Physica D 41 (1990) 137-172
North-Holland

CLUSTERING, CODING, SWITCHING, HIERARCHICAL ORDERING,
AND CONTROL IN A NETWORK OF CHAOTIC ELEMENTS

Kunihiko KANEKO!

Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alumos, NM 87545, USA

Received 16 May 1989

Revised manuscript received 28 Scptember 1989
Accepted 2 October 1989

Communicated by A.V. Holden

A network of chaotic elements is investigated with the use of globally coupled maps. A simple coding of many attractors
with clustering is shown. Through the coding, the attractors are organized so that their change cxhibits bifurcation-like
phenomena. A precision-dependent tree is constructed which leads to the similarity of our attractor with those of spin-glasses.
Hierarchical dynamics is constructed on the trec. which leads to the dynamical change of trees and the temporal change of
cflective degrees of freedom. By a simple input on a site, we can switch among attractors and tune the strength of chaos. A
threshold on a cluster size is found, beyond which a peculiar * posi-nega™ switch occurs. Possible application 10 biological
information processing is discussed with the emphasis on the fuzzy switch (chaotic search) and hierarchical code (catcgoriza-

tion).
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1. Introduction

The study of networks of chaotic elements is
important not only as a model for nonlinear sys-
tems with many degrees of freedom, but also from
the viewpoint of biological information processing
and possible engineering applications. Here we
introduce the “globally coupled map” (GCM) as
the extreme limit of long-range couplings and a
simple network model of chaotic elements. The
simplest example is given by

%yer(1) = (1= 7 (5, (D) + % zf(x,,m)

(1)
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where # is a discrete time step and /i is the index
of an element (i =1,2,..., N = system size)™. We
choose here the logistic map f(x)=1—ax? as a
prototype for a system of globally coupled chaotic
systems.

The model is a mean—ﬁeld theory-type extension
of coupled map lattices (CML), which have been
proposed as simple models for spatiotemporal
chaos and extensively investigated [1-15]%2,

A CML is a dynamical system with a discrete
time, discrete space, and continuous state [1, 4-7].
It i1s a nonlinear model which consists of succes-
sive parallel procedures on a lattice. A typical

*'This model is an extremely simple case of globally cou-
pled maps and might be termed as “‘completely coupled™
“Sce for the intermittency in CML refs. [1. 3, 4, 10).
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example is the following diffusively coupled model:

x,41(8) = (1 =€) f(x,(i))

+he[f(x, (i + 1)) + f(x,(i - 1))].
(2)

where n is a discrete time step and i is a lattice
point (i=1,2,..., N =system size). The function
f(x) is a nonlinear mapping. The model has been
investigated as a prototype for chaos in spatially
extended systems, including extensions to a
higher-dimensional lattice, a different choice of
nonlinear function f(x). and different types of
couplings [1-12]. In CML, a parallel local nonlin-
ear transformation and the parallel diffusion pro-
cess are successively carried out.

The model (2) is the limit of short-ranged cou-
pling model (*‘nearest neighbor”). Our model (1)
is the other limit, of long-ranged coupling {15],
and can be regarded as the mean-field version of
(2).

Our dynamics (1) consists of a parallel nonlin-
ear transformation and a feedback trom the “mean
field”. Here the mean field obeys the relation
Z,'x,,.,. l(') = Z,-f(x,,(i)).

We note that the equivalent dynamics to (1) is
obtained by the transformation y, (i) = f(x,(¢)),

.
pen) = (1= 50+ 5 Zn()]- )

This form may be more familiar with researchers
in neural networks, if one chooses a sigmoid func-
tion (e.g.. tanh(Bx)) as f(x) and the coupling
term ¢ depending on elements.

The motivation of the present paper is as fol-
lows:

(I) In a short-ranged CML, we have seen a rich
variety of pattern dynamics and phase transitions
(see ref. [4]). Does our GCM give a kind of
“mean-field theory™ for the rich variety of phases
in the pattern dynamics in CML [4] and give any
better understanding of the transition?

(I1) If the frozen random state in CML is re-
lated with a “glassy” phase [4], can the model (1)
play a similar role for the state as that the
“Sherrington—Kirkpatrick (SK) model™ has played
for spin glass (SG) [16]? 1s there any significant
difference between our frozen state and SG?

(1D) Is there a way to “code” many attractors
(some of which are chaotic and others of which
are periodic)? Are there any bifurcation-like phe-
nomena associated with the change of attractors?

(1V) Is it possible o construct a tree-like struc-
ture and attach any hierarchical code correspond-
ing to the tree? Can we write down the hierarchi-
cal dynamics which describes the dynamics of the
motion in different levels?

(V) Can we switch among attractors as we like
through a simple input? Is it possible to “tune”
the strength of chaos by this switch? If the switch
works, 1s there any peculiar switching phe-
nomenon with possible applications to informa-
tion processing?

(VI) Is it possible to construct dynamics whose
effective degrees of freedom are slowly changing,
as are Lypically seen in the problem of the turbu-
lence with a coherent structure and also in adap-
tive systems?

All of these questions are answered in the affir-
mative.

The importance of globally coupled chaotic sys-
tems is not restricted to dynamical systems. They
are relevant to biological information processing,
physical systems with nonlinear elements and a
global coupling (e.g., fluid turbulence. Josephson
junction circuit), ecological models, evolutionary
models, and economics.

Recent cxtensive investigations on neural net-
works have given a simple example of applications
of statistical mechanics to a simple model of infor-
mation processing. The real neural dynamics in
the brain consists of the dynamics of an ensemble
of complex elements with complex coupling. Most
of current neural network studies adopt oversim-
plified elements (0-1 or a sigmoid function) with a
moderately simplified coupling. On the other hand,
it is known that even a single neuron or a small
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ensemble of neurons can exhibit complex dynami-
cal behavior like chaos or frequency locking [17).
Then, it is natural and important to ask the fol-
lowing question: What happens if we use sim-
plified elements (with chaotic response) with
oversimplified couplings instead, as a different
limit of simplification from the neural dynamics?
Our model gives the first endeavor towards this
direction. As we will see, the results are rather
promising. We can have a huge number of coded
attractors. Some attractors have tree-like struc-
tures with a hierarchical code and have similar
complexity with the SK model in spin glass [16],
which is the basis of one of the most popular
models in neural networks [18—20]. Upon the tree
structure one can construct hierarchical dynamics
in which the motion is governed by the “slaving”
from the higher-level cluster, strong interactions
among clusters of the same level, and a slight
feedback from lower-level clusters.

We also have to note that the tree structure in
our model is attached to each attractor. Our model
can have many attractors with this tree structure.
Thus we may say that our model forms a “forest”,
rather than a tree.

Possible applications of our model include a
regular posi—nega switch, a fuzzy hierarchical
switch, and categorization as hierarchical cluster-
ing.

Other examples of globally coupled nonlinear
elements include the dynamics of vortices in fluid
dynamics. The motion of a vortex is governed by
global coupling to all other vortices [21]. Coupled
Josephson junction circuits [15] are another exam-
ple from physics.

In population dynamics, global constraint from
the “environment” is important. The dynamics of
each species is described by the inherent dynamics
of the species and the interaction with the envi-
ronment. The dynamics of the environment, on
the other hand, depends on all species.

In a similar context, Eigen and Schuster [22]
have proposed an equation for evolutionary dy-
namics of the population of RNAs. It consists of a
growth equation for each RNA and a constraint

from the food source which is globally coupled to
all the numbers of RNA species.

In economics (e.g., stock market), again, local
complex dynamics and global feedback are impor-
tant.

Of course, our model may be too simple to
discuss these systems. Especially, the choice of the
identical function f(x) and the identical coupling
for every element must be too simple to give a
realistic model in the above fields. However, we
may hope that some of the novel features pre-
sented here are useful in these systems, too. Up to
now, we have very few examples of simulation
with complex dynamics and global feedback. Thus
it is important to investigate the simplest model
with these features and to find novel notions and
phenomena which our model can provide. We can
then proceed to consider their applications and
extensions to more realistic models for the above
examples.

The organization of the present paper is as
follows: In section 2, we classify attractors by the
structure of clusterings and introduce a simple
coding of attractors. Section 3 is devoted to the
phase diagram of our model and the correspon-
dence of our phases with those in a short-ranged
CML [4]). Suppression of chaos in a few-cluster
attractor is shown. In section 4, the change of
dynamical nature with the clustering structure is
discussed. In section 5, “precision-dependent clus-
tering” is introduced to investigate the hierarchical
structure of clusterings. A tree-like structure is
constructed. Construction of hierarchical dynam-
ics in our system is presented in section 6, where
the “chaotic revolt” against hierarchy is found.
We discuss the switch among coded attractors by
simple successive inputs in section 7. We can jump
among coded attractors as we choose (determinis-
tic switch). The posi-nega switch with intermit-
tency, stochastic switch, and hierarchical switch
are also found. In section 8, we discuss the tran-
sient process before the system falls into attrac-
tors. Section 9 is devoted to discussions on the
relevance of our results to problems of biological
information processing.
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2. Clustering and coding of attractors

Let us discuss the possible types of attractors in
our model (1). The simplest attractor is a coherent
one with x(i) = x(j) for all i, j, in which case the
motion is governed just by the single logistic map
x,+1 =f(x,). The stability of this attractor is cal-
culated by the Jacobi matrix J, for the dynamics
(1), i.e., the product of the matrices

Jo=f(x,)[(1—€)I+(e/N)D],

where the matrix I is a diagonal matrix with
elements 1 (9, ;) and D is a constant matrix
whose elements are all 1. The stability is calcu-
lated by

; n 1/n
;= lim (jth eigenvalue of [ J,
n— oo k=1
(j=1,...,N). (4)

After simple algebra, we obtain the eigenvalues
Ii=yand I;=y(1—-¢) (j=2,...,N) (N-1)
fold degeneracy). Here y = exp(A,), where A, is
the Lyapunov exponent of the single logistic map.
The eigenvector corresponding to the eigenvalue y
is given by (1/VN)(1,1,...,1)". Thus, the ampli-
fication of a disturbance along this eigenvector
does not destroy the coherence. Eigenvectors for
the other N — 1 eigenvalues are not uniform of
course, and the amplification (which occurs if
|3 > 1) along these vectors destroys the coher-
ence. Thus the stability condition of the coherent
attractor is given by |y(l1 —¢)| <1, or in other
words, by

)\0+]ogl(1 —e€)<0. (5)

Besides the above single-clustered coherent at-
tractor, we have attractors with clusterings. A
cluster is defined as the set of elements in which
x(i)y=x(j) for i, j, thatis, x(i)=x(j)for i, j&
the same cluster.

We can classify the state of our GCM by the
number of clusters k& and the number of elements

Fig. 1. Schematic figure for clusterings: (a) Coherent attractor.
(b) Few clusters (k = 3). (¢) Many-cluster attractor with un-
equal partition. (d) Many-cluster attractor with 4 = N.

for each cluster N,: (see fig. 1 schematically).
Unless otherwise mentioned, we use such labelling
of clusters that N, 2 N, > --- = N,.

If our system is attracted exactly to a k-cluster
solution with (N, N,,..., N,), our system never
goes out of the state with this clustering, since the
motion for x,(i) and x,(j) at time n>m are
governed by exactly the same dynamics if x, (i) =
x,,(j)holds (x,(i) = x, (/) if x,,(i) = x,(j)). Our
attractor is therefore characterized by the cluster-
ing condition [k, (N}, N,,..., N))*.

Besides the coherent attractor (1), we have the
following types of attractors (see fig. 1).

(2) Attractors with a small (much smaller than
N) number of clusters.

(3) Attractors with a large number of clusters
(of the order of N), with large N,. An example of
clustering is [k = N/2 + 1,(N/2,1,1,...,1)).

(4) Attractors with a large number of clusters
(of the order of or equal to N), and all N/’s are
small (1 or 2). A typically observed case is k = N
and N;=1 for all j.

The distinction between (2) and (3) looks some-
what arbitrary, but we can make a clear distinc-
tion by calling attractors type (2) if the number of
clusters does not increase with N. The distinction

“Approximate (not exact) clusterings can change tempo-
rally, as will be discussed in section 6.
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between (3) and (4) can be judged by the condi-
tion whether the maximum of N, increases with N
or not.

Some examples of the dynamical behavior of
these attractors are shown in fig. 2.

If our system is fallen into a k-cluster attractor
with (N, N,,..., N.). the dynamics is writlten by
the following k-dimensional map:

k
Xia=0-f(X)+ XL e, f(X2). (6)
p=1

where X! denotes the value of x, in the »th
cluster, and the “effective coupling” ¢, is given by
€,=€(N,/N).

The stability of the k-cluster state, however, is
determined not only by the above k-dimensional
map. To destroy the coherence within a cluster,
amplification of a small disturbance x(j)— x(i)
must occur for the elements i, j belonging to the
same cluster. This condition is again calculated by
the products of Jacobi matrices for the N-dimen-
sional map (1), as in eq. (4). If all the absolute
values of eigenvalues of (4) are less than 1, the
state is obviously stable (the attractor is periodic).
If all the elements of an eigenvector corresponding
to the eigenvalue whose absolute value is larger
than unity take an identical value in each cluster
(e.g., v(i)=1 for i Ecluster A, and v(;)=0 for
Jj € A), the amplification of a disturbance along
this eigenvector does not destroy the coherence
within each cluster. Since the number of indepen-
dent vectors with the above condition is less or
equal to k, we get the following proposition:

Proposition. The number of positive Lyapunov ex-
ponents for a k-cluster attractor in our system (1)
cannot exceed k.

2.1. Coding versus partition

Since a fixed set of numbers [k.(N,, N,,.... N)]
is attached to each attractor, we can code each

attractor by this set of numbers. If the k-dimen-
sional map (6) has a unique attractor®* which is
stable in the criterion of the N-dimensional Jacobi
matrix (4), this coding is complete. A unique at-
tractor is assigned by the above code.

In principle, the k-dimensional map (3) can
have more than one attractor. It can happen that
more than one of these attractors are stable in the
original N-dimensional dynamical systems (1). If
this 1s the case, the coding by (N, N,..... N,) is
imperfect and we can have more than one attrac-
tor corresponding to this clustering. Although this
case is rather rare, we have encountered a few
examples for £ = 3 numerically.

In a 2-cluster case, the coding is very simple.
Attractors are coded just by a single number N,,
since N, =N — N,. Similarly a 3-cluster attractor
is coded just by N, and N,.

If we distinguish each element i, there are
NI/(N,IN, ... N,1) ways of partitions with the
clustering condition (N, N,,..., N;). Thus we
have exponentially many attractors for each clus-
tering condition. Even in the simplest case of
2-clusters, we have N!/(N!(N — N))!) attractors
for each N, condition.

If we use our system for the storage of informa-
tion, and try to store the information in each
attractor, we can store N!/(N'N,!.. N, !) pat-
terns for the clustering condition (N, N,, ..., N
We can have large capacity of information stor-
age. To quantify the above capacity we introduce
the clustering entropy defined by

k
§=- glp(j)logp(j) (7)
with
p(k)=N,/N. (8)

#4 . .

We exclude the attractor with X* = X* for some pair of p
and », since the equality leads to clustering with a smaller
number. Our system is described by a lower-dimensional map.
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Fig. 2. Examples of time series of attractors: x, (i) for all ¢ plotted as a function of time n. If there arc only & lines (k < N), the
system has fallen to A-clusters. N =50, (a) 3-cluster attractor: ¢ =18, ¢=02; N =18, N, =18 N;=14 (1000 < » £1032). (b)
Attractor with k=27 a=195,¢=02; Ny =24 and N; =1 (27 2 2 2 (1000 < n < 1032). (¢) N-cluster attractor (N;=1, for all j):
=20 =02 (1000 < n < 1032).
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As the distribution is closer to equal partition
(e, N;=N)), the possible combinatorial number
N/(N\, N,1,..., N.") gets larger and the cluster-
ing entropy takes a larger value. If many elements
are concentrated on one cluster (e.g., N, > N)),
the combinatorics and the entropy take a small
value even if & is large.

3. Phases and basin distribution

We take an ensemble of initial conditions, to see
a variety of attractors and the basin volume for
each attractor. By sampling many initial condi-
tions, we can calculate the cluster distribution
function Q(k). which is defined as the basin vol-
ume ratio for a k-cluster attractor. Numerical
calculation is carried out in the following way:
Take randomly chosen, many (M) initial condi-
tions. By counting the number of initial conditions
which lead to a k-cluster attractor, and dividing it
by M, we obtain Q(k). Q(k) is an analogue of the
pattern distribution function studied in CMLs [4].

According to the numerical results we can clas-
sify the phases as follows:

(1) Coherent phase: coherent attractors have oc-
cupied (almost) all basin volumes.

(ii) Ordered phase: few-cluster attractors have
occupied (almost) all basin volumes.

(iii) Partially ordered phase: coexistence of
many-cluster and few-cluster attractors.

(iv) Turbulent phase: all attractors have many
(=N) clusters.

In the coherent phase, almost all attractors
are coherent, i.e., x(i)=x(j)forall i, j. Q(1)=1
in this phase.

In the ordered phase, only a few-cluster at-
tractor has a basin volume. More precisely,
Q(k)=0 for k> k_ with k, independent of N.
For numerical simplicity, we can roughly check
this by the condition Q; =%, .  ,Q(k) = 0% and

*3This criterion for many-cluster is flexible, One can choose
a different criterion, like L, . v/4Q(k). Our phase diagram
essentially is independent of the criterion, although minor
changes of boundary between phases are possible.

Q1) # 1. In most cases numerically observed so
far, only few Q(k)’s take nonvanishing values.

In the partially ordered phase. both few-cluster
attractors and many-cluster attractors coexist. Al-
though Q(k) for small k takes a nonzero value,
there is no upper bound for the number of clus-
ters. Numerically it is distinguished by the condi-
tion X, 5nQ(k)>0 and X, . n,,Q(k) > 0. We
call the partially ordered phase as “intermittent
phase” when it is adjacent to the turbulent phase,
while it is called as *“glassy phase™ if the phase is
between two ordered (or coherent) phases in the
phase diagram. Reasons for this nomenclature are
that (a) the dynamics in the ““intermittent phase”
gives typical intermittent behavior in spacetime [1.
4], and (b) in the glassy phase the competition of
some attractors with different cluster size leads to
the frustration (note that the randomness and
frustration are two basic ingredients of glassy be-
havior).

In the turbulent phase, most attractors have
many clusters, i.e., @(N). Here it is distingunished
numerically by the condition £, . » ,Q(k)=1.

A simple quantification of the attraclors is the
use of average cluster number R = LY_ AQ(k). In
the coherent phase R=1, while R=b<« N for
the ordered phase, and R =rN for partially or-
dered (r < 1) and turbulent phases (r =1).

A rough phase diagram is given in fig. 3. It is
obtained through the simulation of our model for
the parameters ¢ =14.141,...,2.0 and €=
0.02,0.04.0.06,....0.4. The phases are determined
from Q(k) which is calculated through M = 500
samples, after the transients of 2000 steps, and
N =200. In the diagram, “(1, 2)” means the or-
dered phase of dominant cluster size 1 or 2, and
“(1. 2, 3)” for the dominant cluster sizes 1, 2, 3.
etc. Here we call the cluster size dominant if
Q(k)>0.1. Again this criterion is not important.
since the dominant cluster occupies almost all
basin volumes, except in the vicinity of phase
boundaries. Actually in the region marked as “(2)”,
0(2)=1.and in “(2. 3)", Q)+ Q(3) = 1, etc.

Q(k) for k<5 and Q, as a function of a are
plotted in figs. 4, 7, 8, and 10 for ¢ = 0.1, 0.2, 0.3,
and 0.4. Let us survey the change in each e.
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Fig. 3. Rough phasc diagram: Phases are determined by Q(k). calculated from 500 randomly chosen initial conditions and & = 200.
The parameters are changed from @ = 1.4 to 2.0 by 0.01 and € = 0.02 to 0.4 by 0.02. Numbers such as (1, 2, 3) represent dominant
cluster numbers (with basin volume ratio more than 10%). The single arrow at the bottom line shows accumulation of period-dou-
bling bifurcations, while the double arrow denotes the band merging point for the single logistic map. The region with oblique lines

correspond to the period-3 window in the logistic map.
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Fig. 4. Cluster distribution Q(k) for e=0.1 (1 <k <5) and Fig. 5. Average cluster number as a function of a. Calculated
Q,. plotted as a function of ¢ for L4<a<20. ¢=01, N=
200. O(1)=0 for these parameters. Calculated from 1000
randomly chosen initial conditions, after 3000 transients.

as in fig. 4. €= 0.1.
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(i) e=01

The coherent attractor has a too small basin
volume to be observed even in the parameter
region where A,+log(l —€)<0. For a<1.62,
the ordered phase appears. We note that the
dominant cluster size increases from k=2to k=3
and then to k = 4. The second-order type transition
is clearly seen in fig. 5: The average cluster number
increases for a > 1.61, and reaches N at a = 1.69.
Examples of the dynamics of 4-cluster and 6-
cluster attractors are shown in fig. 6. Note the

band splitting and periodic motion of these
attractors.

(i) e=0.2

Around 1.48 < a <1.52, a glassy state appears.
Except this small parameter regime, we have the
ordered phase with a dominant 2-cluster attractor
for a<1.76. Especially for 1.56 < a <1.68, the
2-cluster attractor has occupied all the basin
volumes within our calculation. The motion there
is quasiperiodic if ¥, = N,. As N, — N, is increased

I}\/\/\A/\/\/v\/\/\/\/\/V\/\/\/\/\/\A/\/\/\/\/\/\/\/\/\/\/\/\/

z,(%)

-1 n/2: time ( per 2 steps )

500

TNt

ity

) \

a

564

!
IRRORRIR XXX

za(2)

gyuyy

-1 nf2: time ( per 2 steps )
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wmommm» mmmm mmmmw mm , W |

i

i

b

1064

Fig. 6. Some examples of attractors for e =0.1, N =50. Time serics of x,,(i) (n= 500,501, .., 564) plotted for (a) a=1.58.

(k =419, 15,15, 1)) (b) a=1.60, (k=6,[12, 9. 8, 8, 7, 6)).
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(

Basin Volume Ratio Q(k)

Fig. 7. Q(k) for €= 0.2 plotted as a function of a. calculated
in the same manner as in fig. 4.

the motion changes to period-2, and then exhibits
the period-doubling to chaos (see section 4). For
1.68 < a < 1.86, the basin volume is divided into
2-cluster and 3-cluster attractors. Chaos is strongly
suppressed in these parameter regimes. For larger
a, the basin for many-(@(N)-) cluster attractors
increases till it occupies almost all volumes at
a>1.99.

(iii) €= 0.3

For a <1.54, we have found only a coherent
attractor. For 1.56 < @ < 1.80, our system is in the
glassy phase, in which few-cluster and many-
cluster attractors coexist. The maximal number of
clusters can be N, while the minimum is 1 or 2.
For a> 1.7, the basin volume for 2-cluster
attractors starts to occupy a large ratio. The ratio
increases with a, and for a > 1.88, the system has
fallen into the ordered phase in which the 2-cluster
attractor occupies almost all basin volumes. The
motion of 2-cluster attractor is much more regular
than the single logistic map.

(iv) e=04
The coherent attractor occupies all the basin
volumes for ¢ < 1.84. The basins both for many-

c
-

<
-3
Femee
'

Basin Volume Ralio Q(k)
=3

e

18 b4

3%

Fig. 8. Q(k) for ¢ = 0.3 plotted as a function of «, calculated
in the same manner as in fig. 4.

cluster and 2-cluster attractors increase with a, for
a > 1.84. We have not seen the ordered phase with
k=>2.

For € < 0.25, the coherent attractor has a very
small basin volume even in the periodic window
regime of the logistic map, where the existence of
such attractor is assured by eq. (5). For example,
Q(1) =0 even in the parameter regime for the
period-3 window in the logistic map (a = 1.75)%9,

In all these examples, the motion of a 2-cluster
attractor is period-2 band (chaotic/periodic) (see
fig. 11). The two clusters oscillate out of phase
with each other: In one cluster x(i) changes as
+—+ —..., while the other as —+ —+ ...,
where +, — is distinguished by whether x(i) > x*
or not, with x* as the unstable fixed point of
logistic map (V1 + 4a — 1)/2a (this distinction is
also used in a short-range CML [4]). If N, =N,,
the motion of (wo clusters is symmetric. As N, —
N, increases, the asymmetry between the motion
of two clusters grows (see fig. 11), accompanied by
the bifurcation to chaos to be discussed in sec-
tion 4.

*CAL e = 0.3, we can see the increase of (1) in the period-3
window of the logistic map (sece fig. 8).
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Fig. 9. Average cluster number as a function of 4. ¢=0.3, for
N =200 and N =400, calculated in the same way as in fig. 4.

In a 3-cluster attractor, the system splits into 2
“mega-clusters” which oscillate out of phase just
like 2-cluster attractors. One of the two mega-
clusters splits into two subclusters which oscillate
in-phase in the period-2 band, but out of phase in
the period-4 (see fig. 12). 4-cluster attractors and
many-cluster attractors are formed in a similar

o
o

o
o

o
RS

o

Basin Volume Ratio Q(k)

Fig. 10. Q(k) for € = 0.4 plotted as a function of a, calculated
in the same manncr as in fig. 4.

way (see fig. 6). This leads to the hierarchical
clustering to be investigated in section 5.

3.1. Correspondence of our phases with those in
short-ranged CML

Since our GCM is a mean-field version of a
short-ranged CML, it is important to compare our

2ol

1

Rl

n: tume 1032

1
1000

Fig. 11. Time series of 2-cluster attractors for a =188, e=0.3, and N =100. x,(:) is plotted as a function of time » (n=

1000,1001,...,1032). (k = 2.[59, 41)).
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phases with those in the short-ranged CML, pre-
sented in ref. [4].

(A) Ordered phase (GCM) versus pattern selection
(CML)

First, few domain sizes (in CML) or few cluster
numbers (in GCM) are selected.

Second, chaos is suppressed in both cases.
Actually, the motion of a few-cluster attractor is
more regular than that of the single logistic map
for the same parameter. The 2-cluster attractors,
for example, are period-2 or in a period-2 band
with quasiperiodic or weakly chaotic modulation.
On the other hand, suppression of chaos in the
pattern selection in a short-ranged CML has been
investigated in ref. [4].

The reason for the suppression of chaos in a
few-cluster attractor is seen in the proposition
about positive Lyapunov exponents in section 2. If
the chaos were too strong in a k-cluster state,
there would be more than & positive exponents.
Then the state should be unstable against a
higher-dimensional perturbation. The state could
not be confined within the k-dimensional dynamics
(6). Thus strong chaos is inhibited in a few-cluster
attractor. (For numerical results on the Lyapunov
spectra see section 4.)

(B) Glassy phase (GCM) versus frozen random
pattern (CML)

First, both phases have a huge number of
possible attractors; second, the size of clusters
(or domains) can take almost arbitrary values,
depending on the initial conditions; third, the
motion there splits into some bands and the
temporal power spectrum of x,(i) has § peaks
together with the continuous parts. Fourth, the
strength of chaos is enhanced as the domain size
(CML) or cluster size (GCM) is increased.

(C) Intermittent transition

The transition to the turbulent state is common
between GCM and CML. The motion at the
transition regime is temporally intermittent. In
GCM, there is a critical behavior as

Or=(a-a)". ()

Corresponding critical behavior of disordered
parameter is seen in CML as 1-X 0(p)«
(a—a,)®, where the sum runs over all possible
selected domain sizes p [4]. Detailed study on the
exponents will be left for future.

z,(%)

-1 n/2: time ( per 2 steps )

500

b

564

Fig. 12. Time serics of 3-cluster attractors for a =175, ¢=02, and N =50. x,,(/) is plotted as a function of time n (n=

500,501,...,564). (k= 3.[23, 14, 13)).
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(D) Turbulent phase (GCM) versus fully developed
spatiotemporal chaos (CML)

In both phases, there is a small correlation
among elements. In CML, the spatial correlation
decays exponentially, while there is almost no
correlation among elements in GCM. The motion
in both phases gives fully developed chaos without
any & peaks in the temporal power spectrum. Both
motions are well described by the random process.

(E) Coherent phase versus absence of frozen patterns

In GCM, a coherent phase is dominant for large
¢. No ordered phase is observed. Corresponding to
it, there is neither frozen random pattern nor
pattern selection in a higher dimensional CML
with a large coupling [4].

4. Cluster bifurcation

How does the dynamical nature of each attrac-
tor change with [k,(N,, N,,..., N,)]? This prob-
lem is directly related with the bifurcation, since
the change of N, leads to the change of effective
coupling parameters ¢, in the k-dimensional map
(6).

As the simplest case, we start with 2-cluster
attractors. If we confine ourselves to 2-cluster so-
lutions, the dynamics (1) is written as the two-
dimensional coupled map [23]

X:+1 =(1- ‘2)f(x:£) + E2f(Xn2)’
an+1 =(1- el)f( an) + €1f( X'}) (10)

with X}, X2 as x,(i) for each cluster, and €, , =
(N, ,/N)*".

Thus the change of N, corresponds to the change
of bifurcation parameter in the two-dimensional
map. We have to note, however, that the above
reduction is possible only after the system has
fallen onto 2-clusters.

*"Here we adopt a slight diflferent labelling of clusters
(N). Ny). We call the cluster “1™" if the site 1 belongs to it. Thus
N, = N, is not necessarily satisfied.
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Fig. 13. Cluster bifurcation for 2-cluster attractors: X} = x, (1)
(7 =2000,2001,...,2260) is plotted as a function of N|. N =
1000. ¢ =0.2. To change the attractors, the switching method
in section 7 is used.

In fig. 13, two examples of cluster bifurcation of
2-cluster attractors are shown, where X} = x, (1)
(n=2000,2001,...,2260) are plotted as a func-
tion of N,

The above 2-cluster attractors exist for N —
Npe Ny € Ny (N, = N/2). The threshold N,
is numerically obtained. It is proportional to N
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Fig. 14. ¢= Ny /N as a lunction of a (for ¢=0.2). Calcu-
lated from a system with N =200, and with the use of switch-
ing in section 7. ¢ goes to 0.5 at a=12 and a=1.92. Below
1.2 and beyond 192, any 2-cluster state is no longer an
attractor.

(Ny,, = cN). The coefficient ¢ depends on a as in
fig. 14. It increases with a and then decreases
down to 0.5, where the 2-cluster solution loses its
stability.

So far, we have observed two types of bifurca-
tions in the cluster-size change.

One is the period-doubling bifurcation, which is
typical at € =0.3. In fig. 13a, X! clearly exhibits
the period-doubling “bifurcation” cascade to
chaos as N, is changed. As is stated, this is not a
bifurcation in the usual sense. The parameter is
fixed here and all what we have done 1s arrange
attractors in the order of N,. In other words, we
have found a simple way to organize many attrac-
tors, through which the change of attractors can
be seen just as in a bifurcation diagram.

The other 1s a quasiperiodicity—chaos transition
with period-doubling bifurcation, which is ob-
served for smaller € (e.g., 0.2). For an example, see
fig. 13b. The motion is quasiperiodic*® with some

*%The quasiperiodicity is checked by the calculation of
Lyapunov exponents. In fact, the maximal exponent is zcro
within the numerical error for 0.45 < N, /N £ 0.55 in the cxam-
ple of fig. 13b.

lockings if Ny = N,. As N, — N, is increased, the
attractors exhibit period-doubling Lo chaos from
period-2. After some band mergings, the 2-cluster
attractors become unstable (N, hits Ny).

In 3-cluster attractors, we can see a co-dimen-
sion-2 bifurcation with the change of N, and N,.
Again, we have observed quasiperiodicity, lock-
ings, and period-doubling to chaos. There is a
threshold on N, and N,, beyond which 3-cluster
attractors are no longer stable. Near the edge of
threshold, the motion is chaotic. As N, and N,
approach the threshold, the number of positive
Lyapunov exponents increases from 0 to 2, and
their magnitude grows. We can tune the dynami-
cal state of our system, through changes of cluster
sizes.

In a similar manner, we can see the bifurcation
in a k-dimensional space for k-cluster attractors.
If we take all the possible attractors of different
cluster numbers, we can have bifurcations not only
in the parameter space with a fixed number of
parameters, but with a variable number of parame-
ters and dimension.

In all the examples of few-cluster attractors, the
motion is periodic or quasiperiodic if the cluster-
ing is close to the equal partition (N, = N;). The
motion becomes chaotic, as the differences among
N,’s are increased and the system approaches the
edge of the stability of this cluster solution.

To see the change of strength of chaos by
attractors quantitatively, Lyapunov spectra are
calculated from the products of Jacobi matrices.

In fig. 15, we have plotted the Lyapunov spectra
for attractors with different numbers of clusters.
As a simple way to see the change of strength of
chaos, (1) Kolmogorov-Sinai (KS) entropy calcu-
lated by the sum of positive Lyapunov exponents,
and (ii) maximal Lyapunov exponents are plotted
with the change of number of clusters (see fig. 16).
In the example. the number of positive Lyapunov
exponents is about £ — 3 ~ k& for attractors with
large k (>30). It roughly increases linearly with %.
The maximal Lyapunov exponent increases slowly
with k, and KS entropy increases faster than it
with k.
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Fig. 17. Lyapunov spectra for the turbulent attractor for ¢ =
1.75. ¢ = 0.1, and & = 50. Calculated in the same way as in fig.
15, taking randomly chosen 10 initial conditions, all of which
lead to the attractor with £ = N.

These results clearly show the suppression of
chaos in a smaller number of clusters. We note
that not only the number of chaotic degrees of
freedom, but also the strength of instability in
each cluster (e.g., maximal Lyapunov exponent)
increases with the number of clusters.

In the turbulent regime, the spectra have smooth
forms. We have sampled many initial conditions,
but all of them give the same spectra within our
precision. This suggests that the attractor is unique
in our turbulent regime.

5. Precision-dependent clustering and
hierarchical code

In the examples of figs. 6, the distance between
values of some clusters are much closer than the
distance between those of other clusters. We have
also observed an attractor with one large cluster
and many small clusters (e.g.., N, =(N/2
1,1,...,1) in the partially ordered phase. If we



152 K. Kaneko / Network of chaotic elements

|
|
_ - 1 = o
= | = !
%3 _..' fo< L'l' /—t:g
| | —|
| B H- R
| 'l / ,;-—_:: ~
A T D — =
i \.\ T0100 <0101 _ L e
4\"'—77:j :gugg}k—,,:
_ a = b ]
[).5||||w||||x|||| ,0.5IAIII|X|I¢I\]|1|1
0 5 10 15 20 0 5 10 15 20
LOG2(P) LOGR(P)
e
"o 5 (0 1% 20 0 5 10 5 20
LOG2(P) LOG2(P)
Fig. 18. Precision-dependent tree: X/ (i) plotted for all i, at # = 50000, with the change of he precision P as P=2" (m=1.2,..., 30).

N =1000. (a)-(c): ¢ =1.92, ¢=0.2 from three randomly chosen initial conditions. (d) ¢ =1.90, ¢ =0.1. (We have checked other
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look at these clusters closely, we notice that the
distance between two small clusters |X*— X"|
(g, »>1) is much smaller than the distance be-
tween the large cluster and a small one | X' — X”|.
To discuss this kind of structure, we need the
notion of “distance” between clusters.

For this purpose, we introduce the coarse-
grained measurement of x, (i) and then the notion
of precision-dependent clustering.

Here a coarse-grained measurement is defined
as

x7(i)=[Px,(i)] /P, (11)

where [...] is the integer part of... and P is an
integer which gives the precision. The above
coarse-graining gives digital values with m/P
(m=0,+1.+2,...) The precision-dependent
clustering is defined by the clustering for x7(). If
¥Pi)y=XxF(j) holds, the elements i and j are
regarded as belonging to the same cluster within
that precision P. The precision-dependent cluster
number k[ is defined as the number of clusters at
time n with precision P.

As the precision is increased, the clusters split
and their number k7 increases until it goes to the
exact cluster number k. To see this process, we
introduce the precision-dependent tree. In fig. 18,
xP(i) is plotted with the change of precision P,
for i=1,.... N, for fixed n. The number of lines
at a given P gives the number of clusters at the
precision. We can see the tree-like organization.

Four tree structures of different attractors are
shown in figs. 18a-18c for a =192, and ¢=0.2,
Note the variety of tree structures.

The tree structure is close to be symmetric in
the turbulent region (see fig. 18d), while it is
strongly asymmetric in a glassy or intermittent
phase. A typical asymmetric tree consists of one
big branch without any more smaller branchings
and many branches with small bifurcations (see
fig. 18b). In most attractors of this type, the num-
ber of elements N, in one big branch is compara-
ble to the sum of all numbers of elements in other
branches.

Based on this tree structure, we can have a
binary hierarchical code for the clustering, as has
been used in various fields. Each cluster is coded
by a sequence of binary numbers [0,1].[0,1],... as
in fig. 18a®°. In some clusters this code has a short
length, while some other clusters have many
branchings. The length also depends on attractors.
We often use this binary code instead of the code
in section 2, to discuss the hierarchical nature of
clustering.

In the partally ordered phase, we can have a lot
of attractors ol different tree structures. This kind
of tree has already been discussed in the spin glass
system (SK model) [16]. Comparison of our glassy
state with the SK model is summarized in table 1.

To understand the whole structure of our sys-
tem with an ensemble of trees, we have to study
the ensemble of trces (“forest’”). To understand
the forest, it may be relevant to extend some
notions developed in the study of SK-model, like
the overlapping among trees and replica methods
[16]. This study will be left for future.

5.1. Storage versus precision

The clustering entropy in section 2 is easily
extended to the precision-dependent clustering en-
tropy as

KNP NP
§sP=-3 —NIlOg(Tj)‘ (12)
j=1 :

where N/ is the number of elements in the jth
cluster of the precision P. As P is increased, the
entropy S” is increased till it takes the value of
clustering entropy S. S gives the capacity of
information storage in our system with preci-
sion P.

*The binary code here is not compressed. In fig. 18a,
& =6<2% bul we require 4 bit lengths. since some of binary
codes arc degenerated (e.g., the codes 1. 001, 011 in the figure
have no more branching). We may usc the notations 1% + «,
001 . and 011 = instead. where * gives the mark for “do not
care”, as is used in the classifier systems [24).



154 K. Kaneko / Network of chaotic elements

Table 1

Comparison of our model (GCM) with SK model for spin glasses.

System spin glass network of chaos

Model SK model GCM

Randomness given created by chaos
static dynamic

Tree for a metastable state for an altractor
static dynamic

Forest for an ensemble for an ensemble

of attractors

of metastable states

In fig. 19, we have plotted k” and S as a
function of precision P, for ten randomly chosen
initial conditions. For attractors with many clus-
terings, k7 and S increase almost proportionally
to log(P) up to some precision and approach &
and S. In the turbulent regime, #” and S7”
smoothly increase till they approach N and
log(N). Results from different initial conditions
give the same curve, which again supports the
conjecture that there i1s a unique attractor in this
regime.

6. Hierarchical dynamics

The dynamics of our system may be better
represented by a hierarchical code, which leads to
the description of hierarchical dynamics.

Here the meaning of hierarchical dynamics is as
follows: In a hierarchical dynamical system. there
are many units of different levels, organized in a
tree structure. A unit interacts strongly with the
other units of the same level. A unit at the lower
level is slaved by the unit of its upper level, while
there is a small feedback from a lower-level to the
higher level. A metaphorical example of hierarchi-
cal dynamics can be seen in the dynamics of
society. In a society, there are hierarchies like
nation, states, city, town and so on. The impor-
tance of this kind of system on our mind is
typically seen in our ability of “categorization”,
and 1is stressed by Minsky as *“Society of Mind”
[25]. Also we can easily expect the importance of
the hierarchical dynamics in ecology and eco-
nomics.

Haken has proposed the slaving principle
[26)#1°, which focuses on the constraint from a
higher level to lower level. The dynamics in the
tree structure is also discussed as ultra-diffusion in
ref. [28]). and in the context of the dynamics of
spin glass [16].

Here we show explicitly that our system belongs
to the hierarchical dynamical system in the above
sense, if it has hierarchical precision-dependent
clusters in section 5.

As the simplest case we consider a 3-cluster-
altractor with the tree structure in fig. 21. The
three clusters can be coded by 1, 01, and 00. From
eq. (6) with k =3, the dynamics of each cluster
X5 X X% is written as

Xoar = (1= n%) f(X}) + n%s (X))

+n%%f( X2). (13)
X0, =[1=(n" +n%)e] (X2

+n‘ef(X,f,) +r10°ef( X,go , (14)
XP = [1=(n'+n")e] F(XP)

+nlef( X)) +n®%f( X2, (15)

where n'=N!/N, n®" =NY/N p0=NY/N
and n®=n" + n®. Let us introduce the dynamics
of a mega-cluster which is a higher-level than 11
and 10. The simplest way for this is the introduc-
tion of the weighted average of the two clusters
X" and X%, as given by X"=(n"X" +
n®x%) /n® This gives the dynamics of the node

#0For the slaving principal in a stochastic system, sce ref.
[27).
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at the higher level*!!. The motion of lower-level
clusters X% and X" is described by X° and a
small discrepancy from it*!2 Introducing the no-
tation of X% =X0+§% and X% = x04§w
(note that n®8% + %% = 0), and taking the or-
der up to (8)2. we obtain

Xper = (1= n) (X)) + n%f (X))

€ 0,00
+ 2——( 80 f( X2), (16)
“—‘%(83?) £ an

mll (1—€)f(X'2)8,20

(1 _E)(l _nOO/nOI)( 'm ) "(XO)
(18)

(For the logistic map f(y)=1—ay? the above
equations are rigorous even in any higher order,
since f“(y)= —2a (constant) and higher-order
derivatives of f( y) vanish.)

First we note that the dynamics of X° and X!
is the same as eq. (10) for the 2-cluster, up to the
order of &. Our system behaves as if 2-clusters
were interacting. In second order of & there ap-
pears corrections to this dynamics. Thus we can
view our 3-cluster dynamics as that of 2-clusters
with some additional small corrections by the
motion of sub-clusters (X% and X%'). The mo-
tion of sub-clusters is governed by the higher-level

*UThis introduction of x° is not unique. We can take a
different way of averaging. Another useful way is the definition
by

SOX0) = [0 (X +n®p (X)) /0.

If we use this average, we can remove the dependence of the
dynamics of x' on § (cq. (16)), and the equation for X' is the
same as that for the 2-cluster case (cq. (10)). (Instead
the equations of X' and 8 are more complicated.) Anyway,
other choices of average give the same result up to the first
order of 8.

*12By the notion of “precision-dependent clustering” we
can assume that the discrepancy is a smaller order than X°,
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Fig. 21. Precision-dependent clustering of a 3-cluster-attrac-
tor. with a hicrarchical code.

cluster (“slaved”). There is a first-order correction
which separates the sub-clusters from the higher-
level cluster. This correction dynamics (the first
term in (18)) again depends on the higher-level
cluster. We note that this dynamics is a linear map
whose slope is (1 —€)f’(X?) in the first order:
The separation of the two sub-clusters is propor-
tional to the absolute value of the derivative of the
motion of the higher-level cluster.

I the condition

1-¢)f(X5)|> (19)

holds, the above & is amplified with time. Then a
small difference between the two sub-clusters is
amplified till it becomes the order of the higher-
level cluster. The above tree structure is no longer
fixed, and changes with time. In this case, our
altractor is represented as a dynamically changing
tree as 1s shown below (see for speculation on a
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dynamical tree, in the content of the generation of
language, ref. [29]).

Note that the condition (19) is the same as the
stability condition of a coherent attractor (5). The
condition means that the separation of sub-clus-
ters occurs if the chaos is strong enough to over-
come the stabilizing effect of global coupling. Thus
we may call the above chaotic collapse of the tree
structure as “chaotic revolt against slaving princi-
ple”.

The above perturbative derivation of higher-
level dynamics can be straightforwardly extended
to a case of more-than-2 clusters of the same level
or to a branching of more than 2. By applying the
above procedure at every level of branching, we
can get the equations of hierarchical dynamics. In
other words, the motion of a sub-cluster at a given
level is slaved by the dynamics of the higher-level
cluster and is also governed by the interaction
among the sub-clusters at the same level. The

(1)

interaction from lower level o higher level ap-
pears as the second-order perturbation.

6.1. Dynamical trees

Once the system has [allen into an attractor, the
exact clustering is fixed. However, the precision-
dependent clustering can be time dependent. Since
our dynamics involves chaos, a small difference
|x(i) — x(j)| can be amplified with the temporal
evolution. Thus the condition whether x7(i) =
x¥(j) or not can change in time. The mechanism
of the amplification is clearly seen in the above
chaotic revolt. If the chaos is strong enough, small
differences among sub-clusters are amplified till
they destroy the tree structure. The tree structure
can change with time. In fig. 22, we have shown
temporal changes of trees.

In figs. 22a1-22a3 we have three “mega”-clus-
ters. One of them has no branching. These fea-

0.5~

(i)

I>< -

10 183 &0
1.0G2(P)

0 5 10 ' 15 20 0
LOG2(P)

Fig. 22. Temporal cvolution of precision-dependent clustering. X7(4) is plotted for all i, at » = 50032 (al), (b1); 50064 (a2). (b2),
and 50096 (a3). (b3) steps. ¢ =191, ¢=0.2, and ¥ = 1000. From two randomly chosen initial conditions (respectively (al)—(a3) and
(b1)-(b3)).
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tures are time independent. The clustering within
the other two “mega”-clusters, however, are time
independent. For example, one of them has two
sub-clusters up to fine precision in fig. 22a2. They
start to split again in fig. 22a3. In figs. 22b1-22b3,
we have three “mega”-~clusters, two of which have
no branchings and no dynamical change. The tree
structure of the other “mega™-cluster has many
branchings and is changing slightly with time.

As a simple way to see the temporal change of
precision-dependent clusterings, we have plotted
k7 and S! in figs. 23 and 24. In the partially
ordered phase. they exhibit a slow and large varia-
tion and give a typical intermittent time series
even in a large P (fine precision)*'3. In fig. 23a k”
varies from 2 to 200, even for P =2'% while £/
stays at 1 for ~ 600 steps and grows to 100 in fig.
23c (see fig. 25 for the time series of this example).
These examples give the intermittent switch from
a state with large £ (o an ordered state with
small k”. For more disordered attractors, k! is
close to k for most of the time. but it intermit-
tently goes down to smaller value as in fig. 23c.

*3Note that & and S for P — 5 should be time inde-
pendent in an attractor.
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Fig. 24. Temporal cvolution of precision-dependent entropy
S4,- Caleulated in the same way as in fig. 23. P=2"? (dashed
line) and P =2'* (solid line). « =1.62, €= (.3 (corresponding
1o fig. 23¢).

The entropy S/ exhibits the similar temporal
change as k7, as is seen in fig. 24.

In the turbulent regime, the temporal variation
kI is very small, and takes almost constant value
for large P (see fig. 23d).

e

C
—_—

- n/32: time { per 32 steps )

600

Fig. 25. Time series of an intermittent attractor whose cffective degrees of freedom varies from | to G(N). a=1.62, ¢=03, and

N = 100. x;,,(¢) plotted as a function of time # (u = 400,401....,

long time.

600). Note that our system stays very close to a & =1 state for a
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6.2. Coherent structure as dynamics whose effective
degrees of freedom changes

The dynamics of our system x, (i) — x,,,({) at
time step n is described by the k’-dimensional
map (6). up to precision P. Thus k” can be
regarded as the effective degrees of freedom at time
n up to precision P, to determine the next step. In
our examples in fig. 23a-23c, the effective degrees
k? changes slowly with time. In fig. 25 (or in fig,
23c), for example, the dynamics is essentially gov-
crned just by a single logistic map or a two-cou-
pled logistic map for a time interval of more than
3000 steps, and then the state moves to a higher-
dimensional dynamical state.

At the time step where the effective degrees of
freedom is very small, the motion is ordered. In
each cluster the motion is approximately coherent.
In this sense, we may call this motion “coherent
structure” [30], because it is low-dimensional or-
dered motion emerging from a very high-dimen-
sional phase space. We have to note that our
system exhibits the intermittent change between the
self-organization towards the coherent structure and
collapse of the structure to the high-dimensional
disordered motion. This process 1s quite analogous
with the turbulent process in fluids (see also the
discussion in section 9).

The relevance of dynamics whose effective de-
grees of freedom change with time has been
discussed in models of adaptive systems, evolu-
tion, and neural dynamics [31]. For most of these
studies, we have to put some additional dynamics
externally to change the degrees of freedom. A
remarkable point in our simple model is that it
does not require any additional external change of
parameters, but can exhibit this class of dynamics
spontaneously as far as we observe our system in a
finite precision.

7. Switching among attractors

Let us consider a switch among attractors by a
simple input. Since our attractors are coded by a

set of numbers, the switch among attractors is
represented by the transition between two sets of
numbers. By the switch we can change the distri-
bution of clusterings. If we can find a rule of
switches, we can tune the dynamical nature of our
system, because there is a bifurcation-like phe-
nomenon associated with the clusterings as is dis-
cussed in section 4.

Here we consider the simplest case of an input,
1e., 8,(j) onto a single site j. at a single time step
n. By this input we change only the value of
element j from x,(i) to x,(i)+ 8,(f). After the
input we iterate the dynamics without any input
and wait for our system settling down to another
(or the same) attractor®'* If || is small, the
system goes back to the original attractor after few
steps. If |8} is large enough, we can make a switch
from one attractor to another.

The switch to change the cluster distribution as
N,— N,—1and N,—» N,+ 1 is simple: Choose i
belonging to the mth cluster, and change its value
from X to X!. The switch for this is just to put a
pulse 8,(i)= X! — X" after the nth step’s itera-
tion*!3,

First we consider the switching among 2-cluster
attractors. Here we call the two clusters + and —
depending on the condition x,,(i)> x* (+) or
X,,(i) <x* (=), where x* is the unstable fixed
point of logistic map (V1 +4a — 1)/2a [12).

By an input on site j belonging to the + cluster
this site is switched from the + cluster to the —,
or vice versa. Thus we can change N, , by succes-
sive inputs of §,() (see figs. 26 and 27). In this
manner, we can “control” the attractors through
an input.

Then, what happens if we try to increase N
beyond N,  or decrease below N — N, ? After
intermittent-chaotic [10] transients, all -+ sites
change to — and vice versa (see fig. 26), unless the
system comes back to the original attractor.

#14For a similar approach to cellular automata, sce ref. [32].

#*5Here we choose an input close to, but not ecqual to
X! — X" to avoid an accidental unstable state, and to check
the robustness of our switch. We take |8 — (X] — X™)| <0.1
typically, which makes a switch successful.
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Fig. 26. The time series with switches among attractors. x.,(¢) for all i plotted as a function of time. If there are only two lines, the
system is fallen to 2-clusters at the time step. Arrows indicate inputs described in the text. a = 1.95, e = 0.3, and N = 100. A, = 62.
Numbers on the time series of x(i) denote the size of the cluster.
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Fig. 27. Site—time diagram with switching: If x;,,(i) > x*, the corresponding pixel (i, n) is painted black, otherwise left blank.
Arrows indicate the inputs on the corresponding sites and time steps. a = 1.96, e = 0.3, and N = 50. By successive inputs on site in
the + cluster. N_ is increased from 29 to N, = 31, and then a posi—nega switch occurs. Next, by an input to the — cluster. the
switch again occurs.
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By the switch from (2,[N,. N,]), we have a
transient 3-cluster state (3,[N, — 1, N,,1}). In the
above example, there is a path from this state to
the state (2,[ N|, N,]). The above regular posi-nega
switch means that paths to other attractors are too
narrow to be observed. Schematically this is writ-
ten as:

" " 6 ” “ "
n"=“4+1"= .- =

thr
= (intermittent transient)

(19 ”» ‘4 "
2N =N, =“N=N, +t17= ..,

<

where “n” denotes the 2-cluster attractor with
N,=n.

This posi—nega switch belongs to “crisis™ [33] in
dynamical system theory. The crisis here has an
orbit connecting from a two-dimensional phase
space to a three-dimensional space, and then again
coming back to the original two-dimensional phase
space.

For some parameter values and sizes (e.g., a =
1.93, €=0.3, N =50), there is another 2-cluster
attractor corresponding to the above intermittent
state [11]. The above switching mechanism still

works, and can be schematically written as

“av=“pn+ 172 - 2N 172

“N,, = chaotic attractor with

spontaneous intermittent switches”

24N -—N

e T 172N =Ny, +27= ...

In the intermittent attractor, we can make a
switch only to the direction from Ny, — Ny — 1.
If we try to increase N, beyond N, our state
comes back to the original attractor with N, =
Ny, The control of N, by simple inputs works
well; we can switch from the intermittently switch-
ing state to the ordered two-cluster and vice versa
as we hke.

Next we discuss the switching among clusters
more than two. There are two types of switches:
(1) inter-cluster switch (a transition within the
attractors with the same number of clusters) and
(1) intra-cluster switch (the number of cluster
changes by the transition). By the latter switch, we
can change even the relevant degrees of freedom,
i.e., (even the integral part of) the dimension of
chaotic attractors.

V : i
28 i 0 29 |
o (i T LA !
(i) bk ‘ ! ‘
n A0 [ \ |
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Fig. 28. Switching: Time series with switches among attractors. Calculated and plotted in the same manner as in fig. 26. a = 1.93.
¢=10.3, and N = 50. The intermittent state remains even if we iterate longer time steps. In the input at (a), we have tried to increase
N, from 31 to 32, but our state has come back to the original attractor with A, = 31. By the input to decrease A, from 31 to 30, we

can eliminate the intermittency (the arrow (b)).
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Fig. 29. Time serics with switches among attractors. Calculated and plotied in the same manner as in fig. 26. Numbers on the time
scrics of x(i) denote the size of the cluster. (a) ¢ =1.59, €=0.1, N =30 (removal of onc cluster); (b) a=1.76, e=02, N =50
(internal posi-necga switch): (c) ¢ =1.83, ¢ = 0.2, N = 50 (hicrarchical switch with chaotic revolt); (d) continued from (¢); (e) another
example of a=1.83, e=02, N=350; ([) a=1.58, ¢=0.1, N =50 (remote switch).

Here we explain a variety of functions of
switches with clusters more than 2, by taking
simple cases (the number of clusters is 3 or 4).

(1) Hierarchical switch

(a) Ordered switching in sub-clusters

I clusters are hierarchically organized as in
sections 5 and 6, the switches are also hier-
archically organized. We have switches between

lower-level  clusters or between higher-level
clusters. Of course the switches at the higher-level
affect the lower-level clusters. On the other hand,
switches at the lower-level do or do not affect the
higher-level clusters. In the example of fig. 29a, we
can remove one cluster of a lower level by
successive inputs on an element belonging to it.
This removal of cluster does not affect other cluster
structures.

In other examples (fig. 29b-29f), there is a
threshold on N, such that the state with N, =



K. Kaneko / Network of chaotic elements 165

74 |

N

8

il

»J”'\zrmaﬁw\d““&wwmw

"L

sl

it

S LS c
_]500 n/4: time ( per 4 steps ) 100
1-

20
NW‘.W”W I‘\WWMWM\‘WWM\W\W"““‘ “ 20
z,(%)
9

w’ e ﬁ,.w J,\ il
M M\W«ﬂm'!u e

VAV AV AV VAL

L

22

1100 nfd: time { per 4 steps ) 1700

Fig. 29. Continued.

Ny — 1 cannot exist as an attractor. Down to the
threshold, we can change the number of sub-
clusters. The switch here is well organized and is
deterministic as in the case for the switch in
2-clusters. In the 3-cluster attractor of fig. 29, we
can change N;, and N, as we like with fixing N,.

If we try to increase the difference of the
numbers in subclusters beyond a threshold, two
types of switches ((b) and (c) as follows) are
possible depending on the parameters.

(b) Internal posi—nega switch

A posi-nega switch between two sub-clusters
occurs, without any change of other tree structures
(inter-cluster switch). For example, we can have

posi—nega switches only in the two subclusters of
01 and 00, without any change of the number of
other clusters (N|). See fig. 29b, where the
threshold is 9 with the code (3,[24,17,9]). By this
switch the cluster with size = 17 (the one at the
top) is not affected.

(c) Switch with chaotic revolt

A switch in a lower level propagates to the
higher level. This is understood as the “chaotic
revolt” in section 6. As the difference between the
sizes of the two subclusters is increased, the
instability by chaos gets larger, till the condition
in (19) for the revolt is satisfied. The cluster
structures are no longer stable, and & in (18) is
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Fig. 29. Continued.

amplified till it destroys the higher-order structure.
This is clearly seen in fig. 29¢ (after the third
input). What occurs after the revolt is beyond the
perturbative analysis (18). In the above example, a
switch to a 2-cluster attractor follows.

Generally speaking, our system can jump Lo
attractors with different clusterings, after the
chaotic revolt. There are two possibilities in the
switch; one is the intra-cluster switch as is seen in
the above example (k=3 — 2) and the other is
the inter-cluster switch with diflerent weights on a

tree, like a switch from (3,[ N, N, Ny Lo
G.INY. Ny Ny D-

We have intra-cluster switches from 3-cluster to
2-cluster attractors, and then from 2 to 3 in figs.
29c, 29d. The former switch in the figure occurs
from an attractor (3.[21.17,12)) to (2,[28,22]) via
the transient state (4,[21,17.11,1]). Note that the
above decrease of cluster numbers from 4 to 2
comes from the merging of clusters in the transient
region (i.e.. 28 = 17 + 11, 22 =21 + 1). The latter
switch involves the splitting of clusters, and



K. Kaneko / Network of chaotic elements 167

merging. In the figure, we have a switch from
(2,[29.21]) to (3.[28,20,2)) via the transient states
(3.[29,20,1)) and (4,[28.20,1,1]) successively.

An example of inter-switch is given in fig. 29e,
where a switch from (3,[21,17,12]) to
(3,[20,19,11]) occurs via the successive transient
states (4,{21,17,11,1)]) and (5,[20,17,11,1,1]).

The above hierarchical switch may be useful in
the search in a categorized structure, as will be
discussed in section 9.

(d) Remote switch

Another class of switches in a hierarchical switch
is seen in the effect on the change of subclusters
on which the input is not applied. In fig. 29f, we
have 4-clusters with the tree structure of 11, 10,
00, and 01. Here we have applied inputs
successively on elements belonging to a cluster 01
so that a switch from 01 to 00 occurs. Down to a
threshold, this switch aflects only the subclusters
on which the inputs are applied (i.e., Ny, = N, —
1, Ny = Ny, + 1, without any change of ¥, and
Nyo). At the threshold, by the input, besides Ny
— Ny — 1 and Ny, = Ny + 1, the cluster structure
for 10 and 11 (N,, and N;;) changes
simultaneously. In the figure, cluster 11 is suddenly
absorbed into cluster 10. The intra-switch from
k=4 to k=3 thus occurs. A remarkable point
here is that the switch occurs in clusters with
which the input is not related.

(ii) Deterministic versus stochastic switch

Another classification of switching is if it is
deterministic or stochastic. Of course, our switch
should be deterministic if we prescribe all the
values of x(i/) and the input exactly. The
first question is whether it is deterministic if we
only prescribe the code of attractors (c.g.
(k.[N,, N,,....N.]) and the input. The answer to
this question depends on the attractor and
parameter. If the attractor is periodic, the switch is
deterministic in so far as we have observed. If the

attractor is chaotic, we have encountered some
examples of stochastic switch, especially in more-
than-2-clusters. The next question is how our
switch depends on the input. If the boundary
between basins of attractors is [ractal [34], the
switch must be stochastic, unless we prescribe the
input exactly. As an example, compare fig. 29¢
with 29¢ where we have obtained two different
altractors after the third inputs (which are slightly
diflerent), even if we start from the same attractor.

To sum up, a switch in our system consists of the
following two transient processes. One is “merging
of clusters™, ie, (k.[... N...., N,...D—
(k=1[....N;+ N,........]), and the other is
“splitting ol a cluster”, ie, (k,[....N,...D—
(k+1[....N;—1,....1])). The latter process
comes from the chaotic instability.

The above two processes appear only in the
transient regime. In the examples we have seen so
far, only one or two merging and splitting pro-
cesses intervene within a switch. This empirical
fact leads to strong restriction on a possible vari-
ety of attractors after the switch. This kind of
restricted transition is also seen in a class of
cellular automata*16.

Detailed study on the switching process with
the use of dynamical entropy {32] and basin
structures will be discussed in the future.

8. Formation process of clusters and transients

In the ordered phase, if we start from a random
initial condition, we can see the temporal ordering
process. The number of clusters decreases succes-
sively (see fig. 30a). In the late stage, the number

#l6The regularity of the transition by a switch is character-
ized by the transition matrix and the dynamical entropy de-
fined by the mutual information of the two successive attrac-
tors: This definition and calculation for CA are scen in ref.
132].
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of clusters decreases almost exponentially (see fig.
30b). In the partially ordered phase, the decrease,

even if it occurs, is very slow. Our system stays at
a transient intermittent state for a long time. For
this parameter regime, the supertransients dis-
cussed by Crutchfield and the author must be
important [11].

Another interesting transient phenomenon is
seen in the temporal clustering process towards a
many-cluster attractor, starting from an almost
coherent initial condition. The number of clusters

increases successively here®!”. This class of tran-
sient process may be common with the spin glass
problem, since the process also passes through
successive bifurcations.

Detailed studies on the above two transient
processes will be reported elsewhere.

17
This may lead to a metaphorical model for the “differ-

entiation™ in the developmental biology, since the initially
same cells differentiate as time. The formation process of
hicrarchy in our model may be relevant to the hicrarchy we
encounter in the differentiation.
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9. Discussion: Towards biological
information processing

Since our model may capture a novel aspect in
neural dynamics as is discussed in section 1, it is
important to discuss the capability of information
processing of our model. In fact, some novel and
important features have been found in our model.

The first one is the hierarchical clustering. Our
attractors can have many clusters. These clusters
have turned out to be coded by a tree. This kind
of tree structure can be frequently seen in the
vortices in the turbulence, evolutionary history,
categorization in the brain, and the organization
of society. We note that our model gives a simple
dynamical system which leads to the hierarchical
organization.

The most familiar model with hierarchical order
is the SK model for spin glasses, which is used as
the basis of some neural networks. The hierarchi-
cal organization of our model gives us the hope
that our system may lead to a novel class of
information processing. Since our model has com-
plex dynamics in each element, it may be possible
to go beyond SG-type neural networks (in other
words, “from tree to forest”), as has been dis-
cussed in section 5. Up to now we do not have a
theory to characterize the forest, and remain at the
stage of the proverb “‘don’t see the forest for the
trees”.

We are not yet sure if our mechanism of the
creation of hierarchy is related with examples of
hierarchy like the brain, evolution, and society.
We have to note, however, that these examples
include nonlinear self-reproducing units and a
global interaction among units. These two features
are included in our model, since the logistic map
comes from a nonlinear population dynamics
model, and the coupling among units is the sim-
plest global one. If our results are relevant 1o these
systems, we may say that chaos is the source of
hierarchical complexity in nature and society, since
chaos in the logistic map leads to infinitely many
possible states and successive splittings of clusters.
We have to wait for the future study with more
realistic modellings, to confirm the above picture.

We have also [requently encountered with the
hierarchical organization in economics. Economics
again 15 governed by the dynamics of nonlinear
elements and global feedback.

The second aspect which may have some rele-
vance to biological information processing is the
switch among coded attractors. Chaotic switches
between attractors are first studied by Davis [35],
with the use of adaptive change of a parameter. In
our case, all the attractors are organized so that a
switch is possible only by a simple input. We have
found the intermittent posi—nega switch, hierar-
chical switch, and stochastic switch.

The intermittent transient in the posi-nega
switch reminds us of our mental state when we
look at some of Escher’s figures™!®, By looking at
them, we wonder which is the “figure” and the
“ground”. Before we decide from a higher level of
mental state, our state changes intermittently. If
we fix which is which (corresponding to a switch
to a different attractor), we can understand the
figure easily. :

An important application may be the use of the
hierarchical switch. As is discussed in section 7,
we can make a switch in a sub-cluster only up to a
threshold. If we try to switch beyond the thresh-
old, chaotic revolt occurs, and our system chooses
an attractor with a different tree structure.

Let us take a situation of a recall in categorized
data. For example, assume that you see a charm-
ing lady, and you recall that she was a classmate
al some school. You start to recall all the class-
mates in high-school like Yoko, Kyoko, Akina,
and so on, but it turns out that you cannot find
the lady in your storage. You hit the capacity of
storage (““threshold™ in our model). You try to go
up in the hierarchy and to search in a different
category, like the classmates in junior-high, or in
college. In our model, this corresponds to the
switch to attractors of different cluster structures
(as in section 7) by chaotic revolt. In our model
the switch as this level seems to be stochastic. You

18

F Figures by M.C. Escher (e.g.. Circle Limit IV). A
metaphorical relation of Escher's figures with dynamical sys-
tems is suggested in ref. [5).
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may start to search among the junior-high or
college. Then you search the memory in that class
(in that clustering structure), and may finally find
“Abha, it’s Ikuko™.

This example suggests that our model may be
useful in hierarchical search. When we cannot find
at the lower-level (i.e., we reach the threshold of
the cluster size or memory size), we can automati-
cally switch to a different category and. start
searching there.

Our remote switch may also be useful to control
a system from a different area of storage. A
stochastic switch may be relevant in fuzzy control.
As 1s discussed in section 7, the switch is not
random, but is strongly restricted. With a high
probability the switch leads to few specific attrac-
tors. This kind of restricted transition, which is
also seen in a class of CA, may be important in
the information processing.

To close this subsection, we note that nontrivial
switches in our system use the edge of cluster
distribution, where the attractors are chaotic. This
is consistent with the recent observations in CA
[36, 37] and CML [4] that the edge of chaotic
phase is relevant to the information processing, as
is beautifully phrased by the title of ref. [36].

9.1. Relevance to neural dynamics

Although our model is too simple to have a
direct connection with neural dynamics, some of
our novel notions may be relevant to the under-
standing of it.

(1) Search with chaos: Assume that we store a
categorized pattern in each attractor. Searching is
carried out by the switching in section 7. What is
remarkable here is that our attractor is chaotic at
the edge of a condition of clusterings. If we try to
switch to a different tree structure by going be-
yond the threshold, our dynamics exhibits a
strongly chaotic behavior, and then switches to an
attractor with different clustering conditions. In
other words, we have Lo pass through a strongly
chaotic state to switch to a novel class of memory
in our model.

An important experiment has recently been per-
formed by Freeman [38)]. He has discovered that
the activity of neurons of the olfactory bulb ex-
hibits chaos when a rabbit encounters with novel
odors, while for the well-known odor the activity
gives regular time series. This result is quite simi-
lar to our searching process with chaos.

(1) Why are there many results on the dimension
of EEG?: There are increasing interests in dynami-
cal states of EEG [39, 40]. The measurement of
the dimension of the time series of EEG has been
carried out, which suggests that the dimension
strongly depends on our state of brain. This possi-
bly means that our brain dynamics has many
altractors with different dimensions. In the par-
tially ordered phase in our model, we have many
attractors whose dimension varies from @(1) to
O(N), depending on the clustering condition. Fur-
thermore. even in a single attractor, the effective
dimension (measured by the effective degrees of
freedom) can vary intermittently as in fig. 23. The
dynamics whose effective degrees of freedom varies
must be relevant to the neural dynamics.

(i) Epilepsy™’: In epilepsy. an ensemble of
neurons exhibit a large spike due to the coherent
oscillation of the neurons [38]. When one falls in
this state, one’s capability of information process-
ing goes down. In our system, there are some
parameter ranges in which the coherent attractor
and attractors of some clusters coexist. Once we
choose the coherent attractor, we can no longer
have the ability of information processing.

9.2. Other models

We have discussed the simplest system of non-
linear elements with global feedback. It is impor-
tant to extend our model and see how relevant our
observations are to other systems.

Examples include:

(i) Coupled Josephson junction: This can be
modelled by a globally coupled circle map [15];

“*This is pointed out by Walter Freeman and Bernardo
Huberman independently.
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that is, the use of a local map f(x)=x+
(K/2m)sin(2mux) + w with global coupling. Pre-
liminary results of globally coupled circle maps
show the existence of a similar transition among
coherent, ordered, glassy, and turbulent phases. A
novel discovery therein is a quasiperiodic slate
with partial attraction.

(i) Use of a map with an excitable state: Activ-
ity of a single neuron may be represented by a
one-dimensional map with an excitable state and
refractory periods. With the choice of the map and
a global coupling, it may be possible to have a
closer connection with the neural dynamics.

(ii1) Population dynamics model among species.
With a coupling with the environment, we can
write down a set of differential equations with
global couplings. Is it possible to see the hierarchi-
cal organization in ecology as in our toy model?

(iv) Another relevance of our results lies in
turbulence as the interaction of vortices. Let us
recall the intermittent change of precision-depen-
dent clusters in fig. 23. In the figure the effective
degree of freedom varies from 2 to 200. At the
time step where the effective degree of freedom is
2, our system forms a “coherent structure”, as has
been discussed in section 6. In turbulence, we have
infinitely many vortices, but at some time steps,
the motion is ordered (“coherent structure”) and
may be described by few degrees of vortices. Then
this structure again splits into many vortices. If we
replace the term “vortex” by “cluster”, this is
exactly what occurs in our system in section 6.
Since the dynamics of vortices is described by a
globally coupled dynamical system [21], we may
expect that the similar mechanism to our hierar-
chical dynamics underlies in the motion. A study
towards this direction will be reported in future
[41).
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Note added in proof

Hierarchical dynamics of our intermittent phase
(sections 3, 6) gives “chaotic itenerancy over or-
dered states with low effective degrees of freedom.
Chaotic itenerancy is independently discovered by
K. Ikeda (in optical systems) and by I. Tsuda (in
neural dynamics) [42).
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