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1 Introduction — Why Coupled Map Lattices?

Modelling and characterization of complex phenomena in spacclime is importaat in
the study of turbulence in a general sense, not only in fluid dynamics but also in solid-
state physica, optics, chemical reaction with diffusion, pattern formation problemns, and
possibly in biology. This kind of phenomena is called as “spatiotemporal chaos” !, in
an attempt lo understand it on the basis of knowledge on dynamical systems theory,
especially, chaos.

Several years ago, the author proposed a simple model with esseatial features of
apatiotemporal chaos. In the present review, we first discuss the qualitative features of
the model with some visualization, and then try to explore the universal scenario for
pattern dynamics. We introduce some quantifiers to characterize the pattern dynam-
ics, such as spatial-ternporal power spectra, domain distribution as order parameters,
Lyapunov spectra and mutual information flow and so on.

We briefly discuss some trials towards the construction of thermodynamics with the
use of Perron-Frobenius operator and self-consistent approximation. Also we discuss
the mean-field version of the present model briefly.

Some applications to physical, chemical and biological systems are also discussed,
such as Benard convection, convection in liquid crystals, Taylor flow, open flow in fluid
systems, chemical reaction with diffusion, some solid-state systems such as Josephson
Jjunction array, charge density wave, spin wave turbulence, spinodal decomposition, and
possibly some biological networks 2.

The model we use here is a coupled map lattice (CML) (1,2,3,5]. It has been recently
investigated extensively in various contexts [1-43).

A CML is a dynamical system with a discrete time, discrete space, and continuous
state [1,2,3,5,6] see also, {9,10,12]). A modelling of physical phenomena by CML is
based on the following steps:

Our strategy of studying dynamical phenomena in spatially extended systems by
CML is based on the following steps:

(A) Take a (set of) field variable(s) on a lattice.

(B) Decompose the phenomena into independent units (e.g., convection, reaction,
difTusion, and so on)

(C) Replace each unit by the possible simplest parallel dynamics on a lattice: the
dynamics consists of nonlinear transformation of the field variable on each lattice point
and/or a coupling terrn among suitably chosen neighbors.

(D) Carry out each unit dynamics (“procedure”) successively.

Let us take the simplest example, that is the local nonlinear process and diffusion,
ag can be scen in the reaction-diffusion system. As the independent units, we take
local nonlinear process z(i) — z'(i) = f(z(3)) and the discretized diffusion process
z'(i) = (1 = ¢)z’(i) + (e/2)(z'(i 4+ 1) + £’(i - 1)]. Combining these two procedures, our
dynamics can be wrilten as

Zn41(1) = (1 = f(zn(1)) + /2A/(za(i + 1))+ [(za(i = 1)) (1)

where n is a discrete time step and i s a lattice point (i = 1,2+, N=system size)

"This term is often used incorrectly, that is for the low-dimensional chaos with some spatial structure.
Here we noe the term for the high-dimensional chaos whose dimension ( effective degrees of {reedom)
diverges with a system size.

2This area of the ficld is rapidly growing recently and it is impossible 1o cover in a short review.



with a periodic boundary condiliva. Extcnsions to a higher dimensional lattice are

straightforward which will be discusaed in §3.
Here the mapping [unction f(z) is chosen to be the logistic map

f(z) = 1 - az?, @

since the map has already been investigated in detail. Features in the logistic map
lattice, however, can be scen in a wide class of mappings and in other types of couplings, .
and are thought to be rather universal in a system with local chaos and diffusion. If -
we-adopt a different class of mappings like circle map f(z) = z + (If/27)sin(27z) +Q, .
or a bistable map f(z) = tanh(fz), dilferent behaviors can be seen (soliton turbulence
and pattern formation respectively),

In the model (1), the independent procedures in (B) are local transformation (eq.(2))
and the diffusion process, which are separaled parallel procedures. The model consists
of the sequential repetition of these two procedures. This argument leads to the fol-
lowing cquivalent form with the above model:

Vna (i) = S((1 = Qvai) + ¢/ 2yn(i + 1) + pali = 1))). &)

If we adopt different procedures, we can construct models for different types of
dynamical behavior of spatially extended systems. Examples with a different type
of coupling (“convective coupling”) will be studied in §8. Other choices of nonlinear
process for the construction of CML corresponding to the spinodal decomposition,
excitable media, Josephson junction and so on are also discussed.

Let us compare the merits and demerits of our model with other models for spa-
tially extended systemas, in particular, partial differential equation (PDE) and cellular

automata (CA)[14).
PDE vs. CML
3

A merit of PDE over CML is that it is easily related with physical phenomena®,
starting from macroscopic equations such as the Navier-Stokes. Reduced equations can
be obtained with the use of some perturbative techniques ( e.g., reductive perturbation
method). Analytic methods developed since Fourier are available for PDE.

Merits of CML over PDE are that (i) straightforward application of dynamical
systems theory, in particular, chaos (ii) straight{orward connection with the studies in

statistical mechanics on a lattice system and (iii) numerical cfficiency which enables us
a global search in the parameter space.

CA vs. CML

Since there is no inlerent continuos parameter in CA, it is rather difficult to sce
a change of a state with a change of parameter. Applications of dynamical systems
theory are difficult in CA. Another drawback in CA is that it cannot create information
in the scnse of Shannon [22). In a finite lattice, information in CA is finite, of course,
and there is no “creation of information” in the bit space. Another technical drawback
in CA is that an aperiodic state cxists only in a lattice of an infinite size. One has to
discuss an asymptotic behavior as a system size gets large. However, it is not always

3This, however may be just a prejudice produced through long-term history.

casy to distinguish if the relevant behavior in an infinite system comes {rom a transient
or a periodic attractor in a finite lattice 4.

In CML, notions developed in dynamical systems theory can be extended, while the
straightforward application of notions in information scicnce (45] is possible in CA.

As for the efliciency: In recent days, the use of “lattice gas automata” to fluid
dynamics is becoming popular [46]. Numerical efficiency is stressed in this kind of
approach in the term of “bit democracy”, which means that each bit js used almost
equally in the course of computation. It is thought that this method is very cfficient if
a special purpose machine is constructed. This is not necessarily true.

Indeed, there are two merits of CML over CA.

First, a field variable in CML is a quantity after a coarse graining. In CA, each cell
corresponds to a microscopic variable. Thus we need a very large lattice size to have
a realistic simulation. On the other hand, we can get a suitably statistical behavior
within a small lattice system in CML. Statistical physics is science of coarse-graining,
and it is obvious that a suitably coarse-grained model is in higher level description of
the nature. )

The second point is more technical. In the present computer with floating processors,
hierarchical use of bits is quite fast, where bits are not used in an equal weight. On
the other hand, in the architecture of digital computers, discreteness of time and space
are not overcome. This leads to an efficiency of models with continuous state, discrete
time and space S,

2 Pattern Dynamics in a 1-dimensional Lattice

2.1 Global phase diagram

First we show a global phase diagram in our coupled logistic lattice, which is obtained
by the simulation of (1) with random initial conditions. The meaning of each phase
in the figure is explained in the course of the paper. Some examples of the space
amplitude plots are shown in Fig.2, where patterns z,(i) from many time steps are
overlayed. Also, examples of space-time diagrams are given in Fig. 3.

Let us briefly survey the characteristic property of each phase, with the use of spatial
power spectra, and Lyapunov spectra.

Detailed account of a feature of each phase will be shown in the following sections.

Spatial power spectra

Spatial power aspectra (= Appendix) for cach phase are given in Fig. 4. We note the
following changes:

i) In the rozen random phase, the spectra decay slowly (roughly by exp(—k)). This
comes from a random configuration of domains (Fig.4a).

ii)Few peaks grow at the pattern selection regime. The peak(s) are located at the
wavenumber of selected patterns (Fig4b). - .

‘We may distinguish the two by growth rates of transients and period of altractors in a finile lattice.
n &.n_ugm. on rules which of the period or transients grows faster with the system size [50).

The purposes of the present paper are two-{old. One is 10 ace the phenomenology of spatiotemporal
mr.-ou studied in CML, and the other is the application of CML to physical phenomena. If the reader
18 inlerested only in the latter aspect, (s)he can skip the details of §2 -7 and jump to §8.
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Fig.1: Phese diagram of the coupled logistic lattice (1): The phases are
determined by the apatiolemporal patterns and the distribution function of
pattern Q(k) to be defined laler, Simulalion has been carried out for (1) with
random initial configurations and N=100. The parameters are changed from
a=1.5 to 2.0 by 0.01 and ¢ = 0.02 to 0.4 by 0.02. Ilere BD, DT, PCI, and FDT
are the abbrevialions of Drownian motion of Defect, Defect Turbulence, Pat-
tern Comepelition Intermittency, and Fully Developed Turbulence, respectively,
which are discussed in deotail later. The numbers such as 1,2,3 represent the se-
lected domain sizes. See lext for details. The arrow at Lthe bottom line shows
the band merging point for the single logistic map, while the region with oblique
lines correepond Lo Lhe period-3 window in the logistic map. (Reproduced from

Ref. [3))
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Fig.2: Space-amplitude plot for the coupled logistic lattice (1). Amplitudes
za(i)'a are overlayed for 250 time steps after the 10000 transients, ¢ = 0.4,
N=100, and random initial condition.

(a) a=1.42 (b) s=1.51 (¢) a=1.65 (d) a=1.735 (¢) a=1.737 ([) =175




iii) Coexistence of the sharp peak(s) and the broad band noise at & x 0 for the
defect turbulence and the pattern competition intermittency. In the defect turbulence,
the peak at & = 1/2 and the broad band noise around k& = 0 coexist, The latter
part increases as the nonlinearity is increased. In the intermittency case also, the
burst brings about the broad band spectra at & = 0 for S(k). The whole spectra are
composer of the broad-band and the sharp peaks at the wavenumbers corresponding to
the selected patterns. As the nonlinearity is increased, the portion of the broad band
noise increases (sce Fig.dc).

iv)Fully developed spectra: As the nonlinearity a is increased further, sharp peaks
disappear completely (sce Fig.dd). The spatial spectra decay monotonically as k. They
are roughly fitted by the form of exp(—const. x k?). This Gaussian form arises from
the diffusion nature of our model.

Temporal power spectira

Temporal power spectra (= Appendix) are useful to characterize the temporal behavior
of the system.

In the frozen random pattern, the peak at w = 1/2 is scen as is expected since a single
logistic map exhibits the period-2 band motion for this paramecter range. In the pattern
sclection regime, the above peak ( and some other peaks in some cases) are observed,
which is due to the regular motion by the pattern selection mechanism, to be discussed
in §2.3. At some parameters, the motion is quasiperiodic in time and the peaks are
(i ﬁﬂ,W.J,.ﬁmﬁmwk__.m.nf.ﬁiﬁ located at n(1/2) + muw (n, m are integers, and w is an irrational number). In the fully
4 ﬁ.w .N» N m,www _ﬁwwﬁ 1 developed turbulence, the peaks disappear and are replaced by some Lorentzian band
ol g ;ﬁ.@: u%u.wﬁk. Vbt noise around it and around w = 0.
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Lyapunov analysis

The stepwise structure is seen in the Lyapunov spectra(= Appendix) in the frozen ran-

praly dom phase, which reflects upon the degeneracy by the existence of separated domains
b mbgnpﬁmv‘_ (see Fig.5a)b). Localized chaotic motion exists only in large domains, which gives posi-
oy h._,.\._?.:.A tive Lyapunov exponents. The number of the positive exponents is proportional to the
number of such domains. Here KS entropy (=>) increases with a (Fig.6).

R oo
ih
‘dos

Fig.3: Space-lime diagram for the coupled logistic lattice (1), with ¢

_ 0.4, N=100 and atarting with a random initial condition. Every 8th step is The values and the number of positive Lyapunov exponents decrease by the pattern
” plotted. If zn(i) is lager than ze(unstable fixed point of the logistic map) , selection, as is seen in Fig.5 c)d). Also, we can sce that the KS entropy in Fig.6 shows
m the correnponding space-time pixel is painted as black (if z > z3 = (VI+Ta— a sudden decrease at a ~ 1.56. These show the suppression of chaos by the pattern
M 1)/(2a) painted darker), while it is left blank otherwise. sclection clearly. In the pattern selection regime, still the stepwise structure is seen

i (s) a=1.5 () a=1.08 (c) a=L75 (d) a=1.77 (o) a=1.83 (f) 2=1.88 since there are degeneracies due to the existence of domains of the same size.

In the intermittency region, there are some positive exponents which are not very
close to zero. The stepwise structure disappears here since the burst destroys the
: separated domain structure. The spectra as a whole take a rather smooth shape.

In the fully developed turbulence (Fig.5 e)()), spectra are smooth in form. At the
onset of spatiotemporal chaos, the spectra shape are close to be linear (Fig5e) (X =
const.—ri). As the nonlinearity is increased the shape increages its concavily,indicating
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Fig.6: KS entropy (a) and moximal Lyapunov exponent vi as a funetion of
a, calculated from the Lyapunov spectra in the same way 8s in Fig5. ¢ = .2,
N=64. To get the KS entropy density divide the valuca in the figure by N = 64.

the approach to independent chaotic motions of clements.
In the following scctions we discuss the nature of each phase in a little more detail.

2.2 TFrozen randoin pattern

CML (1) exhibita the period-doubling of kinks with the increase of the nonlinearity a.
By the doublings, domains of various sizes arc formed. After some aumbers of dou-
blings, the system exhibits a chaotic behavior at large domains. The domain boundary
does not move in space (Fig. 2a)b), Fig.3a)).

As is seen in the phase diagram (Fig.1), the single logistic map here is ia the pa-
rameter region for the band splitting with a period-two-band motion. The domain
separation ia assured by this band splitting.

In a large domain, the motion is quite chaotic, while it is almost period-8 at smaller
domains, period-4, for much smailer domains, and period-2 for the smallest ones. We
note that the motion of the lattice point differs in space ( “spatial bifurcation”), al-
though the dynamics jtself does not include any inhomogeneity in space,

Distribution of domain sizes can differ by initial conditions. We can choose initial
conditions so that attractors have an arbitrarily large domain. Thus we expect that
‘the number of attractors increases exponentially to the system size.

2.3 Pattern selection and suppression of clhnos

As the nonlinearity is increased further, larger domains start to be unstable and split
into smaller domains. Initial conditions are no longer preserved (Fig.3b). Through
the transient process, domains of few special sizea are selected. As the nonlinearity is
increased, the number of possible patterns decreases and at the medium nonlinearity,
only 1~ 3 patterns are selected (Fig.2c)d)e)).

Alter the selection, the pattern of domains is frozen and does not move in space.
Sclected sizes of domains are such that the dynamics in the domains is less chaotic, that
is, the motion with shorter periods. In the frozen random pattern, chaos is suppressed
only in domains of small sizes. Here, only such small domains are selected,

A precise definition which distinguishes the frozcn random state from the pattern
selection is given by the following: In the frozen random phase {a < a, = 1.54), there
appears an arbitrary large domain if the system size goes infinity, while there exists a
critical size (., such that a domain of the size larger than (. cannot exist. Decrease of
the variety of domain size is clearly seen in the decrcase of static pattern entropy (=
Appendix).

As has been discussed in the temporal power spectra, the motion here is quasiperi-
odic or slightly chaotic, which is clearly seen in the calculation of Lyapunov cxponents.
In fact the maximal Lyapunov exponent is close to be zero or very small. Suppression
of chaos by the pattern selection is seen in the decrease of KS entropy (=>Appendix)
at a > a, [3].

The diffusion term has a tendency to produce the homogeneity in space, while the
chaotic motion makes the system innomogeneous due to the sensitive dependence on
initial conditions. These two tendencies conflict with cach other. The conflict leads to
the splitting of a larger domain. (One may regard this as the splitting by the “chaos
pressure”™.) On the other hand, there is no conflict if the domains are selected in which
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chaos is suppressed. In this senne, we may term the preseat phase as “ pattern selection
through transient chaos and diffusion”. Doinains with larger positive exponents is easily
collapsed by the boundary effect. This picture leads to the conjecture that a pattern
with smaller Lyapunov czponenls is sclected. We have calculated Lyapunov exponents
for various domain sizes by taking a small lattice size (2-10). Numerical results show
that Lyapunov exponents are smaller ( somelimes ncgative) in the selected domain

sizes.

2.4 Selection of zigzag pattern and chaotic diffusion of defects

The simplest example of pattern selection is Uhe selection of a zigzag pattern (domain

size =1, i.e., k = 1/2). The zigzag patlern is easily characterized by the condition;
(zali41) = 2 (D))(za(i) = za(i = 1)) < 0 )

or the condition (za(i + 1) = zs)(z,(i) — z+) < 0 with z+ = (VT +4a - 1)/(2a), an
unstable fixed point of the logistic nap S(z).

As time goes to infinily, a single domain of zigzag pattern covers the whole space.
In the transient time regime, we have scen defects as a domain boundary between two
zigzag patterns with difTerent phases of oscillations. The defcct is localized in space
and moves around. The motion of defects is chaotic in time, as is checked by positive
Lyapunov exponents (= Appendix).

An example of space amplitude plot for a single defect state is shown in Fig. 7, while
an example of space-time diagram is shown in Fig. 8a). Delects pair-annihilate and a
domain size of a connected zigzag region increases with lime. The system finally settles
down to the completely zigzag state if Uie sysiem size is even (Q(1) = 1,Q(j) = 0 for
J > 1), while only a single defect moves around the space if ¥ = odd.

Diffusion coeflicient of defects

The locus of the defect looks like the Drownian motion. We note that the diffusion
process here takes place nol in the phase space (as is often discussed in the study of
chaos), but in the real space [53]. Ilere, it is not evident that the motion is really
Brownian motion, since our syatem is delerministic. Let us check the property of the
motion of defect in a little more detail.

By the pair-annihilation, the number of defects decreases as n=1/2 for a large time
step n, if we start from arbitrary chosen initial conditions. This decay is consistent
with the Brownian motion picture of defects.

A way to see the motion of a single defect is to take a system with an odd number of
size so that a single defect always exists. The position of defect I, is calculated through
the condition (4). The numerical data are well fitted by the following expression

< (In = Ig)? >= 2Dn, (5)

from which the diffusion coeflicient D is calculated. Here the bracket < ... > represents
an ensemble average for a set of initial conditions.

The diffusion of a kink is observed in a cellular autoraaton problem (53], where the
randomness comes {rom an initial random condition. The important difference here is
that the randomness is crealed by the defect itself.

Fig.7: Space-amplitude plot for
the coupled logiatic lattice (1). Am-
plitudes £, (i)’s are overlayed for
50 time steps after 1000 transients,
starting from a random initial con-
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The difTusion cocflicient D ia calculated as a function of a. It increases with a (
log(D) is roughly proportional to a).

To see if the defect is really chaotic, we calculate Lyapunov spectra for systems with
a single defect and without any defects. If there is a defect, Lyapunov spectra have
large positive parta, which aro not scen in the spectra for a system without a defect.
Kolmogorov-Sinai(KS) entropy of a defect is estimated by the sum of these pagsitive
parts. A logarithm of KS entropy increascs lincarly with a. Furthermore, the increase
rate of a logarithm of the KS entropy and Lhe diffusion coefficient agree if the zigzag
region exhibits the chaotic motion.

KS entropy gives the rate of memory in the phase space. If the diffusion is trig-
gered by the chaotic motion of a defect, the present Drownian motion can roughly be
represented by a “coin tossing” per some time steps which are inversely proportional
to the KS entropy. If this picture is valid, the KS entropy and the dillusion cocfficient
are proportional, which are consistent with our data in the chaotic regime.

2.5 Spatiotemporal intermittency transition: Defect turbulence and
pattern competilion intermittency

The selected pattern collapscs at a crilical parameter a = ac(¢). Such a collapse of
paltern occurs intermitlently in space and time. .

(I)Defect turbulence

At the region of a P a. , the spontaneous collapse of zigzag pattern hardly occurs and

the defect picture is atill valid. At thesc paramecter regions, the dynamics is governed by
the pair-creation of defects, their Brownian motion, and collisions of defects, which may
cause the pair- annihilation or creation of defects, or complicated transient patterns.
The collision mechanism is quite similar to the “soliton turbulence” observed in coupled
circle map lattices [11,5] and some cellular automata [50,52). An example of space-time
diagram is shown in Fig. 8b), where a pair-creation is clearly seen.

The phenomenon here can be understood as the crisis in a high-dimensional space
(for crisis, see [54,55];sce also (56]). The simplest way to ace the relation with the crisis is
the use of two-coupled logistic map (¥ = 2) [51]. If we plot the 2-dimensional attractor
by (2(1),z(2)), the plot exhibits sudden broadening from two separated regions to a
single connected region, at a = o' which is slightly larger than a.. As the size of our
system N is increased, Lhe onset parameter for the collapse of zigzag pattern decreases
from &' to a,. The rcason for lhe suppression of the onset is that the gate for the
crisis is increased as Lhe size, since possible configurations of deviations from the zigzag
structure are enriched. In other words, the discrepancy between a. and a’ arises from
spatially chaotic modulations of the zigrag pattern.

(II)Selective flicker noise

A characteristic dynamical feature in the defect turbalence Lies in its long-time cosre-
lation. To study this [eature, we use the dynamical form factor (spatiotemporal power
spectra (= Appendix}.

In the parameter region of the defect turbulence, our system exhibits the following
flicker noise for the modes with k 2 1/2. In Fig.9, P(k,w)’s are plotted for k =0, 2/8,
3/8, and 1/2. As k approaches 1/2, low-(requency parts grow and P(k,w) = ™" is
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Fig.9: Log-log plot of space-time power apectra P(k,w) a8 a function of w for
a=1.89, ¢ = 0.1: (a)k=0, (b}k=2/8, (¢)k=3/8 (d)k=4/8. These power spectra
are calculated from the data of z2n(f) for 512x2 Lime steps, alter 10000 sieps
of Lransients, and from 50 scquential samplings, stacting from a random initial
condition (reproduced from [3]).
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clearly seen for & = &)(= 1/2). Note that the flicker noise is sclectively observed only
for the modes & =2 1/2.

At the onsct of the collapae of zigzag pattern (a = 1.88), a is close to 2, which
means that the relaxation time diverges. As the nonlinearity parameter a is increased,
the exponent a decreases from 2. The w™* behavior is observed selectively for k & 1/2
at @, = 1.88 < a < 1.92 = a’. Collapse of the zigzag patlern occurs more frequently
for larger a, which leads to a faster decay of the correlation function (and small a).

The reason for this Ricker-like noise is that the zigzag mode exists with a long range
correlation, and it ia destroycd only throngh a long-ranged effect as is seen in the above
explanation by the high-dimensional crisis in the region of a < a’. Thus the dynamics
of the mode of wavenumber 1/2 includes the motion of a very long time scale. On the
other hand, the mode with k =~ 0 corresponds to the chaotic motion of defects, which
has a short-time memory, -

A reason [or this critical behavior in a wide parameter regime may be attributed to
the finiteness of system size. If we follow the common-sense of phase transitions, it is
expected that a singular behavioe is seen just at a critical point. The above power-law-
type behavior in a large parameter space in a finite system, however, may be relevant
in experiments, since most “large” nonequilibrium experimental systems (e.g., Benard
convection, liquid crystal convection) contain 10% ~ 107 affective degrees (e.g., number
of rolls) which are much smaller than the Avogadro number.

Also, it is interesting to note that the critical behavior js easily observed in temporal
domains, not in spatial domains ( like correlation length).

As the wavenumber is decreased from k = 1/2, the power decreascs gradually. As
it goes much smaller, the platcau at w = 0 appears and the spectra approach the:
Lorentzian form.

The flicker-like noise has been observed in a low-dimensional dynamical system at
the onset of chaos through the intermittency {57,58]. The flicker-like noise here should
be noted for its selectivity to the wavenumber.

(III)Quantitative analysis of pattern dynamics

Pattern distribution function Q(k)'s (=> Appendix) are uscful as order parameter(s) to
distinguish the difTerent phases observed in our model.

In the frozen random pattern, Q(k) # 0 for various &’s. TFurthermore, the distri-
bution can depend on a choice of initial conditions. In the pattern selection regime,
Q(1) and Q(2) get larger and ratios for larger domains are suppressed ( @ > 1.58). At
a> 1.64 Q(k) =0 for k # 1,2. Ia these regions, the dependence of the distribution on
initial conditions is very small if we restrict ourselves to random initjal conditions and
take a large ¥ (say, > 100). In particular, the selection of k = 1 and 2 at @ > 1.64 is
not affected by the change of initial conditions. In the zigzag pattern selection phase,
Q) =1and Q(k)=0Tlor k # 1.

At a > a, the zigzag pattern collapses spontancously. Thus Q(k) (k # 1) does not
vanish. The value (1 — Q(1)) gives a measure of the destrucied pattern.

Critical phenomena of the collapse of patterns are investigated through the disorder

parameter 1 — Q(1). Near a = q, the data are fitted roughly by
1-q(1) = (a - e}, (6)

with 8 = 1.0. These critical phenomena are explained as the crisis in a high- dimen-

Pattern Entropy

Pattern Entropy

N2

1aV]

—

b)

Fig.10 Pattern (static) entropy(x ) and pattern dynamical entropy (O) for

our model 4;:. N=128, calculated from the average for 30000 time steps after
10000 transients. (a) e = .1 (b)e=.3 (esscntially reproduced from 3
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sional dynamical system in the terminology of dynamical systems. For the exponents
in the crisis in low dimensional dynamical systems, sce (55], where the exponents are

related with the eigenvalues of saddles. )
A single quantity to characlerize the pattern complexily is an entropy(=Appendix).

The change of static pattern entropy is shown in Fig.10. The entropy is large :._ the
frozen random pattern, and decreases rapidly by the pattern selection to the zigeag
state. By the pattern collapse il-increases with

Sy (a—ac). (0

The exponent ' coincides with § within a numerical error as is expected, since Q(k)’s
for k > 1 contributes to the increase of eatropy. .

Dynamical aspects of paiterns are characterized by the transition matrix of patterns
or (more simply) by the pattern dynamical entropy(=>Appendix). In the frozen uwmnmg.
there is no transition among patterna. Thus the pattern dynamical entropy vanishes,
even if the static entropy is large. At the onset of defect turbulence, the entropy

increases with the form
Sq o (a - a.)’, (8)

with the exponent & = f. Since this exponent includes the dynamical aspect also, it is

probable that § # f.

A difference between the static and dynamic entropics shows how the patterns arc
spatiotemporally complex in the sense of mutual information (=>Appendix). The dif-
ference is large in the defect turbulence ( transition regime). )

In the defect turbulence region, the transition matrix may not be a good quanti-
fier, since the temporal correlation has a long-time-tail and is not represented by a
Markovian dynamics. The lifclime distribution of the zigzag pattern does not show an
exponential decay but has a Pareto-Zip( form, that is,

. Wi(n) = n""%. 9

The life-time distributions for the other sizes of domains have a normal exponential

form Wi(n) = czp(—n/tiy(k)), whese tiz(k) is the lifetime of the domain of size k.
The Pareto-Zip{ form is typically observed in the dynamics with the flicker-like noise

(sce e.g., [57]). Since the power spectra can be wrilten as the sum of the temporal

Lorentzian form as :
P(k,w) ~ [ dnii(m)/(? +1/2%) (10)

for the corresponding wavenuinber & and the domain j, we can expect that the exponent
¥ for domain size j and the low-frequency exponent a for the power spectra of the
corresponding wavenumber (k = 1/(25)) are related by

P+a=7. (11)

From our numerical data, this equalily is roughly satisfied ®.

*for a detailed account of a amall discrepancy, see (3]
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(TV)Pattern competition intermittency

If the coupling is larger, selected domain sizes are not unique, as can be seen in Fig.
3b). With the increase of nonlinearity, there appear intermittent bursts, which have
a nonstationary nature (see Fig.2e),3d)). The burst arises from the mismatching of
phases and has much larger structures than a chaotic defect.

The “pattern competition intermittency” herc is characterized by the existence of
more than one stable patterns and intermittent transition among patterns. Although
cach pattern remains to be stable by itself, the mismatch of phases of oscillations
betwcen domains creates some bursts, which move around in space-timec and destroy
the pattern. The long-range correlalion in this phasc is also remarkable.

The present intermittency has many aspects in common with the above defect tur-
bulence. There are two different points: Firat, the number of sclected palterns is more
than one here. Secondly, the burst has much larger structures than a defect. This
intermittency and defect turbulence belong to the spatiotemporal intermittency (STI),
investigated extensively in recent years.

Spatiotemporal Intermiltency

Iere we briefly look back on STI. STI was first studicd as the spatial extension [1,5]
(see also [20]) of Pomeau-Manneville’s intermittency {59]. The intermittency in the
present model is related with the crisis in high dimensional systems ( see also {10]). In
the STI, local dynamics has topological chaos but a non-chaotic attractor. Through
the coupling of the local dynamics, this unobservable topological chaos appears as the
observable chaotic burst.

As for the phase transition problem, STI is quite close to the problem of directed
percolation. ( see also (60]). In some models, however, the critical exponents do not
belong to the universality class of the directed percolation{20].

One interesting feature in the intermittency phase is the existence of long-lived
transients. If a system size is small, the turbulent pattern can disappear alter long
transients, and the system finally hits a globally non-frustrated structure, and inter-
mittent bursts disappear. Some of the spatiotemporal intermittency belong to a class
of the transient turbulence, as is discussed in {23].

Selective Flicker Noise ot the intermiitency

In the pattern competition intermittency, we have again observed the selective flicker
noise.

At € = .3 and a = (1.72 ~ 1.76), for example, the dynamical form factor P(k,w)
ncar k = 0 and k¥ = 1/2 obey the normal Lorentzian form, while the flicker-like noise
is secn around k = (1/6 ~ 1/3), which is fitted by P(k,w) = w™%. (e ~ (1.5 ~ 2.0)).
At these parameter regions, we have seen the pattern competition intermittency with
the sclection of domain sizes =2 and 3. The exponent a is = 1.5, for a = 1.73.

Quantifiers for pattern dynamics

Pattern dynamical quaatifiers show a similar critical behavior as in the defect tur-
bulence.
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In the frozen regime, there are various possible patterns which give a large pattern
entropy and a vanishing dynanical entropy. As a is increased, the pattern selection
process occurs and leads to the decrease of the pattern entropy.

In the intcrmittency region, the distribution Q(k) consists of the domains of selected
patterns (size=2and 3 for¢ = .3) and the distribution function by the burst, whigh has
the tail of ezp(—const. x k). Through the collapse of pattern, we can see the eritical
behavior of the disorder parameter (1 — Y, Q(p)) (where the sum is over the possible
selected patterns, e.g., p = 2,3 for ¢ = .3) and of the cntropics, in a similar manner as

in the defect turbulence.”

In the intermittency region, the lifetime distributions of domains of selected sizes { 2
and 3 for € = .3) again shows Lhe power-law. For example, I¥a(n) and Ws(n) are fitted
by W(n) & n~¥ with ¢ ~ 1,75, for a = 1.72 and € = .3, while the lifetime distribution
Wa(n)) obeys the usual cxponential decay. Ilere again, the exponents ¥ and a roughly
obey the reiation ¥ + a =13.

2.8 Fully developed turbulence

As the nonlinearity is increased fusther, the ordered structure in the space-time diagram
can hardly be observed (sce Fig. Je)f)). We call this state “fully developed turbulence”
in our lattice system, since this stale can be well approximated by the direct product
state of local chaos with a rapid decay of spatial corrclation. The state can be repre-
sented by smooth stalistical and dynamical quantifiers. The change of Q(k) with the
nonlinearity a is smooth. Pattern distribution function obeys Q(k) = exp{—const. x k)
for large k, which implies that the palterns are generated randomly. This means that
the pattern dynamics is well approximated as a Markov process of 1-0 sequence. The
difference between the dynamical and static entropies is small, indicating that the tran-
sition among patterns is no more restricted and occurs randomly. As for the conflict
between the two tendencics (ordering by diffusion and inhomogenizaion by local chaos),
the chaotic part excceds in the ordering process in this phase.

The motion here is roughly approximated by the “heat bath” picture. Take a subsys-
tem, and our dynamics in the subsystem is well approximated by the local deterministic
chaos by the variables within the subsystem and the random perturbation from bound-
aries, which is created by the chaotic motion from other areas. This picture leada to
the “self-consistent” Perron-Frobenius theory as is discussed in §6.

2.7 Summing Up...

The main results in §2 are briefly summarized in Table L.

We note that our transition sequence has similarity with the phases in gas, Iiquid,
crystal, and glass. The [ully developed turbulent phase can correspond to the gas, while
the pattern sclection is analogous with the ordered pattern in a crystal. In a frozen
random phase, the randomness in a large domain or in a defect is frozen in space, which
reminds us of the frozen randomness in the glass. As the nonlincarity is increased, the
local chaos in our system is amplified (“temperature is increased”), which Icads to the

“melting” of frozen patterns succcssively.

Tdetailed quantitative studies are lefl for future.
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. Before closing the present section, we note the tongue structure of pattern selection
in the E;.Eo diagram (Fig. 1). This kind of tongue-like structure of spatial locking
structure is seen in a static pattern of spatially modulated systems (sce e.g., [47,48))
and in the resonance structure in low dimensional dynamical systems (Arnold tongue;
sec e.g., (2]). The pattern selection in our model corresponds to the resonance u»..._._n:.:m_
-in space. OQur result shows that the spatial locking is also seen in the problem of the
pattern selection in spatiotemporal chaos, if the selected pattern is fixed in space.

Tnblo I Foaturos of phases characterized by quantifiers .

Quantifices { Temporad  Spatial Patlern Dis- | Patiern Dynamical { Lyapunov | KS
power power tribution Q(k) | Entropy S,| Entropy S¢ | Spectra Eutorpy
apecira ppeclra
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i e S
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Noise MNoise ) pacte geom) /

Fully m:.vwa Bendpzp(—cst. x k3 Q(k) o Large Large Smooth Large

Developed |Noise exp{—cst. x k)| / Si= S, form /

Turbulence ’

3 DPattern Dynamics in a 2-dimensional Lattice

Extension of our diffusively coupled map lattice to a two-dimensional space is quite
straightforward. Here we consider the simplest case, i.e., the nearest-neighbor coupling
on a square lattice (see also {16]). The model is given by

H:.fuﬁ—...u.v U.AH - O\TJ:T?&YT
e/4lf(za(i + L,7)) + f(zali = L,3)) + f(za(is 5 + 1)) + [(zali, i = 1))] (12)

where n js a discrete time step and f,j denotes a 2-dimensional lattice point (i,j =
w..u. -+, N=system size) with a periodic boundary condition. Ilcre the mapping func-
tion f(z) is again chosen to be the logistic map f(z)=1-az?

Examples of snapshots are shown in Fig. 11.

For amall ¢, we have again observed the transition sequence from (i) frozen random
stato to (ii) pattern selection and to (iii) fully developed turbulence via spatiotemporal
intormittency.
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Fig.11: Snapshot pattern for the 2-dimensional logistic lattice. On a lattice
point (4,), a square with a length proportional to (za(i,5) — 0.2) is painted if
Zn(3i,j) > 2. Otherwise it is left blank. Size = 64x64.

(2)a=1.903, e = .1, at time step 6000

(b)a=1.8, ¢ = .35, at time step 5000

(c)a=1.94, ¢ = .2, at time step 15000 , (d) time step 40000.
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3.1 Checkerboard pattern selection, chaotic string, and spatiotemporal
intermittency

For € = .1, a frozen random pattern is observed for a < 1.75 (Fig. 6a). A checkerboard
pattern is selected for 1.75 < a < 1.9 (see Fig. 12) . After some transients, a single
checkerboard pattern covers the whole space if the size is even. The selection process
is regarded as the pattern formation, since two antiphased checkerboard domains are
separated by a string, which moves chaotically in time and moves around space, and

‘disappears by the collisions.

The zigzag pattern formation (Fig.12) is quite similar to the process seen in the
ordering process of magnetic systems, or of simulations in the kinetic Ising model or
time-dependent Ginzburg-Landau equation ( see also §8). We can see the pattern
formation process by the Brownian motion of a chaotic string. Here we call the motion
as Brownian, since the motion there obeys the normal diffusive behavior triggered by a
random walk, as is seen in the Brownian motion of defects in 82. The chaotic motion of
a string is again quantitatively checked by Lyapunov exponents. In the same manner
as in the Brownian motion of defects, we can estimate the KS entropy of a chaotic
string. In fact, we have (additional) positive Lyapunov exponents in the presence of a
string, which cannot be seen in the complete checker-board pattern.

Question: Does the chaotic motion at the domain boundary give novel features
in the pattern formation? Does it belong to the same universality class as the kinetic
Ising model?

At a = a, =~ 1.901, the checkerboard pattern collapses spontaneously. Defects are
created spontaneously from the checkerboard pattern. For a & 1.901, these defects are
not percolated. As a is increased further, they propagate and interact with each other.
The interaction causes the spatiotemporal intermittency. The spatiotemporal pattern
there is understood as the intermittent transition between checkerboards and random
patterns ( see Fig. 11a) for a snapshot).

The lifetime of checkerboard pattern has a power-law distribution near g = a., which
leads to the selective-flicker-like noise again. In fact, we have calculated the dynamical
form factor P(k,, ky,w), a power of the Fourier transform in space and time. As in the
1-d case, it shows the selective flicker noise for the wavenumber of the checkerboard
pattern, i.e.,

Plhy =1/2,k, = 1/2,0) = w™® (13)

(@ = 1.9) while neither the spectrum P(k, = 1/2,k, = 0,w) nor P(k; = 0,k, ~,w)
does show the divergence of low-frequency parts (see Fig. 13 a)b)c)).

Recently Nasuno, Sano, and Sawada [62] have performed a beautiful experiment
on the collapse of a grid pattern in the electric convection of liquid crystal. They
found the intermittent collapse of the grid pattern and the selective flicker noise for the
wavenumber for the grid pattern (with o = 1.9).

3.2 Selection of larger patterns
2x1 pattern selection
If the coupling ¢ is increased, we have seen the pattern selection with Jarger wave-

lengths. If € & .2, the selected pattern is a 2x1 unit ( see Fig. 11¢)d)). In the selection
of 2x1 unit, the transient time necessary for the pattern formation is much longer than
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Fig.12: Drownian motion of chaotic string: Snapshot of the 2-dimensional
logistic lattice. lattice aize=128x128: a=1.8, ¢=.1
a) time step = 64 b) 192 c) 320 d) 480 c) 640 () 1952
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that for a checkerboard patlern. This formation process is very slow because it is the
competition process among 4 types of attractors ( two types of phascs of oscillations,
and horizontal and perpendicular roll structures). Thia kind of pattern was first noted
in a phase transition in a 2-dimcnsional stochastic cellular automaton (61]. ,
llere again, chaos is suppressed by the pattern selection process, which is quantita-
tively characterized by the decrease ol KS entropy. )

As the nonlincarity is increased, a collapse of the pattern by the spatiotemporal
intermittency again occura. The existence of 4-fold degeneracy strongly suggests the
first order transition, which is truc in the 2-dimensional stochastic ccllular automaton
61).
~ _= the coupling € is between .1 and .2 ( eg., .15), the competition belween the
checkerboard and 2x1 is seen, which leads to the intermittent collapse of the two pat-
terns (pattern compelition intermittency), or leads to a chaotic string with 2x1 struc-
ture in the zigzag domain. These arc again similar to the observation in a 1-d lattice.
In the experiment by Nasuno et al., these behaviors are again found (62].

labyrinth

We have not yet observed a clear pattern selection with a larger wavelength (e.g.,
2x2-domain) in the nearest-neighbor coupling model. For larger coupling we have seen
a partially ordered roll-like pattern (“labyrinth”) ( see Fig.L1b).

3.3 Absence of a frozen paltern for stronger coupling and extension of
Pierls’ argument

If the coupling is further increased ( € > .4), ncither a [rozen random pattern nor a
pattern selection is obsesved. A domain is unstable and its boundary moves in tirae
till a single domain covers the whole space. .

Change of Lyapunov exponents with the parameter a is smooth, and the Lyapunov
spectra have a smooth shape for all a [4). These results are consistent with the absence
of pattern selection.

The absence of frozea pallern is understood as the extension of Pierls’ argument

on the absence of ordered phases. The diffusive coupling tries to destroy the domain .

boundary-between two frozen patterns. On the other hand, the motion in each domain
is more stable than the boundary. To destroy a domain, a state has to pass through
unstable states (recall that z(i, ) has to take a value around the unstable fixed point of
2 logistic map), which requires some barrier. This effect leads to the preservation of a
domain and the pinning of a boundary. The former strength is estimated by the surface
tension as eM(1=1/9) for a domain of length M. The latter part is roughly independent
of M, if M is large enough. For d > 1, a smaller domain has smaller stability. Thus
for a lattice with a dimension > 2, it is expected that there is an upperbound on the
coupling strength beyond which a [rozen domain structure (the frozen random pattern
and the pattern sclection) loses its stability.

From our numerical results, it is concluded that this threshold coupling lies around
€ 2 .35 for our 2-dimensional logistic lattice with the nearest-neighbor coupling.

In higher dimensions, it is expected that the frozen pattern is much harder to sustain
in a short-ranged model.
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4 Open Flow Models

So far we have investigated the case where the coupling is difTusive.
Another intereating version of CML is the one-way coupling model, introduced as a
model for the open fuid flow:

zap(i) = (1 - mv.\?:hov +ef(za(i - 1)) (14)

As has already been reported [13,14,15], the model exhibita the spatial period-doubling
and seclective amplification of noise. See Fig.14a) (or the spatial period-doubling. After
some doublings, our system goes to a turbulent state.

The model (14) is the extreme limit of the asymmetric coupling model

Zna1(i) = (1 = €) f(za(i)) + elaf(zali = 1)) + (1 — @) f(z (i + 1)]

An important notion in the open flow model is the distinction with absolute and
convective instabilities. If a small perturbation against a reference state grows in a
stationary frame, it is called as “absolute instabilily”, while il the perturbation grows
only in some frame with a finite velocity, it is called as “convective instability” (sce
also “Co-moving Lyapunov exponent” in Appendix and [14]). In the above model, if
the coupling is large, our system shows only the convective instability. For example,
the stability of a homogencous periodic state in a Galilean (rame with a velocity v is
calculated by

2

L) = (1/aMoa( [T //(=0) +los( ) (15)

i=1 1-v
where z; is the periodic orbit of a single logistic map. If L(v) is positive for some ve-
locity, our periodic state is convectively unstable. If L{0) > 0, it is absolutely unstable.
For example, the homogeneous fixed point state z+ = (/1 + 4a—1)/(2a) is convectively
unstable if | f'(z+) }= /1 +4a—1 > 1, and abosolutley unstable if | (1 —¢)f'(z+) |> 1.

LS. Aronson, A.V. Gaponov-Grekhov, and M.I. Rabinovich (17] have recently in-
vestigated the above spatial period-doubling in open flow, using the renormalization
group approach by Feigenbaum [63). This procedure works if the coupling is very small,
where the absolute instability occurs. They have calculated the scaling relation on the
spatial interval in the period-doubling. I the coupling is larger, the instability which
causcs Lhe period-doubling is not absolutely but coavectively unstable. In this case the
existence of a very small noise is essential to form the pattern (13]. Thus the scaling
both with a noise and a space should be necessary.

Corresponding to the phase transitions in the diffusive coupling model, we have
obtained similar phase transitions in the pattern dynamics, and a phase diagram similar
lo Fig.1. We have (i) flow of randomly chosen patterns (i) flow with selected patterns
(iii) transmission of defects (iv) spatiotemporal intermittency and (v) fully developed
turbulent state (see Fig.14 and 15 for space amplitude plots and spacetime diagram).

The defect turbulence and transmission of defects to downflow with a fluctuating
velocily are found which are triggered by its chaotic motion and interactions among
defects. A source of defects is seen at the upper flow.

A novel point here is the spatial bifurcation from a homogeneous periodic state to
a pattern selection ( periodic state with a periodic spatial structure), and then to a
turbulent state as a space goes downflow.
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Fig.14: Space-amplitude plot for the one-way coupled logistic lattice (14).
Amplitudes z.(i)’s arc overlayed for 250 time steps aller discarding 10000 tran-
sienta, starting with a random initial condition. ¢ = 0.5, N=500(a), N=200
(b-d).
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Fig.16: Space-time diagram for the one-way coupled logistic lattice with
N=100 and starting with a random initial condition. Every 4th time step is
plotted from 0 Lo 600. For the way of piotting aec Fig.. {a) a=1.58, ¢ = .3
(b) a=1.6, e =-3 (c) a=1.63, ¢ = .3 (d) a=1.75, c = .3 (c) a=1.83, ¢ = .1 (f)
a=1.86,¢=.1,
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It is rather straightforward to extend the model to a 2-dimensional case with an
open flow coupling. The model is given by

Tn(i,7) = (1 = ) (=0, 1))+
(/MU @n(i, 5+ 1)+ f(zalisj = 1) + af(zali = L)) + (1= a)/(zai + 1,1)). (16)

This class of model has recently been investigated in {18,19}, in a possible relation
with the spatiotemporal intermittency in Lhe open flow, and leads to some similarity
with experiments of turbulence in Benard convection in Libchaber's group (64). The
teansport ‘of bursts by the asymmetric coupling in CML corresponds to the transport
of hot plumes in the experiment.

5 Information Ilow

Chaotic dynamics exhibits the information flow in the bit space (67}. In spatiotemporal
chaos, the information flows both in rcal and bit spaces.

The mutual information in spacetime ia useful to see the correlation in spacetime
and liow the information flows in spacetime. Although there are varicties of ways to
see Lhe information flow, we argue the simplest two-point mutual information in space
and time, here.

First, take the two-point probability function P(za(i), Znsi(i + m)), the probability
that the lattice site i takes the valuc z,(i) at time n and the site i4+m takes Tpqe(i+m).
Dy this joint probability, the mutual information is defined as (7]

I, m;5) = [logP(za(i))dza(i) + [logP(Tnse(i + m))dzate(i + m)

- \ 10g P(2n(i), Zate(i + M))dz(i)dZnpeli + m) | (17)
Two extreme cases are useful: ['(1;i) = [**(¢,0;{), i.c., the temporal mutual informa-
tion and I*(m;i) = I*%(0, m;1), i.c., the spalial mutual information.

In the numerical calculation of probability function we have to use a finite bin size,
and replace the integral by the summation over bins. If we take the partition number
M, the probability function is calculated by the bin [—1,-1+4 2/M),[~1+2/M,-1+
4/M), -, [-1+2n/M, -1+ 2(n+1)/M]),---,[1—2/M,1]. Although changes with the
partition number M are another important characterization of a system, we study only
the case with a fixed M here.

First we discuss the temporal mutual information flow. In Fig. 16, examples are
ghown. For the frozen phases ( frozen random pattern and patlern sclection),. the
mutual information I'(; i) dependa on sites (Fig.17a). For the lully developed turbulent
phase, the function is independent of sites (Fig.17b), showing the spatial ergodicity.
The exponential decay is scen. The rate of this decay decrcascs as the nonlinearity
Is decreased, till it goes to zero at lhe intermittency transition. The decay is roughly
fitted by the power-law decay in the critical region. In the frozen regime, tke decay
of information stops at some valuc {Fig.17a), as far as the precision M is finite, since
there is a period-2 peak in the power spectrum. The site dependence of the mutual
informalion clearly shows that the chaolic motion is different by sites.

Spatial mutual information is shown in Fig.18. We agiin note that the decay is
exponential in the [ully developed turbulent phase, whose rate of decay decreases as
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Fig. 16: Temporal mutual information flow for
the logistic lattice (1): calculated using the bin
number M = 64, and 500000 time step sampling,
alter discarding 100000 step transients. N = 100,
¢=.3. a =178, 1.79, 1.8, 1.81, 1.82, 1.83, 1.84,
and 1.88 from top to bottom. The site dependence
is small here as is seen in Fig.17b).
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Fig. 18: Spatial mutual information flow for
the logistic lattice (1): calculated using the bin
number A = G4, Probability is sampled from
8000 Lime sleps after 100000 steps, and through-
out the whole lattice. N = 500, ¢ = 3. a =
1.72,1.78, 1.8, 1.85, and 1.90 from top to bottom.
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the paramneter approaches the transition point. We also note that a smaller periodic
change is added in the mutual information, which comes from the spatial domain
structure. Indeed, the wavelength in this smaller variation (Fig. 18) agrees wilh that
of the selected pattern in §2.

The mutual information I*(t,t/v;3) is called as co-moving mutual information flow
and gives the measure how the information (or colierence) propagates with the speed

v. This measure is cspecially important in the open-llow model (7].

6 Thermodynamics

In low-dimensional chaos, the statistical inechanics theory has been developed. The
cssenco of statistical mechanics can be scen in Ruelle’s textbook[G8]. The study of
this direction has been developed by I. Shimada, K. Tomita, T. Kai,(70] Y. Oono, Y.
Takahashi,{69] and so on, before it has become suddenly popularized in recent days.

According to these works, the chaotic dynamics can be mapped Lo the statistical
mechanics of a 1-dimensional spin system.

Then, it is natural to expect that the thermodynamics of our k-dimensional CML
can be mapped onto the statistical mechanics of k + 1-dimensional spin systems. The
interaction, of course, is strongly anisotropic, since Uhe interaction in “spatial” direc-
tious is short ranged and bidirectional ( c.g., nearcst neighbor), but the interaction in
“temporal” direction is unidirectional and has a more complicated longer ranged form.

Quite tecently Bunimovich and Sinai have rigorously constructed the statistical
mechanics corresponding to CML for a special case (24].

Another approach in a different direction has recently been carried out by the author,
where the self-consistent approximation on the Perron-Frobenius operator has been
formulated. Here it is brielly explained.[25]

The Perron-Frobenius (PF) operator has been 2 powerful aid in the study of the
statistical mechanics of low-dimensional chaos (68,69,71]. The operator has first been
extended to spatially extended systems by (72}, where the local structure theory of
cellular automata is constructed. The operator for the entire dynamical system acts
on the measure on N-dimensional space p(z(1},- ,z(IV)). The operator is written as

M \»AQAC....L\AZVV C.wv

PF 1 vee . T =
APF p(z(1),---,2(N)) J(¥(0),--+, y(¥N = 1))

y(i)=preimages

where the sum takes over all possibie scts of (y(i)), preimages of z(i) (i-e., y(3) — z(i)
by the map (1)) and J(y(0),"-- ,y(N — 1)) is the Jacobian of the CML transformation
(1).
In our model, the preimages are easily calculated, since it consists of two separated
procedures, i.e., y(i) — z'(i) = F(y(i)) and the spatial average by z() = (1 - €)z'(1) +
(/2)(E+ 1) +2'(1-1) = Y2 D;ez'((). The inverses of these two processes are just
given by f~1(z) (for the logistic map /~(z) is given by ++/(1 = z)/a) and the inverse
matrix D7t - :

Since the treatment of N-dimensional distribution is practically impossible, we use 3
projection to a low-dimensional space. There are many possible ways of the projection.
We use the simplest projection here, that is a projection to a k-dimensional space
£(1),---,z(k)), by intergating out other variables. To get a closed equation within a
&-dimensional space, we necd a truncation of probability function. It is a traditional
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problem in mgzmamﬁ mechanics, and various claborated methods have been developed
Here we use the simplest approximation, that is, the sell-consistent wvﬂ..oﬁ_dw:o:.
Following this method and after some calculations [25] we have .

3P p(2(1),2(2), -+, 2(k)) = (detD'(R)™" [ [ Ty a),mte) A¥(0)dy(k + 1)

p(y(1), -+ y()) P(9(2), ¥(3), - - -, y(k)w(k + 1)) P(y(1), 9(2), - -, y(k - 1)]y(0))
e /GO (19)

where the conditional probability P is given by

P(y(2),¥(3), -+ y(k)y(k+1)) = p(y(2), ¥(3),- -+, ¥(k), y(k+1))/o(¥(2), ¥(3), - -, ¥(F))
and the preimages (y(1), ¥(2),---, y(k)) are given by the solution of @)

v5) = 7D )z = (f2)(F(y(0)8j0 + S(u(k + 1))65n) . (21)

The matrix D'(k) is the diffusion matrix D i i

[ i of size k& without a periodic b d

(ie., (1 = )i + (¢/2)(8iwrg + 6i1))- ’ e
&\a have wvvrma_ this self-consistent method with & = 1 and k = 2 to the problem of

spatiotemporal intermittency transition from a laminar regime to a turbulent regime.

As for the transition point, the above approximation gives a rcasonable result ( within
10 % error).

7 Mean-field Type Model

W._Mm above self-consistent equation is different from the mean-ficld theory. The meaa-
—m d-type model (Fushimi-Temperley-type model) is constructed as a model with cou-
plings n.o all other elements. The model corresponding to our diffusively coupled ma

lattice is written as P

N
zn+1(1) = (1 = S (za(3)) + (¢/NV) .NJL I(za(4)) . (22)

The above model has a remarkably rich behavior ( partly similar but much richer
than Sherrington-Kirkpatrick (SK) model{83] as a mean-field model for spin-glass)

The model here exhibits the phase transition among a coherent phase, an oao.:wa
.vrmho, a glassy phase, an intermittent phase, and a turbulent phase, as the nonlinearity
is increased. Also it turns out that the glassy phasc and intermittent phase have
.v:nvnnonm of similar tree-like structures as are investigated in the SK model. The
important difference here is that our tree structure is dynamically changing. Codin
of these attractors and switching among attractors are discussed in {43). ;

8 Simulating Science with Coupled Map Lattices

.O_:. strategy of studying dynamical phenomena in spatially extended systems by CML
is based on the separation of parallel procedures and successive operations of them

(81
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In the previous diffusively coupled model, the independent procedures are local
trensformation of z(i) by a simple 1-dimensional map (eq.(2)) and the diffusion process
(cq-(1)), given by the discretized Laplace cquation. These two procedures are separated

and successively carried out.
If we ace interested in phenomena described by local nonlincar processes with local

spatial coupling, it is possible to use the above procedures.?

8.1 Pattern formation (spinodal decomposition)

Understanding the pattern formation process is the main topic of the present book.

A lypical and interesting problem is spinodal decomposition, [74,49] which is a
phenomenon when a system is quenched from a disordered state Lo an ordered state.
Traditionally this problem is studied by the time-dependent Ginzburg- Landau cquation
or the kinetic Ising model with Moute Carlo method.

Oono and Puri have proposed a CML for this problem, which is one of the best
siccess among the applications of CML [27). Their model is based on the coarse
graining in a cell with a large number of sites from the kinetic Ising modcl. Then the
local dynamics of a cell leads to a map with Lwo stable fixed points, e.g.,

f(z) = tauh(fz) . (23)

I'he saine diffusive coupling form as in the previous scctions can be used since the phase
transition dynamics includes the term which trics Lo make two ncighboring regions to
otder (“ferro-coupling™).

In the above model the order parameter ¥; ; Za(i,) is not conserved. If the order
parameter is conserved, the established method in the kinetic Ising model is the use
of Kawasaki’s exchange dynamics{49]. Corresponding to this class of dynamics, it is
possible to construct a CML with the constraint ¥ Znt1(iyj) = T za(i,7) [27). The
model with this constraint is written as

Zapi(hJ) = \Aﬂaﬁm..ﬂ.uvl << \AH..T.L.VV - HaAmL.v >> (24)

where << ... >> denotes the spatial average with the nearest neighbor.

The models by Oono and Puri give correct scaling behaviors for dynamical form
factors (= Appendix) corresponding lo the conserved and non-conserved phase transi-
tion dynamics, respectively. Indced, their models give much faster simulators than the

conventional Monte Carlo method.

8.2 Other pattern formation problems

A similar modelling is possible in the roll formation in convection, pattern formation
with complex order parameter(s), and so on. These extensions are rather straightfor-
ward. Vortex interactions in the Ginzburg-Landau equation are easily simulated with
the use of vector order parameter Z,(i,j) and the similar local dynamics as (23) and
the same diffusive coupling {28). Another application is the complex Ginzburg Landau

vlocal® here means that the interaction is goveened by a lerm decaying exponentially ( or faster)
in apace. Thus we may hope that our method is applicable Lo a system of reaction-diflusion type equa-
tion (including time-dependent Gintburg-Landau equation), and most spatially extended dynamical

rhenomena.
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Formation of a a.o= pattern is also simulated by CML. So far we have two modellings
on p.__o toll formation. One is the use of f(z) which is an odd function and has a
maximum at z = z. and goes to zero as zlimoo. An example is

(=) = G((3v3/2z /20 = (z/20)*), G(y) = y/Va? + =3 (25)
with same diffusive coupling form as in (1)[29] (see Fig.19 ). The other method is the

use of a “lateral” inhibition in the next-nearest-ncighbor coupling(31]:

H:.fuﬁ—..N.v = AH —-ne+ _ﬂum»v\.ﬁﬂaﬁm-.&.vv;—u €1 M\AHJ?&T&J -6 M \AH:TH:- .\Jv ANQV

nn.n

w . .
zro_.a n.n. is the sum over nearest neighbors whose number is ny, while n.n.n. is

ie sum over next nearest neighbors whose number is n2. Dy choosing the couplings
suitably, we can have a model of a roil formation.

It is rather straightforward to a ith di
pply these methods with different cl
patterns and order parameters. wases of ordered

8.3 Crystal growth

.>=o:§. possible application lies in the nucleation and crystal growth [76]. To take
into account a thermal field, it is possible to introduce the following model:

Zn(ih7) = (1= S (tn(is 1), 2a( 1)) + (/O (tnlir5 + 1), 2a (5 + D)
.\An:ﬁmqh. - Hv. H:Quu.lo Han_-\ﬁn:ﬁml. H..N.v“uuaﬁu.l ~..:u+ \.Q:T.T H..:.N=A-+H.uvz Amﬂv

ta(i:3) = ta(i,7) + c(f(ta(i, 5)1 2a(i25)) = 2a (i, ) (28)
n..-.v.ﬁﬁ».-&.v i N\wu:u\;ﬁ M” n\:?.&v ANQV
nghbr

with f(1,z) = tanh(B(z — t)).

Here z denotes the order parameter corresponding to the density (z = 1 is solid
z =1 _n.m.gv. The other variable t corresponds Lo the temperature field. H:Smro—a_
on the solidification process is clearly seen in the form of f(¢,z). The equation ¢ — ¢’
represents the effect of latent heat by the solidification. Eq. (29) comes [rom the
.&:.:m“o: of heat, where 3~ 4;, shows the summation over given neighbors, and nnagas
is their number. A simple examples of a growth of a “solid” region is aroi.s in H.,mmémos
The growth consists of the repetition of the process in the figure. o

8.4 Excitable media

W:opwnw vommmEn application of CML is a model with an excitable state and a relaxation

from it. Possible examples can be seen in reaction diffusion within excitable media,

and may also be relevant to some problems of neural response.

S Wﬁw&:in 1-dimensional map with an excitable state is introduced by Nagumo and
ato[77], in conncction with Harmon’s experiment on ing i :

?.m_. They have used the map n the firing of an actiiclal neuon

f(Z)=b0x(z~H(z))+¢c (30)
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where [1(z) is the Heaviside’s step [unction ( JI(z) = 1 for z > 0 and M(z) = 0 for
z < 0). Ilere, z > 0 corresponds to the ® fired state”. The constant term “c” comes
from an external stimulus applied on a single neuron [77}.

i We can easily construct a CML corresponding to the above model. If we follow the
interpretation of the term “c”, we can replace this constant term by stimuli from other
lattice points. As a simple model, we assume that a constant pulse is emitted il z >0
(“fired”). Then we obtain the following CML

"ig. 10: Roll pattern formation. Snapahot of Znp1(i) = b X (2a(i) = H(za(i))) + d X (H(za(i + 1)) + H(zali - 1)) (31)
the dilfusively coupled map laltice (25). Size =
G4x04. a = 1/4, zo = 0.8, and w = 0.8, at _.ﬂ.a _.m;dn
atep 4000. Nearcat-neigbor average for diffusion. * . 1 3o 1,
mz,,m.znu are depicted only at the points (1,5 _.._._.5 I Tnt1(,7) = b X (zali, 7) — H{za(1, 7))+
z(i,j) > 0 whose length are proportional to z(i, j).

(for a 1-dimensional lattice) or

dx (H(zn(i+1,7)) + H(zn(i = L,7) + H(za(i,i + 1)) + H(za(i i = 1)) (32)

for a 2-dimensional latlice.

In the 1-d Iattice, we can see the propagation of pulses. At a transition parameter
region we can sce a soliton turbulence induced by Lhe interaction among pulses [35].
: In the 2-dimensional system, we have observed the wave pattern similar to the
4 experiment of D7 reaction. See Fig. 21 for examples.
It will be of use to study a system with more realistic couplings and local functions.

8.5 Dripping handrail and boiling chaos

Another related model is a system with a threshold dynamics and diffusion. As an
example of a 1-d lattice, let us take a dripping handrail {5,23]. Water comes from
the rain onto a handrail and the amount of waler increases with a constant rate
up to a threshold. If the amount exceeds the threshold, the water drops [rom the
i handrail. These two processes give the local dynamics. There is diffusion along the
handrail, which can be modelled by the diffusive coupling. Thus we have z,44(f) =

(1= O/ (z(1)) + (/2)(f(2a(i — 1)) + [(3a(i +1))) with

f(z) =z + ¢(mod 1). (33)

The spatiotemporal chaos here is of a different nature [rom that discussed in §2-7,
since the model cannot have a state with positive Lyapunov exponents as an attractor.
The model exhibits the supertransients [23]. The duration of transients increases with
a system size, and a quasistationary chaotic behavior is scen in this transient interval.
An extension to a 2-dimensional system is straightforward [J2]. The 2-dimensional
model may be regarded as a simple model for boiling, since the boiling process consists
of the increase of temperature up to a threshold and diffusion.

8.6 Designing fluid dynamics with CML?

One difference between Navier-Stokes-type equations and our diffusively coupled map
pshot of z(i, 1) with § = 3.5, lattice lies in that the nonlinearity in the former arises from the coupling term as
Nearest-ncighbor average is typically scen in the convective term in the Navier-Glokes equation, while in the
ted by square whose diffusively coupled model, the coupling term acts as a smoothing effect. llere we

Fig. 20: Crystal growth model (27)-(20). Sna

¢ = —.55, starting from a J-nite-seed m:#mv_, condition. Ne
for difusion. Only the pointa with z(i,j) > 0 ore pun
length is proportional lo z(i, )
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consider a model with nonlincar coupling, which has some similarit

y with a turbulent
behavior in Navier-Stokes-type cquations.

soliton turbulence in a convective coupling model

As a simple example for a conveciive coupling model, let us take the following

procedures. ,

(1) Convective coupling ( correspondin
cquation)

(2) DifTusive coupling (corresponding to the vV?y term in the Zviﬁ..m:.urnuv

(3) Cut-off for high velocities: (this term is rather artificial but necessary in oamn to
remove a possible divergent behavior). A simple example is given by z(i) = FUz()) »
z(i) with a monotonically decreasing function f(z) with f(0) = 1 and f(o0) = 0. llere
we take f(z) = ezp(—1?/c).

Combining these three procedures, our coupled map lattice is given by

g to the —(vV)v term in the Navier-Stokes

(NZ'(5) = za(i) + (za(i = 1) = za(i + 1)za(3) (34)
(INz"(i) = (1 ~ )='(i) + ¢/2='(i - 1} + /(i + 1)) (33)
([ zna(i) = exp(=2"()/c)a"(i) . (38)

The evolution za(i) = za41(f,j) consists of the successive operations of the proce-
durea (1),(II), and (III). .

This model includes two parameters 1/c and ¢, corresponding to the damping and
diffusion. As c is increased, the system atarts to explore a region with larger nonlin-
carity. With the increase of ¢, our attractor changes as follows; (i)“dead” state ( i.c.,
z(i) = 0 for all i) — (ii)soliton turbulence — (iii) developed turbulent state. .

The soliton turbulence is a turbulent behavior generated by the transmission of
“solitons” and their interaction and creation. The interaction consists of the emission
of solitons [rom a chaotic nucleus, and collisions which result in pair-annihilation, ab-
sorplion, passing-through with a phase shilt, and a generation of a nucleus. There is
sensitive dependence on the plases of collisions.

The soliton turbulence is first found in the coupled circle lattice [11,5] and is also
seen in a class of cellular automata [50,52].

2-dimensional flow

The above model is straightforwardly extended to a flow in a two-dimensional sys-

tem, by taking a two-dimensional vector (i,j) = (z(i,7), ¥(i, ) mamnawm. of the unw._v~
quantily on a 2-dimensional lattice (i, 7). The model consists of the following successive

procedures.

AHV\HR?M‘V = R:T.. Mv.—.—AH:CI_.L.vlﬁ:?.._vw..g.vvuanm.u.v+ﬁeuﬁmq%| Hvlaaﬁm.u.._-wvva:ﬁm.wud\v&

(1)'y' (5, 5) = ya(is )H(za(i= 1, 1)~ 2a(i+ 1, yn (i )+ (ir = claa?icv?qﬁvﬂﬁ

n:%uz?.?& = average of z/(4, j) = for 13 neighbors ((ix1,7%£1),(i£2,J), (,7%2))

I 2 s (i, 5) = z"(i )ezp(—(="(i,3)* + 9" (5, 7))e) . (39)

————— s e e s — s i
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(Procedures for y(i,j) are similar.)

Examples of snapshots are shown in Fig.22, where the boundary condition is fixed
at the left end and free at the right end, while it is fixed to zero at the top and bottom.
We can see the formation of shocks, vortices, sinks, and sources ( since we have not
imposed the “incompressibility” condition in our model).

PRODLEM: We have to admit that the model (1)’-(I1I)’ is still a premature attempt
towards a modelling of hydrodynamics, compared with the expanding field of lattice
gas automata [46). Drawbacks in our model lie in the existence of artificial cut-ofl term
(IIT) and a very rough treatment of the conservation law. In fact, our model has a
conservation law only in the limit of small diffusion ( ¢ — 0 ) and ¢ — 00. One possible
refinement of our model is to introduce another quantity corresponding to the density
and to take into account of a discrete version of the equation of continuity, Or, another
choice is to start from Lthe coarse-graining of microscopic dynamics without any direct
congideration of the Navier-Stokes equation.

Without the cut-off term (III)’, an interesting behavior is observed only at a critical
point in the parameter space. Beyond this point, our model shows a divergent behavior,
while below it, the system goes to a laminar flow. It will be important to scarch for a
mechanism to compel to stay near the critical point by a conservation law, as has been
discussed in the model of sandbox by (79].

8.7 Neural networks

In the real neuron, states are not discrete. In that sensc the discrete-state model of
a neural network (e.g., McCllough-Pitts neuron) is an over-simplification. Of course,
the model may capture some essential features of the neural dynamics, but may miss
some important points, too. In some experiments, a single ncuron (80,81] and a small
ensemble of ncurons {82] are known to exhibit a chaotic behavior. In the standpoint of
statistical mechanics, it must be much better to start [rom a higher-level dynamics than
the ncural networks with very simple elements, in order to understand a higher-level
dynamics in the brain.

Thus it is natural and important to ask the following question: What happens if
we use more complex elements ( with a chaotic response) with oversimplified couplings
instead, as a different limit of simplification from the neural dynamics? The coupling
here is not short-ranged.

The global coupling model in §7 may be of importance as the first endeavor towards
this direction. The results there {43] are rather promising. We can have a huge number
of coded altractors. Some attractors have a tree-like structure with a hierarchical code
and have similar complexity with the SK model in spinglass {83}, which is the basis of
one of the most popular models in neural networks (84,85,86]. Upon the tree structure
one can construct a hierarchical dynamics. Through simple inputs on coded attractors,
we can switch from them Lo attractors with different clusterings and tune the strength
of chaos.

It is of course interesting to study a CML with local dynamics with an excitable
state and a refractory period, and with a coupling which gives the transmission of the
firing. A possible example is the use of the model discussed in §8.4, and with a diflerent
topology ([35), see also [36]).
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8.8 Josephson junction, CDW, .... and coupled circle lattice

“I'lhe problem of coupled nonlinear oscillators (pendula) can be frequently seen in ...ra
solid-state physics. Typical examples include a Josephson junction and a charge density
wave (CDW). .

Since a forced pendulum can be well modelled by the circle map f(z) =z +
(K/2x)sin(2rz) + Q ( see e.g., [2]), it is malural to use 2 coupled circle map lattice for
the above problems. .

Some preliminary results in the coupled circle map latlice give a amrpo._ﬂ turbulence
(11,5} and a vortex motion in a 2-d lattice(11]. See {33,24] for applications o_..:.amm
modcls to problems of COW. In (42}, a problem of a coupled uoaaz_.mo:. .w__:n..uo: i8
investigated with the use of a globally coupled circle map, where a transition from a
coherent state to a desynchronized state is studicd. ‘ .

Another approach towards Lhia probiemn is scen in the use of ..om...‘_zvﬂou. lattice”,
that is a coupled ODE with the use of a differential equation of an oscillator as a local
dynamics. (87,88).

8.0 Other applications

lecall that the logistic map has frequently been investigated as a _.:.o._._oB of popu-
lation dynamics. Then it is natural to ask the role of spatial r:onwnnmo: among the
populations. Coupled logistic lattices and some other models will be of importance for
the study of this problem(37].

The oscillatory behavior of immune response also includes a large E.th.mn of non-
linear interactions. A possible model for immune networks with a CML is discussed in

[00].

8.10 Experimental observation of spatiotemporal chaos

We comment briefly on the possible relation of out logistic lattice with mxvola.sgz.
First, we have to admit that the direct relation with an experiment is Hwon wﬁEu.wEm
at the present. We do not have lo be disappointed with this, however, since no direct
telation with the logistic map and 3 Rayleigh-Benard convection is at hand in mwn level
of cquation of motion, but the map explains some aspects of the _pmnﬁ, .a.E_.o. well.
If the universality class to which our model belongs has a large applicability in mvm
spatiotemporal chaos, which we believe (since our moddl is so simple and general like
the Ising model or the logistic map), we might hope that the same phenomena and
quantitative aspects as in our CML are observed in experiments. o .
We also note that the “universality” is not necessarily defined quantitatively ( like
critical exponents which we are not interested in). It will be vao.Zu,:n to define the
sniversality in a qualitative level. For examples, if we have experimentally observed
the transition sequence of pattern dynamics similar to our model, we may say that the
experiment belongs to the same qualitative universality class as our model. .
What we hope to be observed is (1) the transition sequence .o_, the frozen chaotic
pattern, the pattern selection, the intermittency (Brownian :._os.o: of defect and z...o
defect turbulence), and the fully developed turbulence. If this _:.sn_ o._. phenomena is
found, the search for (2) sclective flicker noise at the transition regime 18 _..mno:::nnmma
as a quanlitative check. Also, it is desirable to re-investigate (3) the motion of a.o?nn.a
In some patterns, to check il the motion is chaotic, and if the Drownian motion is
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associated with the chaos.

For a qualitative comparison, some visualization techniques introduced in the study
of CML, such as the space-time diagram, spatial return maps, co-moving return maps
and 80 on [5] may be useful. For these qualitative and quantitative studies, multiple-
point observations will be essential. Through these observations, we can get the graph-
ics and various quantifiers comparable with those investigated in the present paper.

What arc possible candidates of the experiments? We have scen some examples
of spatiotemporal chaos in recent experiments {89], such as chemical turbulence (91,
92}, Denard convection with large aspect ratio {93,94,95,96,97], Taylor-Couette flow
with large aspect ratio (98], Faraday experiment (99] clectrical convection of liquid
crystal {100,101, solid state experiments such as Josephson junction array, electron-
hole plasma {102}, and charge density wave {103]. For opcn flow experiments, we have
seen many examples of spatiotemporal chaos, such as the pipeflow [104], boundary
layer {105], and air jet {106], and the dendritic growth of a erystal (107},

In these experiments, we can see some relations with our observations in the present
paper. Spatial bifurcation by the frozen random stale is observed in a Benard con-
vection experiment (97}. Brownian motion of defects has been seen in Lhe convection
of liquid crystals. Localized chaotic motion (turbator) has been observed in Taylor-
Couette flow [98]. Pattern competition is observed in the Faraday experiment and in
liquid crystal experiment [99,101]. Flow of turbulent spots can be frequently seen in
open flow experiments and in 2 dendritic growth [107).

Spatiotemporal intermittency has been observed by Ciliberto and Bigazzi [108) on
the Denard convection on an annulus. The experiment exhibits the same phenomena
as our pattern competilion intermittency. This correspondence is supported by the
power-law distribution of laminar domains, and the existence of selected wavenumbers
and of localized chaos in a suberitical region.

Another important experiment has been carricd ont by Nasuno et al.[62], in the
electrical convection of a liquid crystal. As has been discussed in §3, their experiment
shows a remarkable coincidence with our spatiotemporal inlermittency.

If we are concerned with an experiment on a phenomenon which includes a local
chaolic mechanism and a spatial short-ranged coupling, we may hope, at a level of
qualitative “universality’, that our prediction on the phases and the quantitative aspects
is valid to the experiment.

to conclude ...?

Are all macroscopic dynamical behavior with many degrees of freedom modelled and
understood by CML? I hope that the answer is no, but so far there is no counter-
example....
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9 Appendix: Quantifiers in Spatiotemporal Chaos (in
alphabetical order)

Co-moving Lyapunov spectra

The notion of a co-moving Lyapunov exponent is uscful, il a disturbance grows with a
characteristic velocity or if macroscopic structures propagate. The co-moving Lyapunov
exponent is especially important when a system is convectively unstable, as is scen in
the one-way coupled logistic lattice (sco §4).

The definition of the convective instability is as follows: Let us take a small per-
turbalion 6z around a state z. If limszomo liMp—eoo(6zh /820) —+ 00 for an arbitrary
fixed lattice site i, it is called absolutely unstable. This definilion agrees with the fa-
miliar definition of the conventional dynamical system theory. In a case of open flow,
even if the system is not absolutely unstable, it can be unstable in some moving frame.
I lim Qur..f:_\mu& — o0, for a given velocity v, it is called as convective unstable.
(Iere, [q) is the maximum integer that is smaller than q.) If a system is stable in all
arbitrary moving frames, il is absolutely stable. The notion of convective instability
was originally introduced in the ficld of plasma physica and fluid mechanics, where the
stabilily around a stationary state (fixed point or periodic orbit in the terminology of
a dynamical system) lhas been investigated.

The convective (in)stability around any arbilrary state is analyzed by the notion of
co-moving Lyapunov exponent. It is defined in the following way: First, the frame is
transformed from the stationary laboratory frame to the moving one. In our lattice
system the transformation is given by

ir = i — [vn] (40)

where i and i7 are spatial lattice pointa (in the stationary and moving {frame, respec-
tively) and n is the discrete lime step. The Lyapunov exponent in the moving [rame
with the velocity v is calculated from the Jacobi matrix Jn = maﬂii:tx\mnwis._ .
A logasithm of the largest cigenvalue of the product of J acobi matrices divided by the
time steps, gives the co-moving Lyapunov exponent with the velocity ~.

When a system is only convectively unstable, the conventional Lyapunov exponent
is ncgative, while it takes a posilive value for vr < v < vr. It goes negative again
for v > v, meaning that the disturbance cannot propagate with the velocity larger
than vg. Ilere the subscripts T and L stand for trailing and leading, and these are
appropriate since these speeds describe the trailing and leading cdge propagation of

amplifled perturbations, respectively.

Co-moving mutual information llow

sce §5 and [7].

Dimension density

The fractal dimension of an attractor in the phase space is an important quantity.
Itoughly speaking, its integer part gives the effective degrees of freedom of the attractor.
Whereas the Lyapunov dimension is introduced by the Kaplan-Yorke [ormula;

it 2 e ettt ot s

J
D =35+ Q_ A/l (41)
i=1
with j such that 3°J_, A > 0 and $/3) A; < 0. The Lyapunov dimension gives the
upperbound to the fractal dimension of a2 dynamical system.

r... the lattice system, a quantity scaled by sizc is more relevant. The Lyapunov di-
mension density is defined by dg = D /N. See {18] for a possible estimate of dimension
density.

.H..roma definitions are introduced in the same manner as in the introduction of “in-
tensive” quantitics from “extensive™ quantities in thermodynamics.

Dynamical form factor (Spatiotemporal power spectra )

Power spectra in time and space are defined by

N
P(k,w) =<< [(1/N) ) za(j)e? ™ U* "I 55, (42)
i=t
where zam bracket << .. >> denotes the long-time average. These are useful in the
characterization of space-time patterns.

Kolmogorov-Sinai entropy density

Oam.m:v:«. Kolmogorov-Sinai (KS) entropy means the increasing rate of a variety of
v.Oum_Sw syrabol sequences generated by the dynamics, with the increase of a parti-
tion precision. It can be numerically computed by the sum of all positive Lyapunov
exponents (=>Lyapunov Spectra). It roughly gives the information loss in the phase
space.

In a spatially extended system, the KS entropy is proportional to the system size
when the spatinl correlation length is finite. Thus the KS entropy density is defined mm_
the intensive thermodynamic quantity:

Ai>0

ha = (1/N) 3 X (43)

f=1
Lyapunov spectra

The Lyapunov exponents characterize how a sct of independent small deviations in
a nwamo_.: space is amplified ( or reduced). In a N-dimensional dynamical system,
there exist N independent directions, and corresponding N cigenvalues, which form the
spectrum.
?.oE. coupled map lattice system, Lyapunov spectra can be defined in the following
by using the product of Jacobi matrix of the map, i.e.,
im Aw\av.\:.\:l_.\alnb . . ?3

n—0oo

) Hro logarithm wh cigenvalues of the above product divided by time steps n with the
limit of n — oo gives the Lyapunov exponcnts. The exponents A;, ordered from the
largest to the smallest, gives a spectrum of the system.

b




48

If the largest Lyapunov exponent takes a positive value, two nearby orbits separate
exponentially, and the system exhibits the orbital instability, or in other words, sensitive
dependence on initial conditions. If the largest one is negative, the orbit is stable and
the system is attracted to a periodic state. If the largest one is zero, the motion is
quasiperiodic. If there are k vanishing exponents, the motion is on a (k + 1)-torus.

Corresponding eigenvectors to each eigenvalues of the matrix (44) are called Lya-

’

punov vectors.

Mutual information in spacetime

see §5.

Pattern dynamics quantifiers
(a)Pattern distribution Q(j) and pattern entropy

Since the spacetime patch z,(i) has too much information, it is useful to reduce the
information by a coarse-grained measurement of the continuous variables into some
discrete states. Here we digitize a spatial pattern as a symbol patch. We first assign
on(i) = 0,1,2,--+, K — 1 to za(i) according to the following rule

o()=0 if z()<Xa
o) =1 if Xi<zali) <Xz
oa(i)=K -1 if Xx-1<za(i). (45)

The simplest digitization K=2 is carried out by the symbolization on(i) = 0 for
zn(f) < z* and on(3) = 1 for z,4(i) > z+. In the domain structure we study in §2, each
domain is separated by the separatrix of the unstable fixed point of the logistic map
7+ = (v1+4a — 1)/(2a). Thus a snapshot pattern can be represented by a symbol
sequence such as 0111---001.

Order parameter for the pattern selection is constructed by the domain distribution.
A domain in §2 is defined as the maximal continual sequence in which o,(i) takes
the same value. Thus the probability distribution Q(j) of the spatial length of the
same symbol (11---11 or 00- - -00) is chosen as the order parameter(s) for our pattern
dynamics. Q(j) is defined by the following procedure: From the spatial sequence zn(3)
at a given time n, one obtains the minimum length in which on(k) takes the same
symbol (k=i—h,i—h41,-+-yi,-itm; the length j is 2 + m + 1). The length j
gives the domain size of the lattice point i at each time step n. From the spatiotemporal
sampling through the ‘entire lattice and many time steps, the probability that a lattice
point belongs to the domain size j is obtained. For example, Q(1) = 1 and Q(k) =0

for k # 1 for the complete zigzag pattern.
A static complexity of a pattern is measured by the following (static) pattern emn-

tropy:
5p = =3 Q(i)ogQ(3)- (46)
i
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(b)Pattern transition matrix and pattern dynamical entropy

The .m&o<¢ quantifiers are not sufficient to study the dynamics of a pattern. We are
Hw.mﬁumm to construct the transition matrix of successive pattern evolution. The tran-
m.sn..u matrix is calculated as follows: First, compute the domain size to which a given
lattice site ¢ belongs at a time n (assume that the size is m). After a given time step
compute the domain size again at the lattice point (assume that the size is k). We nw=.
this as the transition m — k. By taking the spatiotemporal samplings, we obtain the
probability of the transition .

w T(m — k) = transition from the domain with size m to that with size k. (47)
,a To see the dynamical complexity, a dynamical entropy of the transition is defined
= as follows:

#

P .

i Sa= = QTG — )logT(i = 5), ()
Tl 2

tatlaritd]

which is first .mss.omﬁa& in the study of attractors of CA by the author [50].

..H.r¢ meaning of the quantity is as follows; Assume that we know that the lattice
vo:;. belongs to the domain of some size. After a given time step, we again observe
the size of domain to which the lattice point belongs. The mutual information gain
through the observation is given by $3.

- As is easily shown, the relation S, > Sy holds. If a pattern is spatially complex
but «mn.pmonm.:w frozen, Sg = 0 and S, > 0. In the turbulent regime, both S; and S,
are vom_.sﬁw. If the transition occurs without a memory of the previous pattern (i mn
T(i — j) = p(5), independent of i), the equality S, = S; holds. o

I zmm pattern has a long-time memory and cannot be represented by the Markovian
dynamics, the above transition matrix is no more useful. In such case, a distribution
of the life-time is important to characterize the power-law-type Umwm.&mﬁ

Power spectra in space or time
The spatial power spectra are defined by
2 .y
S(k) =<< [(1/N) 3" za(5)e?™ |2 5>, (49)
i=1

where << # *# >> shows the long time average.
Temporal power spectra are the power of Fourier transform of a time series of z(i):

&
P(w) =<< |(3 za()e¥™ ™2 5> (50)

n=io

These are traditional characterizations of space/time data.
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