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Dominance of Milnor attractors in globally coupled dynamical systems with more than
7Á2 degrees of freedom
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The prevalence of Milnor attractors has recently been reported in a class of high-dimensional dynamical
systems. We study how this prevalence depends on the number of degrees of freedom by using a globally
coupled map and show that the basin fraction of Milnor attractors increases drastically around 5–10 degrees of
freedom, saturating for higher numbers of degrees of freedom. It is argued that this dominance of Milnor
attractors in the basin arises from a combinatorial explosion of the basin boundaries. In addition, the domi-
nance is also found in a system without permutation symmetry, i.e., a coupled dynamical system of noniden-
tical elements. Possible relevance to the magic number 762 in psychology is briefly discussed.
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In recent studies of dynamical systems with many degr
of freedom, the prevalence of Milnor attractors has been
ognized@1,2#. The Milnor attractors are defined as follow
an arbitrary small perturbation to an orbit at a Milnor attra
tor can kick the orbit away from it to a different attracto
even though a finite measure of initial conditions is attrac
to the attractor by temporal evolution@3–5#. In other words,
the basin of the attractor touches the attractor itself so
where. An orbit is often attracted to a Milnor attractor, b
can be kicked away from it by infinitesimal perturbation.

It should be noted that Milnor attractors can exist in lo
dimensional dynamical systems such as a two-dimensi
map as well. When changing the parameter of a dynam
system, the basin boundary of an attractor may move u
for a specific value of the parameter, the basin bound
touches the attractor. If, for this parameter value, the attra
has a positive measure of initial conditions forming the ba
of attraction, it becomes a Milnor attractor@3#. It is naively
expected that this situation occurs only for very specific
rameter values~e.g., at a bifurcation point!, and that the Mil-
nor attractors may not exist for an open set of param
values.

In recent studies of globally coupled dynamical system
however, Milnor attractors are found to be sometime pre
lent, occurring not only for specific isolated parameter v
ues, but for continuous ranges of parameter values. Furt
more, the measure of the initial conditions that belong to
basin of these Milnor attractors is a relatively large prop
tion of the phase space. Indeed, for some parameter ran
almost all randomly chosen initial conditions fall onto Mi
nor attractors@1,2#.

Such dominance of Milnor attractors is often found, f
example, in globally coupled maps~GCM! @6# with 10 de-
grees of freedom or so@7#, and within a range of paramete
values where many attractors coexist. The question we
dress in the present paper is why can there be so many
nor attractors in a ‘‘high-dimensional’’ dynamical system
and how many elements are sufficient for constituting s
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‘‘high’’ dimensionality. With the help of numerical result
obtained from simulations of globally coupled maps, we w
show that the dominance starts to be common at 5–10
grees of freedom. We propose a possible origin for this do
nance of Milnor attractors, by noting a combinatorial exp
sion of basin boundaries. We will also show that t
prevalence of Milnor attractors is observed even in a sys
without symmetry, i.e., in a coupled dynamical system
nonidentical elements. Finally we briefly discuss the poss
relevance of our results to the magic number 762 in psy-
chology.

As a prototype example to study this problem we us
GCM @6#

xn11~ i !5~12e! f ~xn~ i !!1
e

N (
j

f „xn~ j !…, ~1!

where n is the discrete time andi being the index for its
elements (i 51,2, . . . ,N5 dimension of the system!. For the
elements we choosef (x)512ax2, since the model has bee
thoroughly investigated as a prototype model for hig
dimensional dynamical systems. The coupling parametere is
fixed at 0.1, since for this value the typical behaviors of t
above GCM that are relevant here can be observed by ch
ing only a.

In the present model, each attractor can be coded by
so-called clustering condition, that is to say, by the way h
theN elements of the system partition into mutually synch
nized clusters, i.e., a set of elements in whichxn( i )5xn( j )
@6#. Each attractor is coded by the number of clustersk and
the number of elementsNk in each cluster with the clusterin
condition given by (N1 ,N2 , . . . ,Nk). Indeed, for a GCM
with N510 @1#, many initial conditions are attracted to
Milnor attractor. Here, in order to discuss the dependence
the size of the basin fraction of the Milnor attractors on t
number of degrees of freedom, we have computed the r
of initial conditions that are attracted to Milnor attractors.

As shown in Fig. 1, the basin fraction of Milnor attracto
is large arounda'1.65, especially forN>5. Its parameter
dependence, however, is quite strongly dependent onN, at
least whenN is not so large. Hence, it is not that relevant
compare the behaviors for differentN at a given value ofa.
©2002 The American Physical Society01-1
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Instead, we compute the average basin fraction of Mil
attractors over the parameter interval 1.55,a,1.72. In Fig.
2, this average is plotted as a function of the number
degrees of freedomN. The increase of the average bas
fraction of Milnor attractors withN is clearly visible forN
'(5 –10), while it levels off forN.10.

Now we discuss how the dominance of Milnor attracto
appears. In a system with identical elements, due to the s
metry, there are at least

M ~N1 , . . . ,Nk!5~N!/ ) i 51
k Ni ! !)oversets ofNi5Nj

~1/m,! !

attractors for each clustering condition, wherem, is the num-
ber of clusters with the same valueNj @1#. Then, combina-
torial increase in the number of attractors can be expe
when many of the clustering conditions are allowed as att

FIG. 1. The basin fraction of Milnor attractors plotted as a fun
tion of the parametera, for N53, 5, 7, and 9. For the presen
simulations, we take 1000 randomly chosen initial conditions,
iterate 105 steps. Then the orbit is perturbed asxn( i )110210s i ,
with s i as a random number over@20.5,0.5#. With 103 trials of
such perturbations, we checked whether the orbit remains on
same attractor or not, after 53104 time steps. If some of the 103

trials result in an escape from the original attractor, it is regarde
a Milnor attractor@8#.

FIG. 2. The average fraction of the basin ratio of Milnor attra
tors. After the basin fraction of Milnor attractor is computed as
Fig. 1, the average of the ratios for parameter valuesa
51.550,1.552,1.554, . . . ,1.72 is taken. This average fraction
plotted as a function ofN. ~The dotted line depicts the case wherea
is incremented by 0.01 instead of 0.002; forN.10, the simulation
is carried out only with this choice.!
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tors. However, the increase of the number of attractors c
not explain the increase of the basin for Milnor attractors.
Fig. 3. we have plotted the number of attractors and the b
fraction of Milnor attractors forN510. As can clearly be
seen, the dominance of the Milnor attractors is not neces
ily observed when the number of attractors is high. Rath
the fraction of Milnor attractors gets large even when ma
attractors start to disappear with the increase ofa.

For the parameter region where many attractors star
disappear, there remain basin boundary points separa
such ~collapsed! attractors and the remaining attractors.
explain the prevalence of Milnor attractors, we discuss h
the distance between an attractor and its basin boun
changes withN. Consider a one-dimensional phase spa
and a basin boundary that separates the regions ofx(1)
.x* andx(1),x* , while the attractor in concern exists a
aroundx(1)5xA,x* , and the neighboring one at aroun
x(1)5xB.x* . Now consider a region ofN-dimensional
phase spacexA,x( i ),xB . If the region is partitioned by
~basin! boundaries atx( i )5x* for i 51, . . .N, it is parti-
tioned into 2N units. Since this partition is just a direct prod
uct of the original partition byx(1)5x* , the distance be-
tween each attractor and the basin boundary does not ch
with N. @For example, consider the extreme case thatN iden-
tical maps are uncoupled (e50).#

On the other hand, consider a boundary given by so
condition for @x(1), . . . ,x(N)#. In the present system with
global ~all-to-all! couplings, many of permutational chang
of x( i ) in the condition give also basin boundaries. Here
condition for the basin can also have clusteri
(N1 , . . . ,Nk), since the attractors are clustered as su
Then there areM (N1 , . . . ,Nk) partitions by boundaries
equivalent by permutations. The number of regions pa
tioned by the boundaries increases combinatorially withN.
Roughly speaking, it increases in the order of (N21)!,
when the boundary has a variety of clusterings~i.e., large
M ). Now the N-dimensional phase space region is pa
tioned by O(N21)!) basin boundaries. Recalling that th
distance between an attractor and the basin boundary
mains at the same order for the partition of the order of 2N,
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FIG. 3. The number of attractors (1) estimated from simula-
tions over 105 initial conditions. The estimated number of attracto
is plotted as a function ofa. N510. All attractors that are con
cluded to exist by the symmetry argument are also counted.
basin fraction of Milnor attractors obtained in the same way as
Fig. 1 is also plotted by a dotted line with3.
1-2
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the distance should decrease if (N21)! is larger than 2N.
Since forN.5, the former increases drastically faster th
the latter, the distance should decrease drastically foN
.5. Then forN.5, the probability that a basin bounda
touches with an attractor itself will be increased. Since t
argument is applied for any attractors and their basin bou
ary characterized by complex clusterings having combina
rially large M (N1 , . . . ,Nk), the probability that an attracto
touches its basin boundary is drastically amplified forN
.5. In fact, for a certain parameter regime (1.64,a,1.68
in the present case!, basin boundaries with such partitions a
dominant, and the ratio of Milnor attractors is increased.
though this explanation may be rather rough, it gives a h
to why Milnor attractors are so dominant forN*(5 –10).

Since the above discussion is based mainly on sim
combinatorial arguments, what we need is instability in
bits leading to many attractors, and global~all-to-all! cou-
pling to allow for permutations of elements. Then, the dom
nance of Milnor attractors forN*(5 –10) may be rathe
common in globally coupled dynamical systems. To che
this possibility, we have also made numerical simulations
Josephson junction series arrays that are globally cou
through a resistive shunting load and driven by an rf b
current @9#, given by f̈ j1gḟ j1sinfj1gs/N(m51

N ḟm5idc

1irfsin(Vr ft). By using the parameter values adopted in R
@9#, we have computed the basin volumes for Milnor attra
tors, at the partially ordered phase where a variety of att
tors with many clusters coexists. Again, the basin volum
are close to 0 forN<4, and increase at 5,N,10 @12#. It is
also interesting that pulse-coupled oscillators with glo
coupling also show the prevalence of Milnor attractors
N>5 @2#.

So far reports on the prevalence of Milnor attractors ha
been limited to a system with symmetry. For example, in
GCM ~1!, the permutation symmetry arising from employin
identical elements leads to a combinatorial explosion in
number of attractors as mentioned. Then, one may won
whether the prevalence of Milnor attractors is possible o
for such highly symmetric systems, especially because s
Milnor attractors are known to disappear when introduc
tiny asymmetries@10#. We have therefore studied a GCM
with inhomogeneous parameters@11#, given by xn11( i )
5(12e) f i„xn( i )…1(e/N)( j f j„xn( j )… with f i(x)512aix

2,
andai5a01aw( i 21)/(N21).

In Fig. 4, we have plotted the basin fraction for Milno
attractors with the change of the parametera0 while fixing
aw50.1, forN55 –12. Although the fraction is smaller tha
in the homogeneous case, Milnor attractors are again
served and their basin volume is rather large for some
rameter region. As in the symmetric case, the basin frac
of Milnor attractors increases aroundN'(5 –10). ~The frac-
tion is almost zero forN<4). Note that eventhough com
plete synchronization between two elements is lost, clus
ings as with regards to the phase relationships can exist.
example, there are two groups when considering the osc
tions of phases as large-small-large . . . and small-large-
small . . . , that are preserved in time for many attracto
Similarly, it is natural to expect an explosion in the numb
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of the basin boundaries for some parameter regime. Acc
ingly the argument on the dominance of Milnor attractors
a homogeneous GCM can be applied here to some degre
well @13#.

The term magic number 762 was originally coined in
psychology @14#, when it was found that the number o
chunks~items! that is memorized in short term memory
limited to 762 ~see Ref.@15# for possible relationship with
chaos!. To memorizek chunks of information including their
order ~e.g., a phone number ofk digits! within a dynamical
system, let us assign each memorized state to an attract
a k-dimensional dynamical system, as is generally adopte
neural network studies. In thisk-dimensional phase space,
combinatorial variety of attractors has to be presumed in
der to assure a sufficient variety of memories. Depending
the initial condition ~given by inputs!, an orbit has to be
separated to different attractors. Then, a combinatorial ex
sion of basin boundaries is generally expected with the
crease ofk, if the neural dynamics in concern are global
coupled~as often adopted in neural networks!. Then, follow-
ing the argument in the present paper, Milnor attractors m
be dominant fork.(5 –10). ~Recall that the number doe
not strongly depend on the choice of models, since it is giv
by the combinatorial argument.! Since the state represente
by a Milnor attractor is kicked out by tiny perturbation
robust memory may not be possible@16# for information that
contains more than 762 chunks@19#. Although this expla-
nation is a rough sketch, it can possibly be applied to ot
systems that adopt attractors as memory.

In dynamical systems, it is well known that the dime
sional cutoff>3 plays an important role for the existence
chaos. It is interesting then to investigate whether there
certain higher dimensions that similarly form dimension
boundaries beyond which the behavior of a dynamical s

FIG. 4. The basin fraction of Milnor attractors for a GCM wit
inhomogeneous parameters. Herea( i )5a010.13( i 21)/(N21).
Plotted as a function of the parametera0, for N5528, 10, and 12.
~For N<4, the fraction is almost zero for alla0.! The fraction is
computed in the same way as in Fig. 1, except that 100 trials
perturbations were used instead of 1000. Since the clustering
dition cannot be used in this case, we checked whether the orb
on the same attractor, by computing the temporal average ofxn( i )
over 53106 steps, before and after each perturbation. If the aver
agrees to within a precision of 1023, the orbit is regarded to be on
the same attractor.
1-3
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tem changes qualitatively. The present study may shed
light on this possibility. Also, it is interesting to note that
Hamiltonian dynamics, agreement with thermodynamic
havior is often observed only for degrees of freedom hig
than 5 –10@20#. Considering the combinatorial complexit
woven by all the possible Arnold webs~that hence may be
termed ‘‘Arnold spaghetti’’!, the entire phase space volum
that expands only exponentially with the number of degr
y
ble

or
oi
e

ion
il-

05520
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of freedom may be covered by webs, resulting in uniform
chaotic behavior. If this argument holds, the degrees of fr
dom required for thermodynamic behavior can also be d
cussed along the line of the present paper.
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of the manuscript. This work was partially supported by
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