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A network of circle maps is investigated. Successive transitions are found among coherent, ordered, partially ordered
(PO), and turbulent phases. In the ordered phase, two-cluster attractors with similarity have a large basin volume, which are
reduced to a unique circle map through a scaling transformation with two parameters. The PO phase is characterized by the
increase of partition complexity. In the phase, chaotic itinerancy is observed, whose dynamics consists of quasistationary
high-dimensional chaotic motion, low-dimensional attractor ruins, and switching among them. Dependence of the diffusion
constant on the size and the nonlinearity clearly deviates from that by a random phase approximation, suggesting remaining

correlation among elements, even in the turbulent phase.

1. Introduction

A network of chaotic elements has been inves-
tigated as a novel class for nonlinear dynamical
systems with many degrees of freedom. Here we
study a “globally coupled circle map” (GCM)
[1-4] as an extreme limit of a long-ranged cou-
pling and a simple network model of chaotic
elements. In particular, we take the following
simple example:

Lo+ I(I) =xn(i)

N K
21rNj

™M=z

sin(2w [ x,(J) —x,(0)]),
(1)

1

where n is a discrete time step and ¢ is the index

of an element (i =1,2,..., N = system size).
Globally coupled maps are originally intro-

duced as a mean-field version of coupled map

lattices [5, 6}, and have been studicd as a novel
paradigm for high-dimensional chaos [1-4]. The
above model (1) has one important difference
from previous GCMs. In the previous cxamples,
an identical mean field is applied to cvery ele-
ment. In the model (1), the coupling term can
take different values by elements. Thus it is not
trivial if the previously observed phenomenology
in refs. [1, 2] can be applied to the above system.
Another difference of our model (1) from the
previous models is the existence of a conserved
quantity, that is the sum of x(i). Thus our dynam-
ical system has N — 1 degrees of frcedom. Due to
this conservation, there is a Goldstone mode giv-
ing rise to the eigenvalue 1 for the Jacobian
matrix.

Another motivation for the present study comes
from coupled oscillators with interaction through
“phases” of oscillation. There has been extensive
rescarch on coupled oscillators by Kuramoto and
his coworkers, Kopell, and Ermentrout, and oth-
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crs [7], inspired by the pioncering studies by
Winfree [8]. Coupled circle maps in a nonchaotic
regime have also been effectively used by Daido
[9]. In these studies, a possible entrainment among
different elements (with different native frequen-
cies or couplings) is the focus of their interest.
Our motivation is different from theirs. In our
casc, cvery element is identical, but it is able to
show chaotic oscillation. Through chaos, our sys-
tem can show spontancous dynamic differentia-
tion, termed as clusterings in ref. [1].

In neural dynamics, the importance of nonlin-
ear dynamics has becn appreciated. Even a single
neuron or a small ensemble of neurons can ex-
hibit complex dynamical behavior like chaos or a

frequency locking [10]. Freeman [11] has discov-

ered a chaotic oscillation in an olfactory bulb and
discussed its significance in a searching process.
Some data of EEG time series show chaotic be-
havior [12]. Tsuda has discovered weak chaos of a
circle-map-type in his physiological neural nct-
work model [13]. He has argued various possible
functions of chaos in the biological information
processing.

Partial synchronization of nonlinear oscilla-
tions has been discovered in the visual cortex of a
cat by Eckhorn ct al. [14], and Gray and Singer
[15]. Although the nature of their nonlinear oscil-
lation has not yet becn clarified, the dynamics
strongly suggests the existence of chaos. Chaotic
partial synchronization has been found in a par-
tially ordered state in globally coupled maps [1].
Thus, studics of the synchronization and chaos in
coupled phase models are also important for neu-
ral information processing.

A global coupling among oscillatory elements
is also important in the cvolution. Eigen and
Schuster have introduced a model for the evolu-
tion with a global coupling through a food source
[16]. A global coupling with mutation among
species also leads to clusterings of oscillation of
population of species [17].

An ensemble of phase oscillators with global
couplings is also relevant to physics. A Josephson

junction array with a coupling through an electric

currcnt is modelled by a globally coupled circle
map [3, 4, 18], that is, the usc of a local map
fx)=x+(K/2w)sinRmx)+w and a global
coupling. Similar models can be scen in a prob-
lem of charge density wave [19]). Nonlinear optics
with multi-mode excitation also provides another
cxample of globally coupled oscillators [20].

The present paper i1s organized as follows. In
section 2, clusterings of our attractors are stud-
ied. In particular, we show that attractors with
two clusters arc represented by a unique solution
with two scaling parameters. All of the two-clus-
ter attractors are similar in this sense. In section
3. phase changes of our model are shown. We
have seen coherent, ordered, partially ordered,
and turbulent phases successively with the in-
crease of the coupling K. Enhancement of the
fluctuation of cluster numbers is found at the
partially ordered phase, analogous with the spin
glass phase [21]. This variety of cluster numbers is
clearly seen in the partition complexity in section
4. In section 5, chaotic itinerancy in the partially
ordered phasc is studied with the use of temporal
change of cffective degrees of freedom. The dy-
namics in chaotic itinerancy consists of quasista-
tionary high-dimensional chaos and a rapid exit
to onc of low-dimensional “attractor ruins”, and
an cxponential departure from it. Diffusion of an
orbit through phase space is studied in section 6.
A crossover from anomalous to normal diffusion
is seen even in the partially ordered phase. The
diffusion constant does not decrease with the
increase of size to infinity, which suggests remain-
ing corrclation among elements cven in the
turbulent phase. Dependence of the diffusion
constant on K clearly deviates from the estimate
by a random phase approximation. In scction 7,
universality of our results i1s briefly mentioned
with the studies of other globally coupled phase
maps, where a global derivative coupling or a
global average coupling is applied to local circle
maps. Most of our conclusions from the map (1)
are again confirmed, in addition to the discovery
of degenerate torus states. Section 8 is devoted to
a brief summary and future problems.
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2. Clustering and coding of attractors — similarity
solutions

Let us describe possible types of the attractors
in our model (1). The simplest attractor is a
coherent one with x(i)=x(j) for all i,j. Since
the force term in (1) vanishes for the coherent
state, the state always implies a fixed point in
time, i.e. x(i) = const. = (1/N)XL x(i). Stability of
the fixed point is calculated from the Jacobian
matrix (1 — K)I +(K/N)D, where the matrix /
is the diagonal matrix with elements 1 (Kronecker
delta §, ), and D is the constant matrix all of
whose elements are 1. Besides the unity eigen-
value, the Jacobian matrix has eigenvalues 1 — K
with an (N — 1)-fold degeneracy. Thus the stabil-
ity condition for the above coherent fixed point is
given by K <2. In the present paper, we focus
only on the nontrivial parameter regime K> 2.

Besides the above single-clustered coherent at-
tractor, we have attractors with clusterings. A
cluster is defined as the set of elements in which
x(0) =x(j) for i,j, that is, x(i)=x(j) for i,j
belonging to a same cluster [1]. We can classify a
state of our GCM by the number of clusters &
and the number of elements for each cluster
(N,, N,,..., N). Unless otherwise mentioned, we
use a labelling of clusters such that Ny >N, >
... 2N,

If a system is attracted exactly to a k-cluster
solution with (N, N,,..., N,), our system never
goes out from the state with this clustering condi-
tion, since the motion for x,(i) and x,(j) at time
n > m are governed by exactly the same dynamics
if x,(i)=x,(j) holds (x(i)=x,(j) if x,(i)=
x,,(j). Our attractor is therefore characterized
by the clustering condition [k,(N,, N,,..., N,)I.

Once a system falls on a k-cluster attractor,
our system is governed by a (k — 1)-dimensional
map, since there is one conserved quantity
Y, x,(i). For example, the dynamics of a two-clus-
ter attractor with the clustering (N, N,) is gov-
erned by the following map:

X =X+ 2R sinen(X2 - X)), @)

n

where X! denotes the value of the jth cluster at
time n, and n, = N,/N. Due to the conservation
n X! +n,X?=(x), the above dynamics is re-
duced to the following one-dimensional map:

=X, + n?zK sin( 21T(<x> ~X"l) )
2 n,

an+ 1 (3)
By the transformation z, = (X,) — (x))/n,, the
above dynamics is written as the circle map

K .
Zn+l =Zn_ ﬂSlI’l(Z’U’Z"). (4)

Notc that the number of clusters is absorbed
into the transformation; equation (4) is indepen-
dent of two-cluster attractors. All the two-cluster
states obey the same dynamics irrespective of the
number of elements in the cluster. The dynamics
of a two-cluster state with (N,, N,) is obtained by
X! =z,XN,/N+<{x). In other words, all the
two-cluster solutions are obtained by a linear
transformation from the dynamics of z. The de-
pendence on the number of elements in a cluster
is absorbed only into one parameter (amplitude
of the oscillation). Thus we have many solutions
with similarity.

The above argument does not imply that all
the two-cluster states have the same stability. The
stability of a two-cluster state should be judged
from the N-dimensional Jacobi matrix, which re-
quires further information. Numerically, the sta-
bility of a two cluster state decreases as the
difference N, — N, is increased until the two-
cluster state is no more an attractor. If we start
from an initial condition with a two-cluster state
with N, > N,, the first cluster often splits into
two, leading to an attractor with more than two
clusters.

A two-cluster state exists as an attractor only
within a range N —N,;, <N, <N,,. We have
measured this threshold N,,,. Numerically it is
not strongly dependent on the bifurcation param-
eter K. Roughly speaking, the threshold gradu-
ally decreases from 32 to 29, for N =50, as K is
increased from 2.0 to 6.2. Basin volume for two-
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cluster attractors gets smaller for K > 4, and van-
ishes for K > 6.4.

The argument (in the present scction) on the
similarity solutions for two-cluster attractors is
valid for any modcl with the global coupling form
fx, (D) —x, (/) with f(=y)= —f(y). The above
similarity solutions cxist as long as the coupling is
a two-body interaction satisfying Newton’s third
law of mcchanics.

3. Phases and basin distribution

We have again discovered the following four
phases, in agreement with the previous studies on
globally coupled logistic maps [1].

(i) Coherent phase (K <2): A coherent attrac-
tor (i.e. attractor with a single cluster) occupies
(almost) all basin volumes.

(i1) Ordered phase (2 < K < 3.9): tew-cluster at-
tractors occupy (almost) all basin volumes. The
phase boundary between cohcrent and ordered
phases is located at K=2, as is shown from
stability analysis.

(i) Partially ordered phase (3.9 < K < 6.4). co-
existence of many-cluster and few-cluster attrac-
tors.

(iv) Turbulent phase (K> 6.4). all attractors
have many (= N) clusters.

For the ordered phase, the average cluster
number (k) is independent of N (not increasing
with N). Indeed. (k) =2, independent of size,
for K <3.8. In the PO phase (3.9 < K <64), (k)
=c¢N with ¢ <1, while ¢ =1 in the turbulent
phase. The scaled average cluster number ¢ 1s
plotted in fig. 1 as a function of nonlinearity K
for N=25 and 50. It is scaled by the size N,
calculated from 500 sets of randomly chosen ini-
tial conditions. In the PO phase, the ratio ¢ has
large variation with K. This variation may be
originated in window structures of low-dimen-
sional maps corresponding to few-cluster attrac-
tors.

In the PO phase. cluster numbers differ to a
large extent by attractors. The variance of cluster
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Fig. 1. Scaled average cluster pumber (¢) = (k)Y/N as a
function of K. with the increment of 0.2, Sizes of the system
are N=25(0). and N =50 (X). Numerical results in figs. 1,
2 are obtained from 500 randomly chosen initial configura-
tions, and after discarding 40000 transients.

numbers over initial conditions is cnhanced in the
PO phase, as is clearly seen in fig. 2. In the
ordered and turbulent phascs, the variance is
close to zero (or approaches zero with the in-
crease of size N). In the PO phase, the variance
seems to be roughly proportional to N, as is
plotted in fig. 2, normalized by N.
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Fig. 2. Semi-log plot for the variance of the scaled cluster
number {((3¢)?) = {{c — {c))?) as a function of K. Obtained
from the same data as for fig. 1. ¥N=25(0), and N =50(x).
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The order-PO transition in our model is roughly
associated with the onset of chaos in the circle
map (4) z' =z - (K/2w)sin(2wz). This circle
map shows the period-doubling bifurcation to
chaos as K is increased from K> 2. Since the
dynamics of a two-cluster attractor is represented
by this circle map, the attractor shows this period
doubling to chaos. The onset of chaos of the map
(4) is located at K=K, =3.532....

In the ordered phase here, almost all attractors
have two clusters. Assume that our state is close
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Fig. 3. Examples of timeseries of our model (1). Plotted are

x,(i)s for all {, as a function of time n. They are plotted using

modulus 6 (x,(i) mod 6). If there are only & lines (k <N),

our system is fallen to a A-cluster state. N=40. (a) K=44,

for time 3000-3500. The attractor has 15 clusters with the

clustering (21,4,3,1,1,..., 1). (b) K = 4.7, for time 3000-3500.

The attractor has 17 clusters with the clustering (21.2,2,2, 1.
A1),

to a two-cluster statc. If there is no chaotic mo-
tion in the circle map (4), it is hard to imagine a
mechanism to destabilize and differentiate a clus-
ter. The ordercd phase is expected to continue at
lcast up to K = K. Existence of chaos, however,
is necessary but not sufficient to differentiate a
cluster leading to many clusters. Indecd, the
O /PO transition occurs slightly above K=K,
from our numerical simulation.

For K> K* (=4.60...) such that VK*2 ~ | —
arccos(1 /K*) =, the dynamics of the circle map
(4) is not confined in a unit interval {0,1]. The
orbit starts to diffuse away to larger or smaller
values triggered by its chaotic motion [22]. Thus
the onset of diffusion is located exactly at K= K*
for a two-cluster attractor. Although there is no
rigorous proof, the onset of diffusion occurs at
K = K*, even for an attractor with more than two
clusters, as far as we have numerically studied. In
fig. 3, we have plotted the time series x,(i) with
the use of modulus 6, in the PO phase. For the
attractor in fig. 3b, variables x, (i) can diffuse into
an arbitrary range, while the orbit in fig. 3a is
localized within a box of a unit interval. Roughly
speaking, the mecasure for a two-cluster state de-
creases with the further increase of K beyond
K*, although we have seen some stability win-
dows for a two-cluster state (or a three- or four-
cluster etc.). Since the single circle map (4) has
windows with short periods, complicated inter-
vention of ordered states may be¢ rather rcason-
able, which is also reflected by the large variation
of ¢ in fig. 1. We have not seen any two-cluster
attractor for K> 6.3 even if we start from a
vicinity of a two-cluster state.

4. Partition complexity in the partially
ordered phase

In the partially ordered (PO) phase, both few-
cluster attractors and many-cluster attractors co-
exist. The number of clusters has no upper bound
in the infinite size limit. The fluctuation of cluster
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(g

Fig. 4. (Continued.)

numbers is enhanced at the phase. We have also
called this PO phase as “intermittent phase”,
since typical dynamics there shows an intermit-
tent timeseries®'.

In the PO phase, basin volume for few-cluster
attractors is typically rather small. Among few-
cluster attractors, there remain somc measures
for two-cluster attractors, although no two-cluster
attractors are observed at K =4.9. In the phasc,
an attractor with many clusters typically consists
of a cluster with a large number of elements and
many clusters with a single element.

As has been discussed (2], a feature of the
partition complexity is characterized by the distri-
bution of Y=Zj(Nj/N)2, probability that two
elements fall on the same attractor. This Y value
can depend on attractors, and we can define the
distribution 7(Y) sampled over initial conditions.
Examples of the distribution 7(Y) are shown in
fig. 4 for K= 3.6, 4.0, 4.2, 5.0, 5.8, 6.4, and 7.0. At
the ordered phase, there is a sharp peak at the
endpoint at Y = (.5, corresponding to two-cluster
attractors. In the PO phase Y is broadly dis-
tributed, with small peaks at the endpoints at

*'In the previous paper [1], we have also another region for
the partially ordercd phasc: glassy phase. This glassy state
seems 1o be not an attractor but a very long transient. In our
mode! we have again seen very long transient near the bound-
ary between the ordered and PO phases. :

1/M (M =2,3,...), and also at 1/N =0. This
clearly shows the coexistence of attractors with
various partitions to clusters. The peak at Y=
1 /N grows gradually with the increase of K, till it
occupies the whole probability at the turbulent
phase.

5. Chaotic itinerancy at the partially
ordered state

In the PO phase, chaotic itinerancy is observed
for attractors with many clusters. Chaotic itiner-
ancy (CI) is a novel universal class of dynamics in
high degrees of freedom. In CI, an orbit succes-
sively itinerates over ‘“attractor-ruins”, quasista-
tionary states with effectively low degrees of
freedom. CI has independently been discovered
in optical turbulence [23], model neural dynamics
[24], optical information processing [25], and in
globally coupled maps [1]. Experimental cvidence
has recently been reported in a multi-mode laser
[26].

A simple way to see the temporal change in CI
is the use of effective degrees of freedom, given
by the number of precision-dependent clusters
[1], the number of clusters within a finite preci-
sion. Instead of using the condition x,(i) =x,(;)
for the clustering, we adopt the condition
Int(x, (i) X P) = Int(x,(j) X P), with the use of
the integer part (Ini(z)) of z and a large integer
P to give the precision 1/P. The precision-
dependent clusters are defined with the use of
this criterion for the equality.

The number of precision-dependent clusters
k” means the number of effective degrees of
frecdom, since it gives the number of variables to
determine x, (/) within a given precision 1/P,
from the set [x,(j)] (at the nth step). If the
number of effective degrees of freedom k[ is
small at an instant, our motion is ordered (with
low degrees of frcedom) at the time. A low-
dimensional ordered motion emerges from a very
high-dimensional phase space.
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Fig. 5. Temporal evolution of the number of precision de-
pendent clusters. k! is plotted as a function of time step n,
starting with a random initial condition. P = 10",

() K=43, N=100 for an attractor with &k =79,
(12,8,4,1,1,..., 1), for time steps from 2500 to 3000. The
lower column gives the corresponding time series x,(i)mod |
for all i.

(b) continued from (a), for time steps from 3000 to 3500.

(¢) K=5.0 for an attractor with x=N=50, (1.1,...,1),
for time steps through 500 to 1000.

(d) K=50, N=100, for an atiractor with & = 50,
51, 1,...,1), for time steps through 1000 to 1500.

(e) K=4.0, and N =50, tor time steps through 500 to
1000.

(f) continued from (e) for time steps through 1000 to 1500.

{g) continued from (f), for time steps through 1300 to 2000.
The lower column gives the corresponding time series
x,(iymod | for all /.

(h) continued from (g), for time steps through 2000 to 2500.
The lower column gives the corresponding time series
x,()mod 1 for all i. Around the time sicp 2400, our systems
falls on the attractor with & = 2, (30, 20).

(i) K = 7.5, for an attractor with k = N =50,(1.1,..., ), for
time steps through 2500 to 3000,

In fig. 5, we have plotted thc temporal change
of the number of cffective degrees of freedom
kP, where the precision 1/P is chosen to be
1,/10%, although the following dynamical bchav-
tors are invariant over a large range of prccisions,
say, from 10~2 to 107> In figs. Sa-5c, sudden
decreasing of k! is frequently observed. After
staying at low values, k,’,) starts to increase ¢xpo-
nentially to the cluster number k. The dynamics
consists of self-organization towards a lower di-
mensional state, residence at the state, and col-
lapse into a high-dimensional disordered state.
The following structure of CI in the phase spacc
is suggested from fig. 5.

(1) The higher-dimensional state is quasista-
tionary. In this higher-dimensional state, there
are some ‘““holes” connecting to a lower-dimen-
sional state. The path from a hole is rather
narrow, which directly connects the orbit to a
lower-dimensional state. Indeed, the organization
process to the low-dimensional state requires only
few time steps. This kind of sudden escape from
a quasistationary high-dimensional state to a

low-dimensional one is first discovered in the
supertransients in spatiotemporal chaos [27, 28],
and may be a universal feature in a class of
high-dimensional chaos.

(2) The organized lower-dimensional state is
also quasistationary. For example, if the effective
degrees of freedom are 2, our system is in the
vicinity of a two-dimensional plane in the N-
dimensional phase space. This two-dimensional
state has both higher-dimensional stable mani-
folds and lower-dimensional unstable manifold(s)
departing from it. The dynamics along these un-
stable directions leads to separation of elements
belonging to a same precision-dependent cluster.
This separation dynamics is formulated as chaotic
revolt against the slaving principle [1]. The effec-
tive degrees increase exponentially in time, due
to the chaotic instability, once an orbit enters into
the path for the separation.

(3) There can be many attractor ruins. They
are distinguished by the number of precision-
dependent clusters &, and the partition of cle-
ments into clusters. Each attractor ruin is located
in the vicinity of various k’-dimensional spaces
in the phase space. Thus the time series of effec-
tive degrees consists of (i) various plateaus at low
values, (ii) exponential growth from them (iii)
quasistationary fluctuation around a high value
near k, and (iv) a sudden drop from it to low
plateaus.

(4) Heuristically, a temporal fluctuation of ef-
fective degrees is larger as the cluster number &
(= k*) incrcases. For example, an attractor with
clustering (1,1,...,1,1) has a larger variation of
effective degrees than an attractor (N/2,1,
1,...,1,1). In fig. 5d, the time series k! is shown
for an attractor with the clustering [k =
39,(51,8,3,2,2,1,1,..., D], which shows much
smaller variation, compared with the other typical
ClI in figs. 5a—5c. A possible reason for this lies in
that the organization process in fig. 5d occurs
only within clusters of few elements. In an attrac-
tor with the clustering (1,1,...,1), all elements
can participate in assembling to form an ordered
statc. On the other hand, ordering process occurs
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only within clusters with 1 ~3 elements, in the
example in fig. 5d.

We also note that CI is also frequently ob-
served in the transients. Even if the attractor
consists of two clusters with (N, N,), it may
require long time steps to hit this configuration of
two clusters. Before hitting this two-dimensional
plane with (N,, N,) in the phase space, the sys-
tem may approach other attractor ruins, e.g., a
three-cluster state or a two-cluster state with con-
figuration (N|, N3) different from (N,, N,) (that
for the real attractor). Heuristically the transicnt

CIl has much larger and frecquent variation of

degrees of frecdom, as is scen in figs. Se-5h.
Besides the long duration of the transients, it is
almost unpredictable how and when these tran-
sients terminatc.

In the turbulent phase, the ecffective degrees
remain close to N, with a small fluctuation (see
fig. 5i). Still therc are rare occasions of the de-
crease of the effective degrees of freedom, as may
be attributed to the coherent structure in the
fully developed turbulence [29].

6. Diffusion

For K> K*, an orbit starts to diffusc in the
phase space. We have measurced the following
coarse-graincd diftusion coeflicicnt

[212.(D) = x,(D]’ > )

D‘(r)=< ;

where {...) is the sequential temporal average
(over 1) [30]. For small ¢, D'(¢) decays with some
power, implying the anomalous diffusion (fig 6a).
For a long time interval ¢, however, D(t) ap-
proaches a constant value, meaning the normal
diffusion. As far as we have checked, D(t) al-
ways approaches a constant for large ¢. Even in
the PO phase, the motion is diftfusive, without any
long-time anomalous diffusion. The crossover
time from the anomalous to normal behavior is
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Fig. 6. Diffusion coeflicient D(r) = ([x,, () —x ) as a
function of coarse-grained time, where (.. ) is the temporal
average over S00 sequential temporal sets, after discarding
3000 initial time steps. N = 2(0.

() K=4.7, for the attractor with k=11, (10, 1,1,...,1).
The circle O denotes D(t) for the element in the first cluster
{with 10 elements), while O and A give the data for elements
for clusters with a single element. D(r) for an element
belonging to the latter 10 clusters agrees within our statistical
accuracy.

(b) K = 6.5, for the attractor with k=N =20,(1,1,1,....1).
Three marks (O.® and a) give D(s) for three ditferent
clements i. All D/(1) agree within our statistical accuracy.

quite small (less than @(10?)), although it can be
larger in the PO phase (see fig. 6).

The diffusion constant D'(c) can differ among
clusters. It is smaller for an element in a large
cluster, as has been cxpected, since all other
elements belonging to the same cluster does not
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Fig. 7. Size dependence of diffusion constant. The diffusion
constant D() is estimated by D(+ = 100). K=8.0(O), K=
10,0 (O), K=50.0(0), K=100 (a) K=200 (+), K=300
(x), K=900 (®), and K =2500 (a). Calculated from 100
sequential samplings, starting from a random initial condition.

apply a force on the element. In the turbulent
phase, the diffusion constant is same for all ele-
ments within our statistical accuracy. There is no
difference among clements.

We have measured the averaged diffusion con-
stant D =lim,_, D(t)=lim,_,(1/N)L, D'(¢).
Dependence of D on the size N is plotted in fig.
7 for various values of K. Numerically, D(o0)
decreases with N up to a crossover size N, but
then approaches a constant value for larger N,
even in a turbulent attractor with N clusters. The
crossover size slowly increases with K. If a ran-
dom phase approximation were valid, the force
term would decrease inversely proportionally to
N. Fig. 7 means that the random phase approxi-
mation is not valid even if our system is strongly
chaotic. The size-independent diffusion means
some remaining correlation among elements, as
has already been discovered in other globally
coupled maps [1].

The dependence of diffusion constant on K is
shown in fig. 8. Note that there is clear disagree-
ment with the prediction D o K? (sec fig. 8),
expected from the random phase approximation,
even for very large N. Indeed, the data are fit by

10°

10?

a 10

10°

10’ 10 10°
K
Fig. 8. Diffusion constant as a function of K. The diffusion
constant D(e) is estimated by D(r = 100). N=5(O), N=10
(O), N=20(O), N=80(a), N=160(+), N=250(x), and
N =340 (a). For reference, we have plotted the estimale
from D(¢ = 1000) for N =20, which shows agreement within
the statistical accuracy. The slopes estimated are 1,98, 1.93,

1.76, 1.55, 1.49, 1.40, and 1.45. Calculated from 100 sequential
sampling, starting from a random initial condition.

K“ with a size-dependent exponent « < 2. For a
small size, the exponent agrces with 2 in consis-
tence with the random phase approximation, but
it decreases gradually with the increase of the
size till it approaches 1.43 (£0.05) for large N.
The above two obscrvations suggest the follow-
ing correlation among elements. Even if K is very
large, there appears some correlation among ele-
ments. If we assume that the correlation among
elements is the only source of anomalous depen-
dence of the diffusion constant, [D can be esti-
mated by (K/N)? X £, ;C(i, j), with C(, j) being
the correlation between elements i and j. (If
there is no correlation, the above form gives
K?/N as expected.) The anomalous change of
diffusion with K implies the decreasec of this
correlation with the increase of K. The above
dependence on K suggests that C(i,j) (i #j)
remains finite with N — o, which is proportional
to K“72? in the limit. We might expect some
scaling form for D(K,N) such as (K?/N)
X DINK“*~2) with some scaling function D.
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However, neither this form nor some other vari-
ants fits our data well numerically so [ar.

We have also measured the distribution of the
force term sinQ2w[x, (i) —x, (DD (for i #j), as is
plotted in fig. 9. Note a sharp peak*? at 0, which
suggests the rcmaining corrclation even in the
turbulent regime. The existence of the peak atl
x(i) =x(j) may be one of the illustrations of the
remaining correlation among clements.

7. Universality and partial attraction to
degenerate tori

Are the existence and nature of four phases
(with different clusterings) qualitatively universal
among globally coupled phase models? To check
the universality, we have studicd the following
two models:

Xy (1) =x,(0) + 7= sin(2mx,(i)) + ©

+ _ZTTLN Z sin(2w[x, (/) —x,(1)]).
(6)
Xyi (i) =2,(i) + 5= sin(2mx, (i)

tot oy Lsin(2nx (D)), (7)

The first model (6) includes our model (1) as a
special case (¢ = 00), while the latter one has been
introduced by Hadlcy and Wiesenfeld [3] for a
study of coupled Joscphson junctions. These
models again show the transition sequence among
the coherent, ordered, partially ordered, and tur-
bulent phases.

Examples of rough phase diagrams for the
model (6) are shown in table 1. Only a coherent

*>The other peaks at + 1 are mainly due to the vanishing
derivative (sin2w(y))’ at y = + ). The peak at 0 is not such
an artifact.

Histogram

810°%-
41054

2407

10°;

-1 0 I

L 1 1 1 i ]

atn(2x(2. (1) — za(j)))

Fig. 9. Histogram for sinQ2w|x (i} — x, ()]} for ¢ # j, sampled
over all elements through 5000 to 15000 time steps. The
distribution is plotted with 100 bins with the width 0.02.
K=8.0 k=N= 100

attractor with quasiperiodic motion exists, if a
(< 1) is small cnough. Around @ = 1, the basin
ratio for the coherent locking state starts to in-
crease. The locking statec can also lead Lo an
attractor with few numbers of clusters, especially
if the coupling K is small. As a is increcascd
beyond 1, there appcar successive changes trom
the ordered, partially ordered, and to turbulent
phases. In the PO phase, both attractors with few
and many clusters coexist. The dynamics again
exhibits the typical chaotic itinerancy. As a 1s
further increased, each circle map dynamics hits
a fixed point, which is stable even in the presence
ot the coupling. There, the coherent fixed point
attractor occupies the whole basin volume.

In model (7) we have again seen a transition
sequence from ordered o PO, and to turbulent
phases for a > 1. For a single circle map (K = 0),
the ratio for a frequency locking state (in the
parameter space ) increascs quite rapidly
around a =1 [6]. With the incrcasc of locking
ratio, our coupled modecl talls on an ordered state
with few number of clusters. For example, attrac-
tors with 3 or 4 clusters occupy a large basin
volume at 1.0<a< 1.2 (for K=0.1.0.2,0.5).
Around 1.2 <a < 1.3, attractors with many (but
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Table 1

Rough phase diagram for the model (6), which is obtained from the clusterings of attractors from 100 initial conditions, with
N =50. Results for K=0.01, 0.2 and 0.5 are given, while « is changed by 0.1. H stands for a coherent (homogencous)
quasiperiodic (torus) state, H » for a coherent periodic, and H; for a coherent fixed-point, while O, stands for an ordered state with
rich [ clusters, PO for a partial ordered state, and T for a turbulent state

K a

0.1 0.5 1.0 1.5 2.0 2.5
0.5 H, H H, H, H, H, HZ H, H, H, H, H, O, H, H, TTT T T H, H; H; O, 0,
0.2 H, H, H H, H, H, H, H, H, HP H, H, PO PO POTTT PO H; H; H; H, H; H;
0.01 H, H, H, H, H, H  H, H H, 0,; O O, O3 T T TTPOT Hy H, H; Hy H, H,

less than N) clusters coexist, with the chaotic
itinerancy. With the further increase of a, the
system cnters into a turbulent phase. Cluster
numbers arc N for almost all attractors for 1.3 <
a < 1.7 (for K =0.2). Further increase of a leads
our system again to the ordered phasc with two
clusters.

To sum up, both the models (6) and (7) belong
to the same qualitative universality class with the
model (1), except the following novel phase, which

appears in the model (7) at @ < 1. The phase is a

quastperiodic state with partial attraction, which
is termed as “attractor crowding” by [3]. The
number of clusters is N (elements are complctely
desynchronized). We have calculated Lyapunov
spectra for this state. Lyapunov spectra, whosc
maximum is zero, have many (N —3 ~ N — 1) de-
generate null Lyapunov exponents, meaning a
highly degenerate torus state.

In this degenerate state, mean-field fluctuation
vanishes with the size. To see this, we have mea-
sured the temporal distribution of the mean-field
h,=(K/2wN)L;sin(27[x,(j)]. The variance of
the distribution of A, decays roughly with 1/N, in
contrast with the variance for the turbulent phase,
which does not decay with N (fig. 10b). Thus the
mean-field distribution approaches a delta func-
tion in the limit of N — o for the degenerated
torus state. The dynamics of the model (7) ap-
proaches N independent circle maps, leading to
a statc of degenerate independent tori. There is
no attraction into a lower-dimensional phase
space. The initial N-dimensional phase space is
almost preserved. ’
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Fig. 10. Variance of the mean field i, = £;sin(2wx,(j)) for
the model (7). The variance ((h — {(h))?) is plotted as a
function of size N, calculated from 10000 temporal steps after
discarding 3000 transient steps starting from a random initial
condition; K=0.2, @ = 0.3; O (a4 = 0.5) with the scale in the
left axis, (for a degenerate torus state); X (a = 1.5), with the
scale in the right axis (for a turbulent state). The slope of the
line in the figure is — 1.

As long as N is finite, there remains small
correlation among elements, which leads to the
existence of negative Lyapunov exponents.
Roughly speaking, our dynamics can be replaced
by a direct product of degenerate tori in addition
to thc attraction to a lower-dimensional state
induced by small correlation among elements.
This attraction is partial, and most of initial infor-
mation is not lost, such as the ordering of x,(7)
[3]. The so called “attractor” crowding is origi-
nated in this absence of attraction in the N - o
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limit, and in the partial attraction onto a highly
degenerate torus®’.

8. Summary and discussion

We have studied globally coupled phase mod-
els. Attractors are characterized by cluster num-
bers and the clustering distribution. Phases arc
defined through the basin volume for attractors
with each clustering. Successive changes among
the coherent, ordered, partially ordered, and tur-
bulent phases are found. In the ordcred phase,
two-cluster attractors have large basin volumes.
All the two-cluster attractors have similarity, and
are represented by two parameters, one for the
mean value and the other for the amplitude of
oscillation. In the partially ordered phase, cluster-
ings have a large variety of partition. The en-
hancement of the clustering variety is clarified by
the fluctuation of cluster numbers and 7w(Y), i.c.,
the distribution of the probability that two ele-
ments fall on the same cluster.

In the partially ordered phase, chaotic itincr-
ancy is observed, as is characterized in the large
temporal variation of effective degrees of free-
dom. Our chaotic itinerancy consists of a quasi-
stationary high-dimensional state, exits to
ordered states with low effective degrees of frec-
dom, reside therein, and chaotic exits from them.
Very long transicnts with the chaotic itinerancy
are also noted. Diffusion of an orbit in the phase
space shows a crossover from the normal to
anomalous behavior. The diffusion constant does
not decrease with size, due to a strong correlation
among elements. Its K-dependcnce also clearly
deviates from that expected by the random phase
approximation.

Some other phase models arc also studied,
which again show the same qualitative universal-
ity. A novel state therein is a degencrate torus

#3n this sense the term “attractor crowding” may be
misleading.

state with partial attraction, found in the globally
coupled circle map with weak nonlinearity.

Most of our clustering results belong to the
same qualitative universality class as the globally
coupled logistic map. Since the mean field in the
present model can take different values by ele-
ments, in contrast with the previous studies [1],
this allocation to the samc class is not trivial. In
our model, the partially ordered phase with
chaotic itincrancy is seen in much larger parame-
ter regions than in the previous model. We do
not yet know if this observation is a general
feature in a model with element-dependent global
coupling values.

Bifurcations to attractors with different cluster-
ings introduce successive symmetry breakings with
respect to the full permutation group S, among
all the identical oscillators. It will be important to
analyze our clustering changes with the use of the
bifurcation theory in systems with symmetry [31].

Relevance of coupled phase models with chaos
to ncural dynamics has recently been emphasized
[32]. Search with chaotic itinerancy, switching
among attractors, and the possibility of dynamical
categorization have been discussed [1, 24). Capa-
bility of the information processing is thought to
be rather large in the partially ordered phase [1].
The predominance of the partially ordered phase
in the parameter space and the clear chaotic
itinerancy in our model will give promising possi-
bilities for future studies in the biological infor-
mation processing.

A Hamiltonian version of the present model
has been studied by Konishi and the author (33,
34]. In the model we have again found a new type
of partially ordcred states, which will be reported
elsewhere.
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