general dynamical system. Then,
we define the class of lattice dynamical systems to be studied and the possible boundary
and initial conditions.

2.1. Restriction to Spatial Lattices

In general N-dimensional dynamical systems, the connection among N variables
can take any form depending on the problem. With lattice dynamical systems, we treat
mainly systems with ‘‘spatial translation’’ invariance, which gives a restriction to the
coupling among variables and indicates that the individual variables are somehow
comparable. We can, for example, compute ‘‘field”’ averages over the local variables.

This distinction can be clarified by comparing a spatially-extended system to an
arbitrary dynamical system with the same (large) number degrees of freedom. (See figure
1.) From this one sees that spatially-extended systems are a subset of all possible
dynamical systems restricted by the symmetry of ‘‘local’’ coupling of degrees of
freedom. This symmetry is an isotropic spatial invariance. In contrast, an arbitrary
system may have couplings between any two degrees of freedom, independent of any
symmetry. It can be more complex in behavior than a comparable spatially-extended
system in that information can be transmitted more rapidly to a large number of degrees
of freedom in the same time.

A coarse measure for this comparison may be developed for countably-infinite
dynamical systems as follows. We shall not discuss the case of continuum systems, such
as partial differential equations. We define the interconnectivity dimension D ,,,,, of a
dynamical system with arbitrarily many degrees of freedom as the asymptotic growth
rate of the number of degrees of freedom within a given interconnectivity distance 1. The
interconnectivity distance r (p ,q ) between two degrees of freedom p and q is the number
of links along the shortest path between nodes p and q in the connected graph describing
the coupling between the degrees of freedom. The adjacency matrix of this graph is
obtained from the dynamical system’s Jacobian. Considering a single reference degree
of freedom p, for an infinite system, we have

' _ log nhbr (r)
Dmter(P) ’Ell_l;n“ log (7‘)

b

where nhbr(r) is the total number of neighbors within a ‘‘radius’” r of p. The
interconnectivity dimension is averaged over the entire system starting at each degree of




General Dynamical System

Figure 1. Arbitrary versus spatial dynamical systems. A schematic representation where
the circular nodes denote the system variables and the heavy lines, connection pathways
between them.




freedom: D e, = <D e, (P )>,, J

With this definition of distance, D ;. does not depend on a notion of spatial extent
or a spatial metric. This dimension is the growth rate of the number of possible paths one
may travel following the branching graph that schematically summarizes the
interconnectivity. It measures the growth rate of the elements of this graph and so is an
upper bound on the speed of information communication or flow. Similarly, it is an upper
bound on the rate at which perturbations propagate throughout the network of coupled
dynamical systems.

A neural network in which every neuron connects to every other would have an
infinite D ,,,. The brain, in contrast to this theoretical extreme, has a D ,,, = 100 to

1000 according to the neuroarchitecture literature.>”:3® The ‘‘Connection Machine”’, as a

notable example of current massively parallel machines, has a D;,,, = 14.3%40 While a
spatially-extended system may have many degrees of freedom, it also has a very low
interconnectivity dimension. And this is the main characteristic we wish to study here:
the phenomenology of strongly nonlinear multi-component systems with relatively small
propagation speeds. The specific class we have chosen is one spatial dimension,
D ey = 1. Our investigations of the two-dimensional analogs of the systems studied in
the following sections indicate a wide range of new phenomena in higher
interconnectivity dimensions, but these must wait until the present models have been
understood more fully in terms of dynamical systems theory.

2.2. Architectural Relationship to Other Spatially-Extended Systems

Within the chosen class of spatially-extended systems, there is a hierarchy of
spatio-temporal dynamical systems. (See the table below.) This derives from choices of
discretization of space, time, and the local state variables. The table lists just five of the
possible 8 subclasses and orders them roughly in decreasing order in the amount
information necessary to specify a unique state.

The lattice dynamical systems we treat here are constructed as follows. On a spatial
lattice a dynamical variable x, is assigned. The superscript denotes the site’s location;
the subscript, the time at which its value is noted. The evolution of a local variable is
governed by (i) the local dynamics that advance discretely in time (i.e., a mapping) and
(ii) the coupling to other sites. A simple example is a variant of the logistic lattice: a
lattice of logistic maps given by

X =fo)+e it +xih

with local dynamics: f (x) =rx(1-x), where x € [0,1] is a scalar and r € [0,4]. The
superscript i is an index in the one-dimensional lattice of N sites. The site values in this
example typically do not stray out of the unit interval. The parameter r controls the
degree of local nonlinearity and € the coupling strength to neighbors. The vector
%, = (%2, X2, x,'," 1y is the current state of the system; also called its pattern or field.

"We have given here the “topological’’ version of D, _. There is, naturally, a ‘‘metric’’ version, in

the sense used for entropies, and, indeed, an entire Renyi spectrum, of similar dimensions. In these, the in-
terconnecting links are given weights. These weights might describe distance on some manifold or,
perhaps, connection strengths as in neural networks.




Hierarchy of Spatially-Extended Dynamical Systems

Model Space Time Local State  Class
Partial Differential Equations C C C 7
Iterated Functional Equations C D C 5
Oscillator Chains D C C 3
Lattice Dynamical Systems D D C 1
Cellular Automata D D D 0
D = Discrete

C = Continuous

Lattice dynamical systems are more complex in structure than cellular automata,
having continuous state variables and therefore the capability of local information
production. Being discrete in time and space, they are simpler than partial differential
equations which require a multiply-infinite amount of information (a continuous
function) to specify a state (and substantially larger computational resources to simulate).
While the relationship between the dynamics of these different model classes is
traditionally the concern of numerical analysts, there are undoubtedly important
mathematical and physical insights to be gained from understanding the hierarchy itself.
At the very least, this would allow one to intelligently choose the appropriate
mathematical models for a given physical problem.

Without a complete delineation of the hierarchy, one can still indicate certain
similarities in behavior and show particular limiting cases for which there is a
connection. The binary space-time symbolic dynamics of the one-dimensional logistic
lattice, to take a concrete example, behaves like several cellular automata. For example,
in the period 2 regime, for a wide range of initial conditions and comparing asymptotic
behavior, a binary-state space-time display shows that the logistic lattice obeys one-
dimensional nearest-neighbor ‘‘elementary’’ automata rule 23."41:42 Additionally, the

lattice system exhibits domain walls analogous to the kinks found in cellular automata.*?

A more interesting connection, though, can be made with chains of coupled
oscillators. Many oscillators undergo a period-doubling cascade.**4346 A weakly
coupled chain of these oscillators exhibits the universal features found in the period-
doubling lattices described below. In this case, the period-doubling lattices can be
considered as a Poincaré section of the continuous-time oscillator chain dynamics. This
qualitative correspondence has been numerically verified for a modest length chain of

Rossler oscillators®’ by one of the authors.

“Elementary cellular automata rule 23 evolves from initial patterns so that (i) the behavior is overall
temporal period 2, (ii) isolated 0’s and 1’s disappear, and (iii) domain walls are maintained.



In the context of continuum physical problems, the use of partial differential
equations is standard. Recently, much numerical work has begun on chaotic spatio-

temporal behavior in nonlinear partial differential equations.*®*? A few connections with
this work should be mentioned. A forward-difference discretization of the real time-
dependent Ginzburg-Landau equation yields a period-doubling lattice. As does the same

for Fisher’s equation. Huerre and Moon’? have studied numerically the continuum limit
of the complex time-dependent Ginzburg-Landau equation. They found a quasi-periodic
route to chaos via the thickening of tori. With the simple addition of another control
parameter, the logistic lattice itself can be thought of as an iterative solution of the real

time-independent Ginzburg-Landau equation. Bishop and collaborators>! have performed
extensive numerical simulations of the driven, damped Sine-Gordon partial differential
equation. This system is often modeled by a chain of coupled pendula and in an
appropriate regime, the period-doubling lattices describe a chain of driven damped
pendula, each of which exhibits period-doubling. A more faithful lattice analogue of the
Sine-Gordon PDE is found by replacing the logistic map with local phase dynamics using
circle maps. As shown later, the coupled circle lattice shows kink-antikink propagation
and chaotic pair collisions that look quite similar to behavior found in the Sine-Gordon
PDE with damping and external forcing.

Finally, the architectural connection mentioned already with reaction-diffusion
PDEs is quite close as the latter are essentially the superposition of local nonlinear
dynamics (reaction) and the spatial coupling (diffusion). In some limits a direct
connection can be established.”? Other behavioral similarities with members of the
spatial hierarchy will become quite apparent in the following sections on lattice
phenomenology.

2.3. Choice of Local Dynamics

One may select from a variety of discrete time systems for the local dynamics.
Since some classes of low-dimensional maps have been investigated extensively, we
select them as the local dynamics of our lattice systems. Typical examples include

(1) the logistic map f (x) = rx(1—-x), as mentioned above;
(i1) thecirclemap f (x)=®+x +k sin(2nx); and
(i) piecewise linear functions, such as the shift or tent maps.

For two local variables, one might use 2-dimensional maps, such as Hénon’s or Lozi’s
dissipative maps or the standard map. The latter, with proper coupling, forms a
symplectic lattice. In the present paper, we restrict ourselves to local dynamics of a
single variable.

2.4. Coupling Classes

Similarly, there is wide latitude in choosing the coupling form. It can be local, in
which the dynamics of a site is determined by the variables at neighboring sites; or
nonlocal, in which a site is determined by a set of sites possibly far from the site. The
coupling radius must also be selected: the extreme case of short range is nearest-neighbor
coupling. We shall restrict ourselves only to the nearest neighbor coupling. Thus, the
dynamics of site i is affected only by the variables at site i-1, i, and i+1.
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With these restrictions and a few additional ones, we end up with the following
lattice dynamical system that will be the subject of investigation in this paper:

X =F ) +egg (k) +epg (ki) + e, g (i h)

The vector €= (€0,€,,Eg ) is the coupling kernel. The next step is the choice of the
function g(x), the coupling dynamics. We have studied the cases of ‘‘linear-coupling”’
g(x) = x, ‘“‘future-coupled” g(x) = f(x),53 and many other special choices, such as
nonlinear couplings and larger range kernels as for ‘lateral inhibition’’.

The future-coupling form is particularly useful for several reasons. First, each site
value remains in the same range as for the isolated map. The lattices are conveniently
“‘normalized’’ by this property. Second, the ‘‘pre-iteration’’ of the neighboring sites
before they are added to the central site provides a closer approximation to a stroboscopic
view of an analogous continuous-time oscillator chain; the iteration being a better
approximation of the neighbors current state than simply using their values from the
previous cycle. This feature also leads to the suppression of the anti-correlated spatial
configurations mentioned below. Here we mostly report on the linear and future
coupling cases, as these are rather simple and include a representative range of behavior
from these other possible couplings.

The last choice is the symmetry of the coupling kernel. This is determined by the
coupling values &y, £p, and €; . In the following, we present three cases

(i) Additive coupling: £,=0,&p =¢; ;
(ii) Laplacian coupling: —%0— =gp =§;;

(ii) Totalistic coupling: &y = —%-, € =€ = %; and

(iv) Uni-directional coupling: —gy=¢; and g5 =0.
The first three types are models for the system with symmetric diffusion, while the latter
corresponds to asymmetric coupling! as found in modeling of the open flows.>*

2.5. Boundary Conditions

We can choose a number of different boundary conditions depending on the
problem: fixed, periodic, free, noise or periodically driven, and so on. We restrict
ourselves largely to periodic boundary conditions, unless otherwise explicitly noted. The
qualitative dynamics, however, typically is independent of boundary conditions, for
sufficiently large lattices.

2.6. Initial Conditions

For initial conditions, spatially periodic functions, e.g., sin(2nkiN '), or uniformly
distributed random functions with given mean and standard deviation are employed. The
latter choice is convenient to select out a statistically probable pattern and so to study
‘“‘generic’’ behavior. One problem with this type, though, is that it does not admit a
natural continuum limit, unless spatially band-limited.

With prototype models and their boundary and initial conditions specified, we turn
now to particular lattices and their behavior. From extensive simulations we have
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selected a range of phenomena that is indicative of the wealth of complex dynamics in
the wider class of lattice dynamical systems. The first example derives from period-
doubling local dynamics and serves as a simple entré into spatio-temporal dynamics, the
local dynamics being familiar and widely studied. The behavior of succeeding examples,
such as anti-ferromagnetic transitions, phase lattices, pattern competition intermittency,
and transient spatial chaos, tend to be less easily deduced from the dynamics of their
constituents.

3. PERIOD-DOUBLING LATTICES

In the following section, we will study the coupled logistic lattice: specifically, the
period-doubling of spatially ‘‘coherent” domains and the kinks that separate them. The
model is given by the local dynamics f(x)=rx(1—x) and the lattice equation is
constructed with future Laplacian coupling

tha =(1-OF G+ = (f G+ £ D)
with linear Laplacian coupling
X1 =F ) + =0 +xi7-28)
or with simple additive coupling

Xpo1 =0+ e(x,‘,*’1 -l-x,‘,'l) .

As the nonlinearity r is increased, the single logistic map shows the classic period-
doubling cascade to chaos. In the lattice equation, this local temporal period-doubling
induces spatial domain structures of phase coherent sites. Domains are taken to be
regions in space in which the site values are correlated to some specified degree in space
and time. Depending on the context, this correlation can take the form of an explicit
translation symmetry (all site values are equal) or perhaps a combination period-2 space
and time translation symmetry. These regions are separated by walls, or kinks, that
develop at sites whose initial amplitudes are near unstable fixed x* points of the local
dynamics: f P (x*) :x*, for some period P = 2", for example. As the local dynamics
period-doubles with r or €, the spatial wavelengths also decrease in a regular manner.
Amplitude plots are shown in figures 2 through 5, where we see the kink and anti-kink
structures caused by the temporal period-doubling: period 4 in figure 2 (top) and period-8

for figure 2 (bottom). 135

Examples of chaotic states are shown in figures 3 and 4, where the patterns through
16 time steps are shown after the transients have died out. We note that some low-
periodicity domain structure remains even if the patterns are chaotic. If the nonlinearity
is small, the domain boundaries cannot move. In this case, the domain size distribution
depends on the initial condition. As the nonlinearity is increased further, the initial
‘domain can move and spatial structures with a characteristic wavelength appear in the
patterns (see figure 4 (top)). These eventually dominate at higher nonlinearity (see figures
4 (bottom) and 5). As the nonlinearity is increased further, this period-doubling sequence
loses its stability to a sequence exhibiting intermittency via pattern competition. This
forms the subject of a subsequent section.
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Q Site 127

0 Site 127

Figure 2. Amplitude versus space graphs for the future- coupled logistic lattice. The
systems started from a single sine wave initial condition: x' =0.5 + 4 sin QriN~ b,
Boundary conditions are periodic and the coupling strength is € =0.2. The nonlinearity
of the local dynamics 1ncreases in this and the following sequence of three figures.
Above the amplitudes x*‘ are overlapped for 32 time steps after the transients have died
out. Here r = 3.5 (top) and r = 3.57 (bottom). The attractor’s period is 4 in the former
and 8 in latter.
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= 3.65 (bottom); These and the

following figures illustrate chaotic domains whose periodicities decrease via domain-

3.6 (top) and t
merging. Details as in the preceding figure.

Figure 3. Larger nonlinearity: r
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3.71 (bottom); In the top figure the
amplitudes x* are overlapped for 16 time steps after the transients have died out. In the

bottom the overlap is 32 time steps.

3.7 (top) and r =

Figure 4. Larger nonlinearity: r
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The overall period-doubling sequence is conveniently pictured with two types of
bifurcation diagram: site histogram and spatial pattern. The former is shown in figure 6,
where the familiar period-doubling structure envelopes the range of sites values from the
periodic behavior at the top to the chaotic at the bottom. The control parameter varies
from r = 2.9 to r = 4.0, respectively. At each of 256 parameter increments in this range
the probability in 256 interval bins is gray-scaled, with black indicating highest
probability.

Sites in the domains’ interiors contribute to the high probability along curves that
follow the isolated map period-doubling structure. The appearance of kinks in the spatial
structure beyond the transition to period two gives rise to the cross-hatching inside the
envelope. Note that each of these kink-curves radiates from where the period one orbit

goes unstable: r =3, x¢ = % Much of the kink cross-hatching disappears above the

period two superstable parameter” Tsuper =1+ V5. This is due to the consequent change
in the approach of individual site initial conditions to the period two cycle below and
above the superstable transition. Below, the approach is from one side; above, it is from
both sides of the orbit.

The overall transition to spatially complex structures is also mirrored in the spatial
pattern bifurcation diagram of figure 7. It illustrates how the spatial structure is changing
through the same range of parameters. At each value of the parameter, the pattern is
shown in gray scale after 100 iterations from the same single-sine-wave initial condition.
Thus, each horizontal line is a snapshot of the pattern at that time and does not indicate
asymptotic behavior. Nonetheless, the change in approach to the final pattern below and
above rg,,,, is clear with the disappearance of the small domains at the top and their
associated kinks. Also, the complex patterns illustrate how little obvious structure is left
above the transition to chaos.

With regard to both figures, at finite coupling the dominant period-doubling
behavior quickly gives way to chaotic behavior, with higher-period cycles washed out.

This occurs in much the same manner as found in noisy period doubling systems,*® so
that the couping strength acts as a kind of disordering field. We should note, however,
that in other regimes the coupling strength can serve to induce regular behavior.
Examples of the latter follow in subsequent sections.

3.1. Dependence of Domain Behavior on Domain Size

One noteworthy aspect of spatially-extended systems is the possibility of a spatial
bifurcation, in which the system size (number of sites) is varied. This is somewhat akin
to finite-size scaling techniques used to study critical phenomena. With finite-size scaling
the assumption is typically that there is a smooth change in behavior; whereas here we
shall show that there can be sudden changes. A spatial bifurcation results in a symmetry
breaking of a domain’s translation invariance via the appearance of new subdomains and
kinks. Other spatial invariances might also be broken. Even if the local dynamics itself
is homogeneous, the local behavior can differ from site to site. This already appears in

“For the isolated map T = 1 + v5. With the future-Laplacian coupling used in this example the

domains’ stability is govemed by the isolated map. Deviations from this occur near the domain walls, and
so this estimate of the superstable parameter value for the lattice is only approximate.
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Figure 6. Site histogram bifurcation diagram through a period-doubling sequence. The
nonlinearity parameter is incremented 256 times in the range of r = 2.9 tor = 4.0. The
coupling strength was fixed at € = 2. Logarithm (base 2) of the probability is shown in
gray scale, with black indicating highest probability. This is computed with a frequency
histogram of site values in 256 site-value bins over 400 iterations after 100 transient
iterations. The lattice contained 128 sites. The single spatial sine wave initial condition
is shown at the top.
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Figure 7. Pattern bifurcation diagram through a period-doubling cascade to chaos. At
each of 128 parameter increments from r = 3.0 to r = 4.0, the lattice pattern is shown
gray-scaled after 100 transient iterations. The coupling strength, as before, is fixed at
€ =.2 and there are 128 sites.
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the period-doubling case (figure 3 (top)) where domains of different size have different
periodicities. In figure 3 (top) some domains have a noisy periodicity of 8, while other
domains appear chaotic. (For other examples see also references (35) and (57) ). We now
study this in more detail.

A geometric description of this symmetry breaking can be developed as follows. As
already noted, the walls or kinks pass through saddle points which are separatrices of two
out-of-phase regions. That is, the kinks connect two domains through locally unstable
fixed or periodic points. The dynamics in a domain can be approximated by the dynamics
of a small system with fixed boundary conditions at both ends; specifically, fixed at the
value of the unstable fixed or 2*-periodic points. The narrower the domain, the more
highly constrained the dynamics and so the simpler the behavior. Thus, as a function of
domain size, we have a bifurcation sequence to more complex behavior and eventually
on to chaos at some critical size N, = N, (r ,&). Figures 8 through 10 show the system size
dependence of domain behavior.

Of course, the replacement of a domain by a finite system with fixed boundary
conditions is an approximation. The simplification is that one assumes no perturbations
propagate from domain to domain through the walls. In principal, the kinks may move
or the sites may not lie exactly on the locally unstable periodic orbits and so domains
may affect one another. Nonetheless, the approximation appears valid. The coexistence
of many domains of different periods, as in figure 3 (top), can be taken as evidence that
domain independence is a good approximation even when fairly complex domain
structures are present.

3.2. Kink Self-similarity

Period-doubling in low-dimensional systems exhibits temporal self-similarity via

the associated attractor’s scaling structure, as formulated by Feigenbaum.’® The period-
doubling of domains in the logistic lattice also introduces spatial self-similarity in the
lattice field. Figures 11 and 12 illustrate this with spatial return maps where the site
values are spatially reconstructed by plotting points (x‘,x‘*!). With successive
magnification more detail is revealed on finer scales. The domains in which x* = x‘*! lje
on the diagonal. They are ‘‘local’’ fixed points in the spatial return maps. The outside
envelope of deviations from the diagonal corresponds to the loci of the kinks’ spatial
structure. The sequence of figures shows successive blow-ups of the first return map and
clearly demonstrates the spatial self-similarity of kinks. The similarity scaling of these
kink curves is governed by two exponents. One is the exponent o in Feigenbaum’s
notation, which determines the scaling along the x’=x‘*! line while the other
corresponds to the scaling for the deviation from the line x’ = x**!. The latter exponent is
given by the instability of Feigenbaum’s functional fixed point against perturbation in the
coupling term. Though we do not discuss the numerical estimate for the exponent, it is
obtained in a similar way with the scaling of noisy period-doubling®® % or torus

doubling.61' 62,63 (See reference (64) for further discussion.)

4. SPATIAL MODE INSTABILITY: THE TRANSITION FROM TORUS TO
CHAOS

In nonlinear systems, quasiperiodic states are commonly observed. Many
dynamical systems exhibit a bifurcation sequence to successively more complex behavior
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Figure 8. Space-amplitude plots for the future-coupled logistic lattice demonstrate the
dependence of temporal period on the size N of the lattice at fixed parameter values. In
this and the following two figures. N ranges from 4 to 64 by factors of two; the observed
periods increase from 4 to 8, 16, 16, and then finally to 32, respectively. Above N = 4
(top) and N = 8 (bottom) are shown. The site amplitudes x* are plotted after transients
have died out. The boundary conditions are fixed at ‘‘sites’’ i =-1 and i = N to a value of
x* =1-r~1, the fixed point of the isolated logistic map. In all figures the parameters are
fixed atr = 3.57 and € = 2. The initial condition was x =x* + .01 sin (TN ™}).
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Figure 9. Details as in the previous figure, except there are 16 (top) and 32 (bottom) site
lattices exhibiting period 16 cycles.
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Figure 10. Details as in previous figures, except there are 64 site lattices exhibiting a
period 32 cycle.




23

i+
1024

031 X 0.91

0.58

i+l
X 1024

033

i 0.58
X024

Figure 11. “‘Snapshot’’ spatial return maps for the future coupled logistic lattice with r
= 3.56995 and € = .3. The plot of x* versus x‘*! is shown for a lattice with 65536 sites.
1024 iterations were performed to allow for the transients to relax. The spatially random
initial condition generated many kinks. A uniformly distributed random variable with
mean .5 and standard deviation .2 was sampled for the initial condition. This and the next
figure are successive blow ups to show the self-similarity.
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Figure 12. Further magnifications; details as in the preceding figure.
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that follows the path

limit cycle S' — Hopf bifurcation — quasiperiodic state T?

— devil’s staircase lockings — chaos or high—dimensional torus T*

In lattice systems this quasiperiodic route is observed frequently, accompanied by spatial
instability of some characteristic wavelength. Unlike low-dimensional systems, the
temporal oscillation induces spatial quasiperiodicity in the lattice field. In this section,
we will discuss in some detail several examples.

A large class of coupled map lattices shows an anti-correlated zigzag instability in
Wthh the uniform field x' =constant loses stability to a state of the form
x° = constant + (1) -amplitude . The resulting pattern has a spatial wavelength of two

sites and so is reminiscent of an anti-ferromagnetic spin system.l's3 If the lattice is two-
dimensional, the zigzag pattern appears as a checkerboard pattern. This has been

investigated by the present authors and independently reported by Kapral.65 The structure
is also frequently seen in the linear coupling model over a wide parameter range and in
the future coupling model with small coupling strength. With future coupling, the zigzag
instability is suppressed, especially with strong coupling, since neighboring sites are kept
in-phase by their future or ‘‘pre’’-iteration. The diffusive coupling then maintains the
sites’ phase coherence by spatial low-pass filtering of site-to-site differences.

The development of the zigzag instability is shown in figure 13 for linear Laplacian
coupling, where the state evolves in a temporal period-2 cycle. Here we note that kinks
can exist, as seen in figure 13 (top). The width of a kink increases as the parameter
approaches the onset of the zigzag structure. A space-time diagram (figure 13 (bottom))
shows the evolution of zigzag domains and kinks from a random initial pattern.

Approximately speaking, the kinks connect two anti-correlated zigzag domains
through the unstable homogeneous solution, a saddle point. The latter is given by the
unstable periodic orbit of the local dynamics which, in this case, is a fixed point. At a
kink position, the site values x! pass close to the penodlc saddle with x* = constant . The
spatial return map of x.*! versus x, for thls situation is shown in figure 14. Sites in the
kinks pass close to the identity Jc‘+1 =x'. Sites in the zigzag domains lie far off the
identity. The zigzag kinks lie near the spatial return map identity, whereas in the
preceding domain-doubling structures, the kinks were associated with spatial return map
states away from the identity. Here, kinks are in-phase structures separating anti-
correlated domains; in domain-doubling, they connect out-of-phase domains by smoothly
relaxing the phase difference.

As the nonlinearity is increased, a torus appears through a Hopf bifurcation. The
quasiperiodicity is easily observed again using spatial return maps. We shall discuss a
bifurcation sequence from a torus attractor to chaos for the additive linear coupling
model first introduced

. - e - 1 _1
Xo =F(0)+ E(x,i* +x,70).

Figure 15 gives an amplitude plot that shows a single zigzag domain with a long
wavelength modulat10n Figure 16 presents a mosaic of space-time return maps for this,
where x,, %4, versus x; (j, k = (0, 1, 2, 3}) is shown for N-j sites and 32 time steps. These
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Figure 13. (top) Snapshot of pattern for the linear Laplacian coupled logistic lattice with

r = 2.61 and € = .1 after the transients have died out. A uniformly distributed random
initial condition of moderate amplitude was used. (bottom) Space-time diagram for this

system. The temporal period of the attractor is 2, as is the dominant spatial period.
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Figure 14. Spatial return map in the zigzag regime when the pattern contains several
zigzag domains and their kinks. Details as in the preceding figure, except that the lattice
contains 2048 sites.
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Figure 15. Snapshot of the coupled logistic lattice with additive linear coupling with r =

3., €=0.075, and N = 128, after the transients have died out. Initial condition is a half
sine wave with mean 2/3 and amplitude .2.
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return maps correspond to projections of the entire state space onto various two-
dimensional planes. They clearly demonstrate the existence of a ‘‘two-torus”’. The anti-
correlated spatial structure is seen in moving horizontally from figure to figure in the
mosaic; the temporal period 2, in moving vertically. The tori alternately lie near the
identity in the return maps or near x,, 3% = 1 —x,,.

In figures 17 through 19, one portion of the associated torus in the spatial return
maps is shown at successive parameter changes. The bifurcation sequence

torus (17t) — locking (17b) — chaos (18t) — higher complexity chaos (18b-19)
is observed. (Corresponding figures are in parentheses). Generally, the transition
zigzag structure — quasi —periodicity — chaos

can be seen in each zigzag regime for every spatially-homogeneous, temporal 2*-cycle.

A site value bifurcation diagram is a particularly useful device with which to
visualize this transition. (See figure 20). The behavior at the first transition undergoes a
Hopf bifurcation; some lockings are seen above this. The latter correspond to fixed,
spatially-periodic modulations of the pattern in which the ratio of the number of
modulation waves to the number of lattice sites is rational. When tori are observed, the
spatial modulation is quasiperiodic. This bifurcation sequence is quite similar to that

found in experimental studies of diode oscillator chains!’ in which the individual
oscillators are known to period-double.

This type of quasiperiodic transition has been previously observed in two coupled
logistic maps by the authors and has been variously reported.®®6”:68 The similarity
between these low-dimensional systems and the lattice behavior is not accidental. When
the anti-correlated spatial symmetry of the zigzag pattern is factored out of the lattice
equations of motion, the lattice system reduces to a two-dimensional mapping. This
mapping is an accurate model for some range of lattice control parameters.

Kinks exist if the attractor is a torus or is chaotic. In the presence of kinks, the shape
of the spatially-projected torus reveals the superposition of out-of-phase tori, one from
each zigzag domain, and the result appears as a folded torus. (See the lower portion fo
figure 21 (bottom) for an example.) The occurrence of kinks again breaks the pattern’s
translation symmetry. As the nonlinearity is increased further, the torus modulation
amplitude increases. Also, spatial modulations at other frequencies may appear, leading
to higher-dimensional tori within some limited parameter regimes just below the onset of

chaos.1:33

If the coupling is weak and the nonlinearity large in the Laplacian future coupled
logistic lattice, the zigzag instability is also seen. Figures 21 and 22 show spatial return
maps for this. One again finds quasiperiodically modulated structures with kinks (figure
21 (bottom)), lockings (figure 22 (top)), and chaos with remnant zigzag structures (figure
22 (bottom)).

We have described a few aspects of the patterns and dynamics found in the zigzag
regime. Before concluding this section, we summarize the characteristic features:
(1) Spatial quasiperiodicity: Quasiperiodic behavior in time induces spatial
quasiperiodicity.
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Figure 16. Space-time return map mosaic for the pattern in the preceding figure. The
mosaic gives the plots for (x; , x,*) for j, k = {0, 1, 2, 3}. The plots are overlaid for 32

time steps for N-j sites.
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Figure 17. Bifurcation sequence of spatial return maps for the same model as in the
previous figure, focusing on just one of the *‘tori”’. The plots of (x* , x‘*!) are overlaid
for 32 time steps for the entire lattice. The initial condition was a half sine wave with
mean .7 and amplitude .2. The coupling strength is varied systematically from figure to
figure fore € [.08,.095]. Above, € =.08 (top) and € = .083 (bottom).
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Figure 18. Details as in the preceding figure. Here € = .087 (top) and € = .09 (bottom).
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Figure 20. Site bifurcation diagram for the transition from the zigzag pattern to chaos
through quasiperiodicity, focusing on the same ‘‘tori’’ as in the preceding figures. The
vertical axis covers the same range of coupling parameter as in the previous sequence. £
varies from .07 to .1, with fixed nonlinearity r = 3. As before, the logarithm of the
probability is plotted in gray scale. Here, there are 256 increments in € and 256 histogram

bins. Estimates of the bins’ probability were collected from 400 iterations of a 128 site
lattice, after 100 transient iterations.
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Flgure 21. (top) Space-amplitude plot for the Laplacian futurc-coupled logistic lattice in
the zigzag regime with many kinks (r = 3.78, € = .1). Amplitudes x* are overlaid for 2
time steps after the transients have died out. The temporal period of the attractor is 2. N
= 128 and £€=0.1. A random initial condition was used. The lower figure and the
following figure present spatial return maps for the same model using the same initial
condition. The nonlinearity r is varied with fixed €=.1 in the transition regime from
torus to chaos. Points (x*, x‘*1) are plotted for 600 time steps after transient iterations.
The spatial return map plots are overlaid for N-1 lattice points. The parameter for the
lower figure isr = 3.8.
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Figure 22. The parameter varied in these is r = 3.81 (top) and r = 3.91 (bottom). Details
as in the lower half of the preceding figure.
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(i) Zigzag structure formation: Starting from a homogeneous state with small
perturbations, the evolution from the homogeneous state to the zigzag pattern
appears as in figure 23. The development of the zigzag pattern starts at the domain
walls and propagates at constant speed into the domains and so destroys them.

(iii) Universality of zigzag structures: The zigzag instability can be seen in a wide
variety of coupled map lattices, as we have shown. In some lattices, the zigzag
structure is limited to a small control parameter range; in others, it is readily
observed. As an example of the former, recall figure 14 where the pattern’s large-
scale structure is smooth and modulates the zigzag structure. More commonly, in
large parameter regimes, one finds the zigzag structure modulated quasiperiodically
or chaotically.

(iv) Spatial mode instability: Another type of spatial instability occurs where modes
appear with characteristic wavelengths different from two. In figure 24 a spatial
instability with wavelength = 8 sites, with domain walls every = 4 sites, is shown.
As the coupling is increased, the wavelength corresponding to the instability
increases. A quasiperiodic route to chaos is seen here also. At the onset of
aperiodic behavior, we find a new kind of intermittency which will be described
below. :

(v) Solitons: particle-like structures propagate, collide, and annihilate. Similar behavior
will be discussed shortly in a different lattice.5

The latter deserves further comment in regard to the present models, however. One
interesting aspect is the dynamics of kink-antikink collisions. If we start from random
initial configurations or a state with too many kink-antikink pairs, the kinks and antikinks
move around and pair-annihilate until the number of kinks is small. At some small
density the kinks stop propagating and a stationary state is attained. (See figure 25 (top).)

In some other parameter regimes, the kinks in zigzag structures propagate as stable
particle-like entities. Examples of this are shown in figures 25 (bottom) and 26. Here the
profile of the propagating pattern is not periodic, but apparently random and we observe
a kind of spatially-localized turbulent burst. The apparent Brownian motion of the kink
particles can be clearly seen in the space-time diagrams. The random walk of such
particles arises from the chaotic motion of the propagating pattern and, if the nonlinearity

is large, from the chaotic motion of the underlying zigzag patt«=:1'n.70 The Brownian

motion of kinks is also seen in cellular automata.*3 Finally, we note that the diffusive
motion is quite similar to the spatial diffusion found for a particle in a periodic potential

well,46 a low-dimensional dynamical system.

These propagating kinks are highly reminiscent of the murbators or dislocations
observed in low-Reynolds number Couette flow’! or in large aspect ratio convection
flows: localized, stable structures, that appear and propagate, collide and annihilate, ...
In two spatial dimensions, Brownian motion of defects is frequently observed in liquid
crystal convection and in video feedback.>’ Logistic lattices in analogous regimes should
provide useful numerical prototypes for the future studies of such complex *‘particles’’.
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Figure 23. The temporal development of anti-correlated zigzag pattern. This shows a
space-time diagram with site value in the range of [.63,.93] in gray scale. The lattice
system here is the additively-coupled logistic lattice with r = 3., 128 sites, and € = .075.
The initial condition is chosen close to the unstable homogeneous pattern. The pattern is
then attracted to a zigzag pattern with some kinks. Every fourth time step is plotted from
0to4 - 126 steps.
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Figure 25. Space-time diagrams with site amplitudes in [.45,.95] represented with light
to dark gray scale, respectively. The system is again the Laplacian future-coupled
logistic lattice with 128 lattice sites, starting from a random initial condition. Abover =
3.89 and € = .1 (top); r = 3.91 and € =.1 (bottom). In both, the current pattern is plotted
every 128 steps from time step O to 126 - 128.
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Figure 26. Close up of Brownian kink motion in the zigzag regime. Details as in the
bottom portion of the preceding figure. The current pattern is plotted every 8 steps from
time step O to 8 - 126.
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5. SOLITON TURBULENCE
In the study of phase dynamics the one-dimensional circle map

X1 =f (X)) =0 +x, + ksin(2nx,,)

has become a popular prototype as it captures the structure of lockings, critical
phenomena of tori collapse, and the statistical properties of the resulting chaotic orbits.”?
In the investigation of spatially-extended phase dynamics, as found in coupled oscillators
such as the Josephson junction, the heart and so on, the coupled circle lattice plays a
similar role. In this section we consider an example of the Laplacian future-coupled
circle lattice described by

Xhat = (1-OF G+ S G+ 7).

The frequency parameter ® takes the same value for all lattice positions, as does the
nonlinearity k.

The spatial-diffusion coupling compels the independent local oscillations
represented by each circle map to synchronize. As a general remark on this system’s
behavior, it is interesting to note that we have yet to observe quasiperiodic motion with
an associated high-dimensional torus attractor. Typically, chaos develops early on as one
increases the nonlinearity k.

This transition is analogous to the turbulence scenario proposed by Ruelle and
Takens, if we consider the lattice system to be similar to a fluid with isotropic dynamics

that exhibits collective quasiperiodic oscillations.* This physical interpretation of the
Ruelle-Takens scenario is somewhat problematic, however. For example, if the
frequency parameter ® is spatially-dependent (at each site i, the local @' depends on i),

then high dimensional tori are expected.”? With only three coupled circle maps, the
parameter space measure of 3-tori can be large, in contrast to the literal interpretation of
the Ruelle-Takens result. Thus, the interpretation of this scenario for spatially-extended
systems is unclear at present. We will not pursue this interesting issue any further here.

The spatio-temporal patterns for the circle lattice seem to be similar to those
observed in the damped sine-Gordon partial differential equation with external periodic
forcing.51 In some parameter regimes, kinks and anti-kinks pair-annihilate and
asymptotically a homogeneous field appears. In others, continuous kink-antikink
collisions generate sustained chaotic behavior and the system exhibits aperiodic
behavior, complex spatial structures, and a sort of fully-developed turbulence. Between
these two extremes, isolated kinks remain and their collisions alone form a sort of
billiard-like chaos meandering and colliding in apparently aperiodic spatial trajectories.
One observes several different classes of kink-antikink interactions. These regimes are
shp\ivn in figures 27 through 29 using space-time diagrams of the spatial derivative
et —xtl.

With strong coupling, three different phases, roughly speaking, are found in the
following parameter regimes.

i 1.25
k<
§)) o

: homogeneous state or periodic behavior (figure 27 (top));
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Figure 27. Spatial derivative plots for the future additive-coupled circle lattice in a
lattice of 128 sites, with parameters € = .4, ® =3, and starting with a random initial
condition. The absolute values of spatial first differences (x‘*'—x?) in the range [0,.04]
are plotted with gray scale. Every fourth time step is plotted from O to 4 - 126. The
nonlinearity parameters above are are k = .2 (top) and k = .203 (bottom).




1652

Time

2138

127

Site

Time

27

Site

= .203 (top) and k = .205

except here k

b

(bottom). The top diagram is the continuation of the bottom one of the preceding figure:

Figure 28. Details as in the preceding figures
time starts at 4 - 413 and runs for 4 - 126 steps.
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Figure 29. Details as in the preceding figures, except here k = .207. This illustrates the
““‘glider-gun’’ emission of solitons.
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(i) 12—15 <k < 12—; soliton turbulence (figures 27 (bottom) and 28 (top)); and

(iii) % < k: fully-developed turbulence (figure 28 (bottom)).

The phenomenon in regime (ii) is called ‘‘soliton turbulence’’ as kink structures
remain and the aperiodic behavior is sustained only through their collisions and pair
creation and annihilation. Soliton turbulence of this type also has been seen in cellular

automata.’> The soliton turbulence in our system has the following features:

(i) Existence of a nucleus that emits solitons as can be seen in figure 29. Such nuclei

are also observed in the two-dimensional Game of Life cellular automaton, where

they are called ‘‘glider guns”,74 and in a class of one-dimensional automata.” One

distinguishing feature here, though, is that the emitted soliton can be quite diverse in
character, as is readily appreciated in figure 29. Also, the emission of solitons
occurs not in a regular manner, but rather in an unpredictable sequence.

(i) There are many kinds of propagating structures with different velocities as partly
seen in figures 27 (bottom) and 29. Consequently, the possible variety of kink-
antikink or kink-nucleus interactions is greatly enhanced.

(iii) The interaction depends sensitively on the phase, velocity, and pattern of colliding
kinks or nuclei. The turbulent aspect of the system largely originates in this
collision instability.

As can be seen in the figures, some aspects of soliton turbulence in these lattice
systems are quite similar to class 4 and to soliton turbulence behavior in cellular

automata.”> In the former, long-lived complex transient patterns are frequently
observed.” Here, this is sometimes observed and leads to k™ decay in the spatial power
spectra during the transient time.

In parameter space, soliton turbulence is seen just above the transition from
homogeneous, or locally oscillating, patterns to developed turbulence. This observation
is consistent with the interpretation*? of class 4 cellular automata behavior as transient
phenomena due to the system being close to a bifurcation and marginal stability.

The coupled circle lattice has many features in common with the Sine-Gordon
system with damping and external forcing. Soliton turbulence will undoubtedly be

observed in this system with extensive and careful simulation studies. For the
Hamiltonian version of the Sine-Gordon PDE, similar behavior may be expected since it

1 seen in preliminary investigations of symplectic lattices.”®

6. INTERMITTENCY LATTICES

The term ‘‘intermittency’’ originated in fluid dynamics to describe the energy
cascade of eddies in turbulence.””77? Intermittency in low-dimensional dynamical
systems, in contrast, is restricted to temporal behavior.®® It is important to the general
problem of fluid turbulence, therefore, to investigate spatio-temporal intermittency in
light of this previous work, but with the inclusion of spatial extent. In this section we
shall select local dynamics that exhibits Pomeau-Manneville intermittency. This, in
concert with spatial diffusion, leads to turbulent regions that intermittently form complex
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and laminar structures in space-time.

Another type of spatio-temporal intermittency was recently observed in video

feedback expe:riments57 and studied in detail numerically by Keeler and Farmer®! in a

“totalistic”” logistic lattice.*> The totalistic lattices are equivalent to strongly future-
coupled lattices, as used in the following. Keeler and Farmer hypothesize that this
intermittency corresponds to a multiple time-scale dynamics proposed by one of the
authors.®? Similar intermittency appears also to have been observed in the pattern

competition in acoustically driven water waves.?> The topic of pattern competition is
briefly described later.

6.1. Spatial Pomeau-Manneville Intermittency

Here we study a coupled system of elements each of which shows Pomeau-
Manneville intermittency. We use coupled circle maps, although any local dynamic that
is close to intermittent behavior would be appropriate.” The parameters k and o are
chosen so that each isolated circle map has a period 2 locking (k = .2 and ® = .55, for

example).'r
We have observed the following *‘phases’’:

(i) The localized kink regime (small coupling): the coupling is too small for kinks to
propagate. Initial kinks separating phase-locked domains remain in their positions.
(See figure 30 (top)). This behavior is analogous to the periodic class-2 cellular
automata.

(ii)) The transition regime: the kinks are unstable and move around, but they are still
localized and cannot form global intermittent patterns. (See figure 30 (bottom)).

This pattern is similar to the cellular automata class 4.7 Its occurrence at this
intermediate parameter setting is again consistent with the interpretation of class 4
behavior being associated with transient or near-bifurcation behavior by Packard

and one of the authors.*?

(iii) Saturation dynamics (figures 31 and 32 (top)): the burst and laminar regions form
trapezium geometric patterns similar to class 3 patterns in cellular automata.”> In
the automata case, regions that ‘‘saturate”’, i.e. all become large at the same time,
reset to some low value, and produce laminar regions. The regions then are
encroached by inward-propagating disturbances. This occurs in our lattice
dynamical system with the additional feature of an initial propagation of localized
saturation to larger regions. The distribution of laminar clusters as a function of
cluster size obeys an exponential law.

(iv) Fully-developed regime: the burst region is globally extended through all of space-
time and it is difficult to discern laminar regions. (See figure 32 (bottom).)

*Another example is the logistic map near a periodic window in the chaotic regime. A particularly
clear case with this map is found with a slight modification that produces a period 1 window: f(x) = g(x) or
f(x) = 1-g(x), if g(x) = rx(1-x) < 1 or g(x) > 1, respectively. This folds the logistic map over so that at r =
5.82843 there is a period 1 tangent bifurcation and associated intermittency.

"The intermittency for this case but with a different coupling type has been reported by one of the au-
thors.¥
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Figure 30. Spatial derivative plots for the future additive-coupled circle lattice with 128
lattice sites and parameters k = .2 and w = .55. This figure and the next two pairs
demonstrate the coupling strength dependence of this intermittenc¥ type. In each, the
initial condition is a square wave with x = .03 for 0<i{ <2™N and x = .6 for
27N <i <N. When Ix*1=x?| > 0.1, black space-time cells are plotted; differences
between O and this threshold are shown in gray scale. Each figure in this sequence of 6
starts at step O and runs to step 16 - 126, plotting the lattice pattern every 16 steps.

Above the coupling is € = .22 (top) and € = .23 (bottom).
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Figure 31. Details as in the preceding figure, except here the coupling strength is
€ = .25. The lower figure is a continuation of the top until 2 - 16 - 126 time steps.
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Figure 32. Details as in the preceding figure, except here the coupling strength is € = .27

(top) and € = .4 (bottom).
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In the saturation regime (iii), an observer following a single site’s evolution would
observe a temporally-intermittent time senes This is shown 1n figure 33. Bursting
between two channels is evident: one at low x*, the other at large x'. When in a channel,
the local behavior is relatively regular and the spatial pattern is close to uniform. The
time between bursts appears entirely random. This is due not only to the local dynamics
being chaotic with a small positive local Lyapunov exponent, but is greatly enhanced by
the flow of perturbations from neighboring sites.

The spatio-temporal pattern of laminar clusters is characterized by the existence of
two speeds: the initial burst propagation speed vz and the laminar cluster propagation
speed v;. The former describes the propagation of turbulent regions into a laminar
region; the latter, the propagation of the laminar into the turbulent. Estimates of these can
be developed by considering the effective local dynamics.

The local dynamics f? (x) (for period p = 2, in this example) obeys the map shown
in figure 34 (top) at the homogeneous region. This temporal return map demonstrates the
two intermittency channels. (Compare this to the schematic map in figure 34 (bottom).) If
the coupling term from the neighbors in the burst region exceeds the width A of the stable
fixed point’s neighborhood, the site values in the laminar subinterval I; are repelled out
to the burst region. Equivalently, the coupling term ‘‘shifts’’ the map up above the
identity, thereby destroying the fixed point. Here A is the threshold beyond which the
periodic point is repelled out by the local map’s dynamics f?(x). The average vy is
related to this coupling term as the latter governs the size of perturbation of the local
state from its evolution toward the stable fixed point x*. As the coupling is decreased,
the propagation speed of the burst decreases until it vanishes at the threshold coupling
value. The laminar propagation speed v; depends on the probability that a chaotic orbit
falls on the region /;, where I; is the subinterval in which points are attracted to the
periodic point x*. Quantitative estimates for these speeds follow from these simple
geometric constraints.

In the example discussed above, we have used a strongly coupled lattice to
emphasize that this mechanism for intermittency is quite robust and can appear in
different regimes. The authors have previously studied weakly coupled lattices with
which one sees ‘‘cleaner’’ demonstrations of this mechanism in the temporal return map.
(See, for example, ref. (84)). In these examples the occurrence of intermittency is
essentially *‘designed-in’’ with very weak coupling and is not so surprising.

Although, closely related to the Pomeau-Manneville intermittency mechanism in its
use of near-tangent bifurcation, this spatial intermittency mechanism differs in detail.
Here, spatial patterns can alter the ‘‘operating region’’ of the local dynamics, moving it
into and out of tangency, and thereby modulating the Pomeau-Manneville intermittency
channel. Spatial structure ‘‘gates’” or strobes the stability of the associated stabilizing
fixed point. In the standard Pomeau-Manneville mechanism, the dynamics is time-
independent and orbits spend long times in a narrow intermittency channel.

6.2. Intermittency via Pattern Competition

As was already described (recall figure 24), the coupled logistic lattice undergoes an
instability at some spatial wavenumber K, developing a stable pattern with that
wavenumber. As the nonlinearity is increased, the pattern loses its stability via chaotic
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Figure 33. Time series of site values {(x"1} in the saturation intermittency regime for the
future additively-coupled circle lattice. Every second iterate is shown for 256 time steps.
Bursting between the two intermittency channels is evident. There were 128 sites and
the parameters were k = .2 and @ = .55. The lattice started with a uniformly distributed
random initial condition with mean .5 and standard deviation .2.




53

Xne2

Xne2

A

X
It n 13

Figure 34. Temporal return map (top) for the lattice of the preceding figure. Two-step
temporal return map plotted for N lattice sites over 256 time steps. This then shows the
second iterate of the effective local dynamics. The two darkened triangular regions are
concentrated at the two fixed points of the isolated circle map. The lower figure shows a
plot of the second iterate of the local circle map dynamics at the same parameter values
(k = .2 and ® = .55). This illustrates the structure of the two intermittency channels IL of

width A.




54

bursts. The bursts propagate in space-time intermittently. In wavenumber space, the
time-averaged spectrum of the burst motion has a peak at k = 0 surrounded by a broad-
band component, while the pattern’s periodic structure yields a peak at k = K. The
phenomenon can be regarded approximately as the competition of two patterns, i.e. one
spatially complex at k = 0 and another periodic at k = K. Some examples of this
phenomenon are shown in figures 35 and 36 using space-time diagrams. Preliminary
investigations of the temporal dependence of the £ = K mode amplitude indicate that the

intermittency is characterized by low temporal frequency noise.% 7

At an appropriate coupling strength €, two spatial modes compete. For example, at
€=.03 the mode with a wavelength of 8 sites and one of 6 sites compete as can be seen
in figure 36. At smaller nonlinearity r, these two modes stably exist and form a static
pattern. At the parameter used in figure 36, frustration due to the pattern competition
causes a burst to develop and propagate, destroying any regular spatial pattern. As the
nonlinearity is increased, the pattern loses stability and collapses spontaneously into
““fully-developed turbulence’. In the latter regime, no peaks are observed in the spatial
power spectrum.

The detailed mechanism of this intermittency has not yet been clarified. The
phenomena, however, are observed in fairly large regions of parameter space.
Additionally, it is readily observed in video feedback studies of the effects of rotational
boundary conditions on pattern symmetry. In this two-spatial-dimension system, the
dominant spatial wavenumbers are easily controlled by the image rotation.>’

7. OPEN FLOW LATTICES

In the present section, lattice models with asymmetric coupling are investigated.
This class is architecturally related to the multiple time-scale intermittency models®?
briefly mentioned above. When the latter are temporally discretized the hierarchy of
driver-drivee relationships produces uni-directional coupling between the local

dynamical systems.! Here, however, we shall interpret the hierarchy of systems as a
single spatially-extended system. -

For the class of open flow models considered in this section, the degree of
unidirectional coupling is explicitly controlled by an asymmetry parameter o. The model
is given by

Xp =f @) +efaf Y+ 1-00) £ &l = F (D))

In the following we shall study the extreme case o =0, where the coupling is uni-
directional, going only from left to right.

One motivation for asymmetric coupling is to understand the behavior of continuum
models with first order spatial derivatives in which there is a preferred direction along
which perturbations are amplified. A typical example is the open fluid flow system,
which is one of the most well-known examples of turbulence. This type of system has
not yet been studied in detail from the viewpoint of dynamical system theory.

Here we study mainly the case with f (x) = rx (1—x) and additive future-couph"ng.54
Analogous behavior to that described in the following is found in the asymmetric
additive (non-future-coupled) logistic lattice.! Deissler® constructed an open flow model
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Figure 35. Space-time diagrams of site amplitudes in the range [.1,1.]. The system here
is the Laplacian future-coupled logistic lattice with 128 lattice sites starting from a
random initial condition. The figure details are as follows. All start from the same
random initial condition, plotting every 16" step until time 16 - 126. k = 3.93 and £ = .1
(top); k = 3.83 and £ = .5 (bottom).
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Figure 36. Details as in the preceding figure, except here k
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that is in some sense ‘‘dual’’ to the lattices we describe here: using asymmetric cubic
nonlinear coupling and trivial local dynamics. The nonlinear coupling is designed to
spatially amplify upstream fluctuations; one artifact of this is the appearance of large and
inessential discontinuities in the spatial pattern. The same phenomenology is observed,
however, in the simpler asymmetric logistic lattice without the problematic
discontinuities.

7.1. Spatial Period-Doubling

One remarkable phenomenon in open flow lattices is spatial period-doubling. Some
examples are shown in figures 37 and 38. The left boundary condition is x®=x", where
x" is the unstable fixed point for the logistic map, i.e., xt=1-r1 Spatial period-
doubling still occurs if x° is different. The right boundary condition is unconstrained.

The spatially period-doubled pattern characteristically develops in complexity going
downstream to the right. At lattice sites 0<i <ij, x' is a fixed point, while at
i1 <i<i, x' is a period-two cycle, at ip<i<ij period-four cycle, and so on. If the
nonlinearity r is not sufficiently large, x. is period 2¥*! for some i > i, and no more
downstream bifurcation occurs. If the nonlinearity r is large, the period-doubling passes
into chaos at some order and the pattern is turbulent for i > i, i.e. downstream. If the
chaotic behavior occurs upstream, at i =i, (say), periodic behavior cannot be observed
downstream, i > i,.

The spatial pattern bifurcation diagram of figure 39 illustrates the development of
the spatial period-doubling to chaos transition as a function of the nonlinearity r. The
preceding amplitude-space plots correspond to parameter setting near the middle portion
of the bifurcation diagram. After 256 transient iterations of the 256 site lattice, the
spatial pattern is shown in gray scale for site values in the range [.2,1]. The overall
parameter-space self-similarity of this transition is evident in the smooth compression of
the periodic domains with increasing nonlinearity and in the movement of the first spatial
position where chaos is observed.

Figures 40 and 41 present several mosaics of space-time return maps to demonstrate
the downstream flow of information. In these, return map points (x,, x,;4) are plotted
for j, k = {0, 1, 2, 3} collected over a space-time region. Geometrically, an individual
spatial period-doubling pattern lies along a curve that is one of the attractor’s unstable
manifolds in the full state space. The space-time return maps for x, versus x,+, with
J <k exhibit notable correlation downstream, while the maps with j >k give a direct
product state of two chaotic motions. In other words, information cannot propagate with
high velocity. Interestingly, the return maps with (j = 0, k£ > 2) are also close to the direct
product state, that is, very slow information propagation is also forbidden. This is
consistent with the observation that disturbances propagate only within specific velocity
bands.3> 86

7.2. Spatial Amplification of Fluctuations

The patterns in open flow systems are dominated by spatial instability, where a
perturbation grows as it moves downstream.?” In this case, even if a state is stable in the
stationary frame, the state can become unstable downstream by amplification of very
small fluctuations, including numerical round-off error. This property can be analyzed in
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Figure 37. Amplitude-space plots for the unidirectionally future-coupled logistic lattice
with 512 sites. The coupling strength was € =.5. In each plot 32 time steps are overlaid
after 2000 transient iterations. The initial condition was random with mean equal to the
unstable fixed point x* and with standard deviation .01, where x* =1-r"1. The
boundary condition at site 0 is x%=x" and at the rightmost site is unconstrained.
Individual figure details are as follows. The nonlinearities are r = 3.56 (top) and r = 3.60
(bottom).
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Figure 40. Space-time return map mosaic for the behavior in the preceding figures. 32
time steps are overlaid in each and points are collected from for N-j sites. There are 512
sites, € =.5, and the nonlinearity r = 3.6. The systems were iterated 2000 time steps to
allow for the decay of transients. This and the following mosaic show return maps for
(xh, x4 with j, k € [0,3].
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Figure 41. Details as in the preceding figure, except the nonlinearity has been increased
tor=3.75.




63

a some detail for the uni-directional coupling model in which a = 0.

First, we consider the stability of a homogeneous fixed point state, i.e., x' =x*. The
Jacobi matrix for the model is given by

(1-e)f ‘&1 ef '(x?H 0o - 0
O N G A R A I 0
0 0 0 - (1-e)f (M)

For the state x* = x*, the eigenvalues of the matrix are degenerate and they all take
the same value (1-€) f "(x* ) = (1-€) (2—r). Thus, the homogeneous state is stable in the
stationary frame if |(1-€)(2-r)! < 1. This, however, does not mean that the state stably
exists. Let us consider the evolution equation of the disturbance dx,,, which is given as

&l =Ad&x! +Bdx}!

where A =(1-€) f’(x*) and B =¢€ f’'(x*). If we start from the disturbance Bxf, =do; o
(o;, ; 18 the Kronecker delta), the solution for the preceding equation is

5x,', = (i")A n—iBi

The growth of the disturbance in the co-moving frame with the velocity v is obtained by
substituting i =vn as

&x, (vn) = (7)) (1) &7 f/(x* )" .

The logarithm of the average growth ratio of the perturbation per time step (for large n)
represents the stability of a state in some moving frame. The ‘‘stability exponent’’, thus
defined, is given for the homogeneous fixed point state as

v

1-¢

1—v

e(1-v)
v(l-¢)
The maximum occurs for v =€, which takes the value L, =log |f’(x*)|. From the

above calculation, one finds that the perturbation is transmitted with the largest
amplification at the speed v =€ and that the state is stable only for

I f'(x*)| = 12-al < 1. Thus, for 2 + 1—1— >r >3, the state is convectively unstable and

L(v)=log If'(x*)| +log +1lo

a perturbation propagates. In this parameter region, the homogeneous state is
exponentially unstable and so is susceptible to very weak noise and numerical error. The
simulation started from the homogeneous solution x‘ =x* in the parameter regime
where the solution is unstable only in the moving frame. Rigorously speaking, the state
should remain fixed. In simulations, however, the errors introduced in the last digit
(15", for example, in double precision IEEE format) during the computation makes the
state unstable and spatial period-doubling proceeds after only a small number of lattice
iterations. The microscopic fluctuations at the fixed boundary are macroscopically
manifested via this spatial amplification mechanism. In physical systems, ever-present
microscopic fluctuations render convectively unstable states observable.

The stability of a homogeneous periodic state is calculated in a similar manner. The
stability exponent in the co-moving frame is given by
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1-€ e(1—v)
L(v)=Ly+log | —| +log| ——=
W)=Lo+log| I= +log )| Tae)
where L is the stability exponent for the given cycle for the one-dimensional map
M 1 ’ ’ 4
Xns1 =f (X,) (e, ;log VRO MCTIRERY Me BT for the cycle

xy=f &1, % =f(x,1), and x; =f(x,)). The maximum L (v), Lo, again occurs at
v =¢&. Thus, the periodic state with period 2 successively attains convective instability at
the same parameter that the period-doubling bifurcation occurs in the logistic map
Xn+1 = f (x,). For the homogeneous chaotic state the same formula for L (v) applies.

The above calculation is valid only for a locally homogeneous state. If spatial
inhomogeneity appears, the analytic calculation is difficult at best, and one must resort to
numerical calculation of the co-moving Lyapunov exponent.3-86

The mechanism for spatial period-doubling is understood in terms of convective
1nstab111ty as follows. Assume that the state at x,, is very close to the cycle with period
2k, If the cycle is convectively unstable with the stability exponent L, =L (v*), the
deviation is enhanced with the factor e“™ for one 1teratxgn as it goes downstream with

the speed v* = €. The deviation thereby is enhanced by ¢ for propagation to the next

lattice site and the next time step. The spatial Eenod -doubling proceeds with the
successive convective instability of each 2¢-cycle: 2¢ leads to 2¢+! cycles. It stops when
the cycle is stable, that is when the associated L 5, <O.

The instability of a periodic state is amplified along a kink’s spatial locus as shown
in figure 42. There, transients are shown with spatial return maps during time steps 50 to
100 and 150 to 300, respectively. After the transients have died out the spatial return
map gives the pattern in figure 43. In figure 42 (bottom) we can see the unstable
manifold from period-1 domain, which comes into the period-2 domain along the latter’s
stable manifold. The period-2 domain in turn exhibits the amplification of instability as is
seen in the curve at the left sxde of the figure, which is its unstable manifold. The process
continues to up to a period 2¢ cycle, that is until the local configuration is stabilized, or
until it becomes chaotic.

We note that the unstable manifold for the period-1 domain coincides with the
stable manifold for period-2, which is transverse to the unstable manifold of period-2
domain. This point is essential for the process of spatial period-doubling in open flow. It
suggests a geometric picture of perturbation flow along a hierarchy of local unstable
submanifold connections in the high-dimensional state space.

The size of each cycle’s domain is roughly estimated from the above argument. The
scaling relation above, however, seems to be difficult to observe, since the effect of small
noise dominates in the convectively unstable case. For example, the lattice point at which
the period-doubling occurs varies with the simulation’s precision and the round-off
algorithm. Thus, just as in following a particular trajectory in a low-dimensional chaotic
system, different machines produce different patterns. As in preceding studies of chaos,
however, the ultimate goal is not to suppress this property, but to study its qualitative
scaling features over a range of precision and external noise levels.
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1+1

Figure 43. Details as in the preceding figure, except here the points are shown during
steps from 1500 to 1530. Here, all the transients have died out, leaving points on the
attractor itself.




65

i+l

i+l
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Figure 42. Spatial return maps for the uni-directionally additive future-coupled logistic
lattice with r = 3.6, € = .5, and N = 128 sites. Initial and boundary conditions are same as
in preceding figures. The return map points (x’, x‘*!) are collected from N-1 sites. The
durations for each figure are from step 50 to 100 (top) and from 150 to 300 (bottom).
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This spatial unpredictability in open flow lattices has an origin similar to that in
low-dimensional chaos, but it is manifested graphically in real space. More importantly,
this phenomenon provides a clear demonstration of the additional mechanism operating
in spatially-extended nonlinear systems: the spatial transmission of information. This
mechanism is responsible for the appearance of complex patterns.

7.3. Domain Walls and Kink Dynamics

As was discussed in the previous section, the effect of small noise is important in
the convectively unstable system. Here we consider the uni-directionally future coupled
logistic lattice with noise G,, added at every site and every step, where o, is d-correlated
noise uniformly distributed in (-c,0).

Even in the case where a cycle of period 2 is stable, a remarkable phenomenon
appears with the inclusion of small fluctuations. At the lattice site where the period-
doubling 2k — 2¥*1 occurs, there are two choices for the phase of the resulting doubled
oscillation with respect to the upstream 2* oscillation. This choice allows for phase
switching. This in turn may be driven by a fluctuation which then generates a kink. The
kink then moves downstream with constant speed.

In a parameter regime where the downstream behavior is periodic with some
longest period 2* there are several noteworthy features:

(1) The kink propagates with a constant speed v =€, the coupling strength (to within
numerical error);

(i) For a period 2* cycle, there are many ways in which a kink can change phase; and

(iii) The total number of kinks of all types is proportional to

logo™ '

The latter estimate follows from the stability exponent analy%is of the previous

max

section. Recall that a small perturbation is enhanced by the factor € in moving one

lattice site downstream each time step. Feigenbaum’s scaling analysis applied to the
period-doubling of kinks then yields the noise scaling of the multiplicity of possible kink

types.

For r >r,, the period-doubling accumulation point, the state shows chaotic
“behavior after some period-doubling bifurcations with kinks. In this case also, the kinks
propagate downstream. One notable feature for the downstream turbulence beyond the
spatial period-doubling is its further insensitivity to the external noise level.

A pattern’s downstream flow is revealed in a co-moving reconstruction of the

dynamics.?® If the co-moving velocity is slower or faster than the maximum perturbation
propagation speed, the reconstruction is essentially the direct product of two independent
dynamics. The reconstruction corresponding to the maximum perturbation velocity v = ¢,
in contrast, indicates strong correlation. (Recall the space-time return map mosaics of
figures 40 and 41.) Information propagation using mutual information has been studied
by the authors, see reference (35) as an example. A more thorough investigation is

presented elsewhere.32
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8. TRANSIENT SPATIAL CHAOS
As a simple example of spatio-temporal complexity arising in a nonlinear lattice
that is not associated with an attractor, we study in this section a model exhibiting

transient spatial chaos. The lattice is the piecewise-linear ‘“dripping handrail’> model,®®
which is given by a future-coupled lattice with the local dynamic

f&)=sx +®(modl)

This local dynamic is essentially a circle map with zero nonlinearity parameter k and
with additional control of the slope s. The local dynamics consists of the constant
increase by ® with each iteration and a sudden decrease in amplitude above a

*“threshold’’ s Xthreshold = I~

. The first process models the increase of the hanging

water layer’s thickness, assuming there is a constant rate of flow onto the handrail.
While the second process, (mod 1), corresponds to the decrease in local water mass by
drops breaking away and falling. A future-coupled totalistic kernel, €= (—— ;,%),
mimics the replenishing flow of water along the handrail by a simple low pass ﬁltering of
the pattern at each time step. The analogy of this model with the dripping handrail
phenomenon and ‘‘sizzling type’’ turbulence was originally suggested by Rossler and
one of the authors.®

Here we treat the case s <1 in order to study dynamics without local information
production. The latter is guaranteed by a negative Lyapunov spectrum. We note also that
the isolated local dynamic exhibits a stable period 25 orbit.

Typical evolution from a random initial condition is shown with a space-time
diagram in figure 44. Detailed investigation of this model indicates that the apparent
complexity is due only to a nonlinear superposition of patterns that emanate from the
initial condition. This is highly reminiscent of class-3 cellular automata. One important
similarity of this model and cellular automata is that there is no local information
production and that the apparent complexity is due only to the information mixing in
space.

In class 3 cellular automata, a complex pattern is generated by a ‘‘single seed’’
initial condition via a process of spatial information transmission and nonlinear
superposition. These initial conditions are characterized by being algorithmically simple.
The evolution, nonetheless, produces algorithmically complex patterns. In the present
model, also, a single seed initial condition gives rise to the propa§at10n of complex
patterns (see figure 45), where the initial condition is x% = 4 and x'*%° = 3 in a lattice of
128 sites.

The spatlal and temporal return maps are given in figure 46. We note the
““whiskers’’ stemming from the line with x‘ =x'*!, which correspond to localized
dripping. y

When the slope is less than unity, the state is ultimately attracted into a periodic
cycle. The attractor’s period and the transient length increase with lattice size apparently
exponentially. In cellular automata, also, the state is ultimately attracted into a cycle if
the system has finite size. A similar dependence of transient length on system size is
found in some classes of cellular automata.®? To illustrate the growth of transient time for
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Figure 44. Space-time diagram with site amplitudes plotted in the range [0,1] for the
dripping handrail model with s = .91, @ = .1 and 128 lattice sites. A uniformly distributed
random initial condition with mean .3 and standard deviation .1 was used. 128 steps are
shown, after approximately 6000 transient iterations.
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Figure 45. Space-time diagram with the absolute value of spatial differences plotted irr
the range [0,.1] for the same model with same parameters as in preceding figure. The
algorithmically-simple initial condition consists of sites at x'® -3 except for the
middle lattice site 63, where it takes the value x83=4. The diagram shows the
development and propagation of spatial perturbations from the initial pattern.
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Figure 46. Return maps for the dripping handrail. (top) The spatial return map for N-1

sites collected during 32 time steps. (bottom) The temporal return map for 128 time
steps collected over the entire lattice.
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this lattice example, space-time diagrams are shown for N = 8, 16, and 24 in figures 47
and 48, during transient decay and after they have died away. The increase of transient
length and attractor period is clearly seen.

This example of apparently complex, but transient, spatial chaos is a disturbing
comment on the recent endeavor to view fluid turbulence, to take a notorious example, in
terms of (chaotic) attractors. This example demonstrates that complex behavior in a
spatial system may be dominated by very long transients; transients potentially so long
that the system state may never reach the attractor. In this case, the attractor’s properties
may have nothing what-so-ever to do with any observable behavior. If so, it is a moot
point, indeed, whether or not the attractor is chaotic. The asymptotic invariant measure
supposedly governing fluid turbulence may never be reached in practical time. This kind
of long-lived complex transient pattern evolution can be seen also in the previous

examples of pattern competition, in some partial differential equations,’® and in video
feedback dynamics.?

The 128 site model above is a small system in comparison with the number of
spatially-distributed active modes in fully-developed turbulent fluid flow. (The latter size
might be measured by the number of dissipation-scale eddies contained in the flow.)
Nonetheless, if we assume that it is a physical model with a characteristic time of (say)
10~ seconds, its iteration time, then an experimenter would still have to wait a year and
a half to observe the ultimate periodic attractor, even in a mathematically ideal setting.
(We assume in this that every addition of 8 sites to the system size increases the average
transient length by a factor of 10. Exponential growths rates larger than this are indicated
by our finite-size scaling studies.)

Aside from a better quantitative characterization of this phenomenon, we need to
determine when such behavior might occur. Most likely this will demand a better
understanding of basin structure organization in these very-high dimensional systems.
This, then, will have to be interpreted in light of estimates of the upper bounds on
attractor dimensions, that is, the number of active modes, to fully appreciate the
implications for fluid turbulence.

In closing this section, we should recall that many of the spatial systems described
above do reach their attractor in finite time, i.e. thousands of iterations usually, not 1016,
Until more quantitative tests are completed, we wish only to emphasize with the dripping
handrail model that there are other significant effects appearing in spatial systems than
those typically investigated in low-dimensional dynamical systems. The study of these
prototype models will be very helpful in unraveling some of these new and difficult
problems.

9. SUMMARY

With this brief survey, we have covered a variety of phenomena in spatio-temporal
chaos that arises in the class of discrete time and space lattice dynamical systems. These
included the period-doubling and merging of domains and kinks, spatial-mode instability
and spatio-temporal quasi-periodicity, soliton turbulence, spatial and spatio-temporal
intermittency, spatial period-doubling in open flows, and the generation of transient
complexity by spatial information transmission. Though we have illustrated these
phenomena mainly with the use of coupled logistic and coupled circle lattices, these
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Figure 47. Space-time diagrams with site amplitudes plotted in the range [0,1] for the
dripping handrail model. Starting from statistically similar initial conditions, the set of
figures illustrates the increasing length of transients with increasing lattice size. The
particular details of each figure are as follows. Above there are 8 lattices (top); the
diagram shows the first 64 time steps. And, at the bottom the lattice consists of 16 sites;
the diagram shows the first 72 steps.
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Figure 48. Details as in the preceding figure, except here the periodic behavior during
128 iterations for a lattice with 24 sites is shown after 5440 transient iterations. In each,
the ultimate attracting cycle is shown over sufficient time so that one may deduce its
period. Note the large jump in transient length required in the last example to reach the
attracting cycle.
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models appear to be behavioral archetypes for spatio-temporal chaos, generally. We
have investigated, in fact, a much wider range of local dynamics and coupling forms and
chosen for this essay the simplest models that illustrate widely occurring behavior. Any
possible universality is bolstered, as we have occasionally noted, by the experimental
observation of several of these phenomena in hybrid electronic-optical video feedback
experiments in two spatial dimensions, in large aspect ratio liquid crystal flow, and in
large aspect ratio Bénard convection.’! The new phenomena presented here will be
observed, presumably, in the diverse range of spatially-extended physical systems
considered in the introduction.

In connection with the experimental observation of the spatio-temporal chaos we
have described, a few specific comments are in order.

(i) In the case of period-doubling the direct observation of domain structures and
spatial bifurcation will be necessary. The transition from static patterns to moving
domains may be observed with the variation of control parameters. As for
quantitative comparison, a renormalization group description of kink scaling is
necessary.

(i) In the case of spatial mode instability and intermittency, the spatial power spectra
can be obtained using standard methods. The appearance of some peaks
accompanied by temporal quasiperiodicity or by phase defect motion gives an
example of our spatial mode instability. The pattern competition may be observed
with parameter variation, also. It is characterized by robustness and the generation
of flicker-like noise for the motion of the corresponding spatial mode.

(iii) Soliton turbulence is typically seen in parameter regimes near the transition from a
homogeneous state to fully-developed turbulence, if moving kink patterns exist. The
kink patterns are frequently observed in experiments. By detailed examination of
such systems with strong nonlinearity or under strong external stress, soliton
turbulence will be observed.

(iv) Experiments on open flow systems in the spirit of nonlinear dynamics are still rare.’
Multipoint probes will be essential to show the existence of spatial bifurcations. For
quantitative comparison with theory and experiments, a scaling theory of spatial
bifurcation using renormalization group approach is also necessary.

(v) Transient spatial chaos is a new phenomenon which occurs only in large systems.
Experiments that mimic our finite-size scaling, via systematic changes in (say)
aspect ratio, appear to be the main avenue for observation of the rapid growth in
transient durations. Generally speaking, the existence of very long-lived transients
should be kept in mind in any experiments on spatially-extended systems for which
the goal is to study complex spatio-temporal behavior.

Presenting a much more detailed phenomenology in this didactic form is of
somewhat dubious value. Much of the reported behavior can be quickly and interactively
explored using personal computers and scientific workstations. This paper should be
taken as a guide to this new form of investigation. Even small computers have more than
adequate processing power for research on many lattice systems. Indeed, one of the
motivations for the invention of this class of dynamical systems was to bring the
investigation of many degree of freedom systems to readily available and interactive
microcomputers. To date, supercomputers have dominated this research domain. They
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do not provide, however, the interactive response and high-graphics-bandwidth
demanded by qualitative studies of nonlinear dynamics. Today’s small computers do
provide the latter and so can support rather large simulation environments, such as /ds,
the one we used. Such an environment allows for ready access to the results presented
here and many more detailed and subtle phenomena, without the months of code
development typically required for specific numerical projects. Even within a single
such environment, if our experience is any indication, there are still many phenomena to
be discovered.

From the theoretical side, an encyclopedic accounting of these spatio-temporal
phenomena is also not enough. We have tried to point out some directions for analysis
and possible limitations. Certainly, further analysis based on the geometric perspective
of dynamical systems theory and on an information theoretic approach is a necessary
adjunct to a more complete investigation. In the near term the quantitative
characterization of spatio-temporal chaos includes the following topics:

(1) Lyapunov spectra for spatially-extended systems, their morphology and that of the
associated Lyapunov vectors;

(i) Co-moving Lyapunov exponents and the propagation speed and direction of
disturbances;

(iii) Spatial, spatio-temporal entropies and dimensions and their densities and spatial

information flow using multipoint-probe mutual information statistics; information
flux;

(iv) Connection with the thermodynamic formalism;”?
(v) Conventional space-time power spectral analysis;

(vi) Coarse graining and scaling and renormalization group analysis based on the
statistical mechanics of spin systems;”> and

(vii) Reconstruction of spatial dynamics and the deduction of the spatio-temporal
equations of motion.*

Sequels by the authors pursue these directions.3%3*

The brief tour that we have given in this overview points to even larger vistas of
spatial dynamics, replete with phenomena as fascinating and as little understood as those
that confronted the first investigators of ‘‘simple’’, temporal chaos. In our own ongoing
studies, we have barely begun to touch on the effects of two and higher spatial
dimensions or of other interconnection architectures on the types of instabilities. The
former promises new topological structures more complex than the kinks and “‘solitons™’
seen in one-dimension. The latter suggests new approaches to the complex problems of
life itself using morphogenetic dynamical systems to investigate developmental,
evolutionary, and learning processes.
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