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The prevalence of Milnor attractors has recently been reported in a class of high-dimensional dynamical
systems. We study how this prevalence depends on the number of degrees of freedom by using a globally
coupled map and show that the basin fraction of Milnor attractors increases drastically around 5—10 degrees of
freedom, saturating for higher numbers of degrees of freedom. It is argued that this dominance of Milnor
attractors in the basin arises from a combinatorial explosion of the basin boundaries. In addition, the domi-
nance is also found in a system without permutation symmetry, i.e., a coupled dynamical system of noniden-
tical elements. Possible relevance to the magic numbe2 T psychology is briefly discussed.
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In recent studies of dynamical systems with many degreethigh” dimensionality. With the help of numerical results
of freedom, the prevalence of Milnor attractors has been recbtained from simulations of globally coupled maps, we will
ognized[1,2]. The Milnor attractors are defined as follows: show that the dominance starts to be common at 5-10 de-
an arbitrary small perturbation to an orbit at a Milnor attrac-grees of freedom. We propose a possible origin for this domi-
tor can kick the orbit away from it to a different attractor, hance of Milnor attractors, by noting a combinatorial explo-
even though a finite measure of initial conditions is attractecsion of basin boundaries. We will also show that the
to the attractor by temporal evoluti¢gB—5]. In other words, ~ Prevalence of Milnor attractors is observed even in a system
the basin of the attractor touches the attractor itself someVithout symmetry, i.e., in a coupled dynamical system of
where. An orbit is often attracted to a Milnor attractor, but "onidentical elements. Finally we briefly discuss the possible
can be kicked away from it by infinitesimal perturbation, ~ '€lévance of our results to the magic number 2 in psy-

It should be noted that Milnor attractors can exist in low- chology. .
dimensional dynamical systems such as a two—dimension%g As a prototype example to study this problem we use a

. . GCM [6]
map as well. When changing the parameter of a dynamica
system, the basin boundary of an attractor may move until, €
for a specific value of the parameter, the basin boundary Xn+1(D)= (1= f(Xa(1)) + 5 > f(xali)), 1)
touches the attractor. If, for this parameter value, the attractor )
has a positive measure of initial conditions forming the basinyhere n is the discrete time and being the index for its
of attraction, it becomes a Milnor attractf8]. It is naively  elements (=1,2, ... N= dimension of the systemFor the
expected that this situation occurs only for very specific paelements we choodéx)=1—ax?, since the model has been
rameter valuese.g., at a bifurcation pointand that the Mil-  thoroughly investigated as a prototype model for high-
nor attractors may not exist for an open set of parametedimensional dynamical systems. The coupling parameter
values. fixed at 0.1, since for this value the typical behaviors of the

In recent studies of globally coupled dynamical systemsabove GCM that are relevant here can be observed by chang-
however, Milnor attractors are found to be sometime prevaing only a.
lent, occurring not only for specific isolated parameter val- In the present model, each attractor can be coded by the
ues, but for continuous ranges of parameter values. Furtheso-called clustering condition, that is to say, by the way how
more, the measure of the initial conditions that belong to thehe N elements of the system patrtition into mutually synchro-
basin of these Milnor attractors is a relatively large propor-nized clusters, i.e., a set of elements in whiglfi) =x,(j)
tion of the phase space. Indeed, for some parameter rangg$§). Each attractor is coded by the number of clusteesd
almost all randomly chosen initial conditions fall onto Mil- the number of elements, in each cluster with the clustering
nor attractorg1,2]. condition given by N;,N,, ... ,N)). Indeed, for a GCM

Such dominance of Milnor attractors is often found, forwith N=10 [1], many initial conditions are attracted to a
example, in globally coupled mag&CM) [6] with 10 de-  Milnor attractor. Here, in order to discuss the dependence of
grees of freedom or si7], and within a range of parameter the size of the basin fraction of the Milnor attractors on the
values where many attractors coexist. The question we achumber of degrees of freedom, we have computed the ratio
dress in the present paper is why can there be so many Mibf initial conditions that are attracted to Milnor attractors.
nor attractors in a “high-dimensional” dynamical system, As shown in Fig. 1, the basin fraction of Milnor attractors
and how many elements are sufficient for constituting suchis large arounch~1.65, especially foN=5. Its parameter

dependence, however, is quite strongly dependenioat
least whernN is not so large. Hence, it is not that relevant to
*Electronic address: kaneko@complex.c.u-tokyo.ac.jp compare the behaviors for differeNtat a given value o&.
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FIG. 1. The basin fraction of Milnor attractors plotted as a func-  FIG. 3. The number of attractorst() estimated from simula-
tion of the parameten, for N=3,5, 7, and 9. For the present tions over 18 initial conditions. The estimated number of attractors
simulations, we take 1000 randomly chosen initial conditions, ands plotted as a function oh. N=10. All attractors that are con-
iterate 10 steps. Then the orbit is perturbed &gi)+ 10 0, cluded to exist by the symmetry argument are also counted. The
with o as a random number ovgr0.5,0.5. With 10° trials of basin fraction of Milnor attractors obtained in the same way as in
such perturbations, we checked whether the orbit remains on thEig. 1 is also plotted by a dotted line witk.

same attractor or not, aften&10* time steps. If some of the {0 .
trials result in an escape from the original attractor, it is regarded alOrs- However, the increase of the number of attractors can-
a Milnor attractor{8]. not explain the increase of the basin for Milnor attractors. In

Fig. 3. we have plotted the number of attractors and the basin

Instead, we compute the average basin fraction of Milnofraction of Milnor attractors folN=10. As can clearly be
attractors over the parameter interval £55<1.72. In Fig.  S€en, the dominance of the Milnor attractors is not necessar-
2, this average is plotted as a function of the number ofly observed when the number of attractors is high. Rather,
degrees of freedonN. The increase of the average basinthe fraction of Milnor attractors gets large even when many
fraction of Milnor attractors withN is clearly visible forN ~ attractors start to disappear with the increase.of
~(5-10), while it levels off forN>10. For the parameter region where many attractors start to

Now we discuss how the dominance of Milnor attractorsdisappear, there remain basin boundary points separating
appears. In a system with identical elements, due to the Syrﬁiuch (collapsed attractors and the remaining attractors. To

metry, there are at least explain the prevalence of Milnor attractors, we discuss how
the distance between an attractor and its basin boundary
M(Ny, ... N =(N/IT* N gversets on. <. (1/mg!) changes withN. Consider a one-dimensional phase space,

- =N,

and a basin boundary that separates the regions(dj
>x* andx(1)<x*, while the attractor in concern exists at

ber of clusters with the same valdg [1]. Then, combina- aroundx(1)=x,<x*, and the neighboring one at around
1 _ * . - . .
torial increase in the number of attractors can be expectef(1)=Xs>X". Now consider a region ofN-dimensional

when many of the clustering conditions are allowed as attrad®@S€ Spac&,<x(i)<xg. If the region is partitioned by
(basin boundaries ak(i)=x* for i=1,...N, it is parti-

tioned into 2 units. Since this partition is just a direct prod-
uct of the original partition byx(1)=x*, the distance be-
PSS tween each attractor and the basin boundary does not change
with N. [For example, consider the extreme case bhaten-

tical maps are uncoupled€0).]

On the other hand, consider a boundary given by some
condition for[x(1), ... X(N)]. In the present system with
global (all-to-all) couplings, many of permutational change
of x(i) in the condition give also basin boundaries. Here the
condition for the basin can also have clustering

10 (Nq, ...,Ny, since the attractors are clustered as such.
Then there areM(Nq, ...,Ny) partitions by boundaries
N equivalent by permutations. The number of regions parti-

FIG. 2. The average fraction of the basin ratio of Milnor attrac- ioned by the boundaries increases combinatorially Wth
tors. After the basin fraction of Milnor attractor is computed as in ROughly speaking, it increases in the order &f-1)!,

Fig. 1, the average of the ratios for parameter valees When the boundary has a variety of clusteririgs., large
=1.550,1.552,1.554 .. ,1.72 is taken. This average fraction is M). Now the N-dimensional phase space region is parti-
plotted as a function dfl. (The dotted line depicts the case whare tioned by O(N—1)!) basin boundaries. Recalling that the

is incremented by 0.01 instead of 0.002; for-10, the simulation ~ distance between an attractor and the basin boundary re-
is carried out only with this choick. mains at the same order for the partition of the order ™f 2

attractors for each clustering condition, whetgis the num-
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the distance should decrease N 1)! is larger than 2. 045 -
Since forN>5, the former increases drastically faster than 04} N=5
. . N=6 i
the latter, the distance should decrease drasticallyNor 035 N=7
>5. Then forN>5, the probability that a basin boundary 03| N"_‘:g
touches with an attractor itself will be increased. Since this 025 | N=12 -

argument is applied for any attractors and their basin bound-
ary characterized by complex clusterings having combinato-
rially large M(N4, ... ,N,), the probability that an attractor
touches its basin boundary is drastically amplified for
>5. In fact, for a certain parameter regime (16#4<1.68
in the present cagebasin boundaries with such partitions are
dominant, and the ratio of Milnor attractors is increased. Al-
though this explanation may be rather rough, it gives a hint
to why Milnor attractors are so dominant ftw= (5-10). FIG. 4. The basin fraction of Milnor attractors for a GCM with
Since the above discussion is based mainly on simpléhomogeneous parameters. Her@) =ao+0.1x(i—1)/(N—1).
combinatorial arguments, what we need is instability in or-Plotted as a function of the parametgy; for N=5-8, 10, and 12.
bits leading to many attractors, and glolall-to-all) cou- (For N<4, the fraction is almost zero for adly.) The fraction is

pling to allow for permutations of elements. Then, the domi—CornIOUteOI in the same way as in Fig. 1, except that 100 trials of

£ Mil ttract foN=(5-10 b h perturbations were used instead of 1000. Since the clustering con-
nance of Milnor attractors foN=(5-10) may be rather dition cannot be used in this case, we checked whether the orbit is

common in globally coupled dynamical systems. To checky, yhe same attractor, by computing the temporal average(of

this possibility, we have also made numerical simulations fofer 5x 10° steps, before and after each perturbation. If the average
Josephson junction series arrays that are globally couplegyyrees to within a precision of 18, the orbit is regarded to be on
through a resistive shunting load and driven by an rf biaghe same attractor.

current [9], given by &;+g¢;+sind+go/NEN_; dm=lgc

+iysin((, ft). By using the parameter values adopted in Refof the basin boundaries for some parameter regime. Accord-
[9], we have computed the basin volumes for Milnor attrac-ingly the argument on the dominance of Milnor attractors for
tors, at the partially ordered phase where a variety of attraca homogeneous GCM can be applied here to some degree as
tors with many clusters coexists. Again, the basin volumesvell [13].

are close to 0 foN=<4, and increase at8N<<10[12]. Itis The term magic number %72 was originally coined in
also interesting that pulse-coupled oscillators with globalpsychology[14], when it was found that the number of
coupling also show the prevalence of Milnor attractors forchunks(items that is memorized in short term memory is
N=5 [2]. limited to 7+ 2 (see Ref[15] for possible relationship with

So far reports on the prevalence of Milnor attractors havechaosg. To memorizek chunks of information including their
been limited to a system with symmetry. For example, in theorder (e.g., a phone number &fdigits) within a dynamical
GCM (1), the permutation symmetry arising from employing system, let us assign each memorized state to an attractor of
identical elements leads to a combinatorial explosion in theak-dimensional dynamical system, as is generally adopted in
number of attractors as mentioned. Then, one may wondateural network studies. In thisdimensional phase space, a
whether the prevalence of Milnor attractors is possible onlycombinatorial variety of attractors has to be presumed in or-
for such highly symmetric systems, especially because somder to assure a sufficient variety of memories. Depending on
Milnor attractors are known to disappear when introducingthe initial condition (given by inputy, an orbit has to be
tiny asymmetried10]. We have therefore studied a GCM separated to different attractors. Then, a combinatorial explo-
with inhomogeneous parametef4l], given by X,.1(i) sion of basin boundaries is generally expected with the in-
=(1—e)fi(xn(i))+ (e/N)Z;f;(Xn(j)) with fi(x)=1—ax? crease ofk, if the neural dynamics in concern are globally
andaj=ap+a,(i—1)/(N-1). coupled(as often adopted in neural network¥hen, follow-

In Fig. 4, we have plotted the basin fraction for Milnor ing the argument in the present paper, Milnor attractors may
attractors with the change of the parametgrwhile fixing  be dominant fork>(5-10). (Recall that the number does
a,=0.1, forN=5-12. Although the fraction is smaller than not strongly depend on the choice of models, since it is given
in the homogeneous case, Milnor attractors are again olby the combinatorial argumentSince the state represented
served and their basin volume is rather large for some paby a Milnor attractor is kicked out by tiny perturbations,
rameter region. As in the symmetric case, the basin fractiomobust memory may not be possills] for information that
of Milnor attractors increases arouhts (5—10).(The frac-  contains more than Z2 chunks[19]. Although this expla-
tion is almost zero foN<4). Note that eventhough com- nation is a rough sketch, it can possibly be applied to other
plete synchronization between two elements is lost, clustersystems that adopt attractors as memory.
ings as with regards to the phase relationships can exist. For In dynamical systems, it is well known that the dimen-
example, there are two groups when considering the oscillasional cutoff=3 plays an important role for the existence of
tions of phases as large-small-larg.. andsmall-large- chaos. It is interesting then to investigate whether there are
smal ..., that are preserved in time for many attractors.certain higher dimensions that similarly form dimensional
Similarly, it is natural to expect an explosion in the numberboundaries beyond which the behavior of a dynamical sys-
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tem changes qualitatively. The present study may shed newf freedom may be covered by webs, resulting in uniformly
light on this possibility. Also, it is interesting to note that in chaotic behavior. If this argument holds, the degrees of free-
Hamiltonian dynamics, agreement with thermodynamic bedom required for thermodynamic behavior can also be dis-
havior is often observed only for degrees of freedom highefussed along the line of the present paper.

than 5-10[20]. Considering the combinatorial complexity | yould like to thank F. Willeboordse for critical reading
woven by all the possible Arnold welithat hence may be of the manuscript. This work was partially supported by a

termed “Arnold spaghetti}, the entire phase space volume Grant-in-Aid for Scientific Research from the Ministry of
that expands only exponentially with the number of degreegducation, Science, and Culture of Japan.
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