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Abstract

Network of nonlinear dynamical elements often sh

ow clustering of synchronization by chaotic instability.

Relevance of the clustering 10 ecological, immune, neural, and cellular networks is discussed. with the emphasis
on partially ordered states with chaotic ltinerancy. First, clustering with bit structures in a hypercubic lattice
is studied. Spontaneous formation and destruction of relevant bits are found, which give self-organizing, and
chaotic genetic algorithms. When spontaneous changes of effective couplings are introduced, chaotic itinerancy
of clusterings is widely scen through a feedback mechanism, which supports dynamic stability allowing for
complexity and diversity, known as homeochaos. Second, synaptic dynamics of couplings is studied in relation
with ncural dynamics. The clustering structure is formed with a balance between external inputs and internal
dynamics. Last, an extension allowing for the growth of the number of elements is given, in connection with cell
differentiation. Effective time sharing system of resources is formed in partially ordered states.

1. Dynamical viewpoints

Asis discussed in the preface, dynamical view-
points have been appreciated in biological sci-
ences. Here we need some logic to understand
complex dynamical networks. Such studies are
required from neural, immune, cellular, and eco-
logical networks.

In neural systems, Tsuda has stressed the im-
portance of (chaotic) dynamics in functions
over several years [1-4]. Freeman has noticed
the importance of the change of the degree of co-
herence of neural activities [5]. In the epilepsy,
an ensemble of neurons exhibits a large spike
due to the coherent oscillation of neural ac-
tivities. Partial synchronization of nonlinear
oscillations has been discovered in the visual
cortex of a cat [6,7]. Vaadia and Acrtsen [8,9]
have found that the effective coupling among
neurons varies temporally in a rather short time
scale. They have found that the degree of syn-

chronization among pairs of neurons change
both temporally and by the choice of pairs.

In an ecological system, many species coexist
in a nctwork of food web. The population dy-
namics of species seems to be more stable as the
complexity of network is larger, as Elton has dis-
covered in the forest of England [10]. Further-
more the stability may not be sustained as a fixed
point state [11], but is sustained in a dynami-
cally changing state. In tropical rain forests, for
example, there arc a variety of species each of
which has small population. Temporal variation
of populations there is so large that the diversity
in rain forests is often believed to be maintained
only in a nonequilibrium state [ 12].

Similar interacting population dynamics is
also important in the immune network, where
Jerne proposed the network of antigens and an-
tibodies [13]. Possibility of many attractors in
such network system is discussed [14] in re-
lation with spin glass type models [15), while
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temporally successive switches of many states
are discussed in [16].

At a somatic level, metabolic reactions often
show nonlinear oscillations through catalytic re-
actions. In a developmental process and cell dif-
ferentiation, interaction among cells is impor-
1ant besides the control by gene switches. Cre-
ation of diverse cells by the latter mechanism is
often discussed in relation with many fixed point
attractors [17], while dynamical viewpoints in
cellular interactions are stressed in a recent ex-
periment [18,19].

In these fields, studies on dynamic nonlinear
networks are strongly requested, where a huge
number of interacting nonlinear clements is in-
volved. So far, spin-glass type models are used
as a standard one for a system with many fixed-
point attractors organized as a tree structure.
With such models, static aspects or relaxation to-
wards stationary states are studied. To address
the dynamical problems listed above, however,
we need studies of a system with many nonlinear
interacting elements. The purpose of the present
paper is 10 point out that the nctwork of chaotic
elements can provide a novel standard frame-
work for a variety of biological networks with
dynamical complexity.

The thesis of the present paper is motivated
by the previous studies by the author on an en-
semble of chaotic elements. There [20,21] it was
found that clustering of synchronization is a gen-
cral and important feature in globally coupled
dynamical systems. Elements split into few or
many clusters, in which their oscillations are syn-
chronized. The number of clusters can differ by
attractors, and by the strength of chaos. Com-
plex partition into clusters is also found. This
complexity is partly common with the spin glass
type problems [22].

Gencrally speaking, there are three possibil-
ities in clustering; phase, amplitude, and fre-
quency of oscillations. For example, in the pure
phase clustering, the amplitudes and periods of
oscillations of elements are identical; only the
phases of oscillations differ by clusters to which

elements belong. So far the clustering we have
studied does not purely consist of only one of
the above three types. Phase, amplitude, and
frequency clusterings are mixed, although the
phase difference is most relevant 1o clusterings.
In neural systems, it should be noted that syn-
chronizations seem to split into clusters, as dis-
cussed as “gravitational clustering” by Vaadia
and Aertsen [9]. These clusterings are rather
complicated, although the phase differences
scem 0 be important again.

In clustering it should be noted that identi-
cal chaotic elements differentiate spontaneously
into different groups: even if a system consists
of identical elements, they split into groups with
different phases of oscillations. Hence a network
of chaotic elements gives a theoretical basis for
differentiation of identical elements, and pro-
vides a mechanism on the origin of diversity and
complexity in biological networks.

The maintenance of diversity and complexity,
besides their origin, is also an important problem
in an cvolutionary system. A dynamical mech-
anism of maintenance of diversity is recently
proposed as homeochaos [25,26]. Here we also
discuss a possible relationship between home-
ochaos and clustering.

Since two elements, once fallen in the same
cluster, remain 10 be so, the relationship be-
tween two elements is fixed in nature. Besides
the complexity in this fixed relationships dy-
namical changes of relationships and synchro-
nizations are of importance in the biological
problems listed above. Indeed, the network of
chaotic elements shows dynamical complex-
ity, when chaotic instability in cach element
is stronger; a typical example here is chaotic
itinerancy [20,23,3,24] (see also Section 2).

The purpose of the present paper 1s to survey
the relevance of the idea of clustering to biologi-
cal systems. A rather personal view on biological
networks along the above lines is given in Ta-
ble 1. For the application of the idea, it is often
necessary to extend the basic network of chaotic
elements to different topology, to non-uniform
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Field View

One-lo-one map  Static complex

Dynamic complex

Key concepts Present paper

Neuroscience Grandmother cell Typical neural net
Ecology Niche-species Random network [11]
Immune antigen-antibody  Jerne's net and [14]

Development  gene-cnzyme etc.  Kauffman's net [17)

Basic Model - Spin-glass type [15]

GCM type [20] -

Dynamical Clustering Scctions 5,6
correlation [4,1,8] Cl

Dynamic Clustering Section 4
ecological network [25] Homeochaos

Jerne’s network and [16] Homeochaos? Sections 3.4
GCM type [19]

Clustering Section 7
Open Chaos

Sections 2.3

Table 1

Views of biological networks (personal perspective). Cl=Chaotic Itincrancy.

elements, to synaptic couplings, and to systems
with variable degrees of freedom.

In the next section we give a brief review of ba-
sic results of clustering, and chaotic itinerancy in
globally coupled maps (GCM). In Section 3, the
clustering idea is extended to a system with hy-
percubic topology. This extension is motivated
by interacting population dynamics with muta-
tion and its application to genetic algorithms.
The formation of synchronized clusters strongly
reflects the bit structure in the lattice. Indeed we
will see self-organization and destruction of rel-
evant bits and “don’t care” bits by the chaotic
itinerancy mechanism. In Section 4, we further
extend the system in Section 3 to allow for a
change of the coupling strength. The motiva-
tion for this extension comes from a system with
interacting populations with mutation of mu-
tation rates. By the last process, the coupling
strength among elements (species) is effectively
changed with time. It turns out that the system
attains a dynamic stability allowing for diversity
of many groups, by forming a feedback mecha-
nism to adjust the coupling strength. This mech-
anism, called homeochaos turns out to be sus-
tained by successive changes of clusterings. Sec-
tions 5 and 6 are devoted to extensions of our
GCM to synaptic coupling cases, motivated by
applications to neural systems. In Section 5, a
globally coupled map with distributed coupling
strengths is shown. Different types of cluster-

ing behaviors, from synchronized to completely
desynchronized, are observed within a unique
system. This observation opens up the possibil-
ity of controlling the degree of synchronization
of clements according to inputs, by modifying
the coupling strengths among the elements. Such
control is carried out by a synaptic model intro-
duccd in Section 6, which is in a possible rela-
tionship with the synchronization by external in-
puts in the brain [8]. In Section 7, we study clus-
terings in a system with growing degrees of free-
dom, in connection with cell differentiation and
growth. It is found that the dynamic clustering
leads to growth of the number of cells by form-
ing a time sharing system of foods (resources).
Section 8 is devoted 10 a brief summary and dis-
cussions.

2. Brief review of globally coupled maps

The simpliest case of global interaction is stud-
ied as the “globally coupled map” (GCM) of

chaotic elements [20,21]. An example is given
by

x,,+1(1') = (1 -¢€)f(x,(i))
N
+%j§=jlf(xn<j)), (1)

where n is a discrete time step and / is the
index of an element ({ = 1,2,---,N = sys-
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tem size), and f (x) = 1 — ax?. The model is
a mean-field-theory-type extension of coupled
map lattices (CML) [27]. The above dynam-
ics consists of parallel nonlincar transforma-
tion and a feedback from the “mean-field”. It
is equivalent to y, (/) = f[(1 —€)y,(i) +
(e/N)Zley,,(j)], with the aids of transfor-
mation y,(i) = f(x,(i)). In this form, onc
can see clear correspondence with neural nets: if
one chooses a sigmoid function (e.g.,tanh(fx))
as f(x) and a random or coded coupling ¢; , a
typical neural net is obtained.

Through the interaction, some elements os-
cillate synchronously, while chaotic instability
gives a tendency of destruction of the coherence.
Attractors in GCM are classified by the num-
ber of synchronized clusters & and thc number
of elements for each cluster N;. Herc a clus-
ter is defined as the set of elements in which
x(i) = x(j) *'. Each attractor is coded by
the clustering condition [k, (Ny, Ny, -, N¢)].
If we distinguish each element /, there are
NV (NN, - N1) ways of the partitions for
each clustering condition (N, Np,---, N;). We
have exponentially many attractors for each
clustering condition.

An interesting possibility in the clustering is
that it provides a source for diversity. Even if
the system is started from identical states, they
split into different groups. In Section 7, we dis-
cuss the possibility of a role of clustering in cell
differentiation.

In a globally coupled chaotic system in general,
the following phases appear successively with the
increase of nonlinearity in the system (a in the
above logistic map case) [20]:

(i) Coherent phase: A coherent attractor (k =
1) has occupied (almost) all basin volumes.

(ii) Ordered phase: Attractors (k = o (N)#?)
with few clusters have occupied (almost) all
basin volumes.

*! Similar clusterings are also found in a system without
local but with collective chaos [28].

(1i1) Partially ordered phase: Coexistence of
attractors with many clusters (kK = O(N)) and
few clusters.

(iv) Turbulent phase: All attractors have N
clusters.

In the turbulent phase, although x (/) takes al-
most random values almost independently, there
remains some coherence among elements. In-
deed the distribution of the mean field 4, =
(1/N)Y; f (x4(j)) does not obey the law of
large numbers. The emergence of hidden coher-
ence 1s a general property in a globally coupled
chaotic system [21].

Existence of such coherence may be important
to discuss about the EEG. In EEG, one measures
a given average of neuronal (electric) activities.
Since a firing pattern of each neuron is not reg-
ular (i.e., chaotic or random), the amplitude of
the variation of EEG might decrease with the
number of neurons involved in the average, as
long as neuronal bursts are decorrelated. Since
the number of involved neurons are so huge in
the brain, the variation of average activity mea-
surcd by EEG should be negligibly small, then.
Still, we have observed a large enough amplitude
of variation in EEG. This observation suggests
that there remains some correlation among neu-
ronal bursts. If each neuronal bursting were ran-
dom, it would be hard to imagine a mechanism
to keep such coherency. The above hidden coher-
ence in globally coupled chaotic systems gives a
possible origin of such coherence, where the am-
plitude of the variation of the mean field does
not decrease with the number of e¢lements.

In the partially ordered (PO) phase, com-
plexity of partition into clusters is high. There
are a variety of attractors with a different num-
ber of clusters, and a different way of partitions
[Ny, Ny, ..., Ny ]. We have measured the fluctu-
ation of the partitions, using the probability Y
that two elements fall on the same cluster. This
Y value fluctuates by initial conditions. In the

*¥2 o(N) mecans that the quantity in concern is negligibly
small compared with large N.
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PO phase, this fluctuation is enhanced. Further-
more, the fluctuation remains finite even if the
size goes to infinity [22]. It is noted that such
remnance of fluctuation of partitions is also
seen in spin glass models [15]. The increase
of partition complexity at the partially ordered
state may be important to study the relevance
of the PO phase to biological systems.

We also note that the partition is usually in-
homogeneous, and is organized as an inhomoge-
neous tree structure as in the spin glass model
[20,15].

Besides the above static complexity, there
emerges dynamic complexity in our model at
the PO phase. The orbits make itinerance over
ordered states via highly chaotic states. In the
ordered states the motion is partially coherent.
Our system exhibits intermittent changes be-
tween the self-organization towards the coherent
structure and its collapse to a high-dimensional
disordered motion. This dynamics, called chaotic
itinerancy, has been found in a model of neu-
ral dynamics by Tsuda [3], optical turbulence
[24], and in GCM. Here a number of ruins of
low-dimensional attractors cocxist in the phase
space. The total dynamics consists of the resi-
dences at a ruin and a high-dimensional chaotic
state interspersed between the two residences.

3. Bit clustering in hypercubic coupled maps
(HCM): basis of chaotic genetic algorithm

Let us discuss some (population) dynamics of
many individuals, coded by genes. If genes are
represented by a bit sequence, the mutation pro-
cess in gene space is given by the diffusion in
the bit sequence. When some nonlinear popula-
tion dynamics is included to take into account
of the saturation, competition, or prey-predator
(host-parasite) interaction, the total population
dynamics is given by the local nonlinear dynam-
ics and the diffusion process on the hypercubic
lattice of length 2, corresponding to the bit se-
quences. The minimal model for this process is

given by the following coupled map on a hyper-
cubic lattice:

Xne1 () = (1 —€) f(x,(i))

K
+%§f<xn(a,u))>, (2)

where g; (i) is a “species” whose jth bit is dif-
ferent from the species / (with only one bit dif-
ference) , and X is the total bit length of species
(the number of total “species” is 2X). We use a
decimal representation of bit sequence ofien; for
example 42 stands for the sequence 101010, and
a,(42) = 40.

The present model may be relevant to ge-
netic algorithms [31], where the population of
bit-strings changes according to their fitness.
The model is also of theoretical interest, since
it lies between globally coupled and locally cou-
pled models (CML) [27]: In a global coupled
chaotic system, we have N connections per ele-
ment, while a d-dimensional CML (with nearest
neighbor coupling) has 2d = o(N) connec-
tions per element. In our hypercubic system
with N = 2X elements, we have K = log, N
connections per clements [30].

In the model (2) we have often observed a
state with few synchronized clusters when the
nonlinearity parameter a is not large. (The
phase diagram with respect to the parameter
space (a,e) will be given later). Here a syn-
chronized cluster means, as in Section 2, that
two elements in the cluster oscillate in complete
synchronization, i.e., x, (i) = x,(j) for two el-
ements / and j in the cluster. In the present case,
the split to two clusters is organized according
to the hypercubic structure. For example, the
following types of clusterings are observed.

(A) 2 clusters by 1 bit.

Elements split into two synchronized clusters.
All elements in each cluster oscillate in synchro-
nization as shown in Figs. 1a and 1b, where suc-
cessive snapshots of x, (/) are plotted as a func-
tion of i.
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Fig. 1. Snapshot x (i) of hypercubic coupled map (2) with & = 7 and a = 1.5, plotted as a function of i, decimal
representation of the bit string. ¢ = .4 for (a) and (b}, ¢ = .3 for (c) and (d}. (a) Two successive time steps (after 100000
steps) arc overlaid for a two-cluster attractor, split by the condition * =% x x* 0 and * * » + «x 1. (b) 8 successive time
steps are overlaid for a two-cluster attractor, split by the condition 0 * % * « » « and I % %% * **. (C) 8 successive time stcps
(after 100000 steps) are overlaid for a two-cluster attractor, split by the XOR condition [« * %0 * O or * = *1 % 1x] and
[* % %0 * 1% or = + 1 + O+]. (The attractor is a stable cycle with period-4). (d) 8 successive time steps are overlaid for a
12-cluster attractor. (The attractor is chaotic).
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Such clustering into two is frequently observed
in a globally coupled map system, where arbi-
trary partition of elements into two clusters is
possible. In our HCM, the partition is governed
by the spatial structure in the hypercubic lattice.
For example, elements may be grouped into two
clusters with *xQxxx and xx | x**, (* means that
the symbol there is either one or zero), each of
which has 2X-! species. If the elements split into
the group of # * x x xx | and * % x » x x 0 for exam-
ple, the snapshot of x (/) shows a zigzag structure
(with period 2) if plotted as a function of the
decimal representation i (see Fig. 1a), while the
split by the K'th bit leads to a periodic structure
with period 2X (see Fig. 1b). This clustering is
formed by cutting the K-dimensional hypercube
by a hyperplane.

{B) 2 bit clustering.

Depending on initial conditions and parame-
ters, the number of relevant bits for clustering
can be larger than the case (A), as well as the
number of clusters. In the 2 bit clustering there
are following possibilities:

(BO) 4-cluster state with two relevant bits.
This case is just a direct product of the previous
case (A). The hypercubic space splits by two
hyperplanes. Elements split into four clusters,
for example, coded by O x x * %x, 10 x x * xx,
11 %% % %%, and 00 * x * sx.

(B1) 2-cluster with 2 bits (XOR construc-
tion).

We have also found an attractor with 2 clus-
ters with the use of 2 relevant bits. For example
the elements split into the groups (1) 10 # * * *x
or 01 xxx*x and (i1) 00 % *** or 11 %% %%, This
split corresponds to the construction of XOR
(exclusive or) with the use of 2 relevant bits (see
Fig. 1c).

(B2) 3-cluster with 2 bits.

We have also found a 3-cluster state with 2
bits, constructed for example as (i) 10 % * % s* or
O s ksok (1) 11 %% % xx and (i11) 00 % * * .

It should be noted that not all partitions are
possible in the HCM. Even if we start from an
initial condition with a given clustering condi-

tion, thc synchronization condition (x(i) =
x(j) for i, j belonging to a same cluster) is not
satisfied at the next step, for most of such ini-
tial conditions. In contrast with the GCM case,
not all possible partitions can be a (stable or
unstable) solution of the evolution equation.

One can easily check that the synchroniza-
tion is preserved for the clustering (A), (B0),
(B1), and (B2). Generally the clustering should
be constructed as a combination of hyperplane
cuts, and the condition of a cluster is written as
a bit representation with the symbol “x”, corre-
sponding to the “don’t care” bit “#”, in genetic
algorithms [31].

(C) 3 bit and higher (K') bit coding.

Clustering with the use of bits more than 2 are
constructed in a similar manner. Most cluster-
ings observed here are direct products of (A) or
(B1)-(B3).

(C1) parity check: 2 clusters from X bits,

Elements split into two groups according to
the parity of the number of 1’s in each bit repre-
sentation. For example, elements split into two
clusters as follows: (i) 000, 011, 101, 110 and
(i1) 00t 010, 100, 111, for K = 3. The cluster-
ing, thus gives a parity check. It is a hypercubic
version of the zigzag (1-dim) or checkerboard
(2-dim) pattern [27].

(C2) Hamming distance code: K + 1 clusters
from K bits.

Elements split into K + | clusters according
to the Hamming distance from an element. This
is a straightforward extension of the clustering
(B3). For example, elements split into 4 clusters
as follows (i) 000 (1 element) , (ii) 001, 010,
100 (3 elements) , (iii) 011,101, 110, (3 ele-
ments) and (iv) 111 (1 element) , for K = 3.
This clustering is constructed by the cuts by K
parallel hyperplanes.

An attractor with many clusters is often con-
structed by a direct product of combinations of
(A0), (C1), and (C2) , that is of (0) I bit code
by a hyperplane cut, (1) Parity check and (2)
Hamming distance cuts (see for example Fig.
1d) for a 6-cluster attractor).
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Fig. 2. Rough phase diagram of the hypercubic coupled map

(2) with K = 7. Obtained by measuring the number of

clusters for attractors starting from 10 different sets of initial

conditions. The calculation is carried out by incrementing

the parameters a and ¢ by 0.02.

A very rough phase diagram of our hypercu-
bic coupled map is given in Fig. 2. Transitions
are found successively through ordered, partially
ordered, and desynchronized phases, as in the
GCM in Section 2. In the figure, both the tur-
bulent and frozen desynchronized phases have
attractors with k = N, i.e., with full desynchro-
nization. In the frozen desynchronized phase,
oscillations are chaotic but they keep a period-
2 band motion. The phase relationship of oscil-
lations (of period-2 band) is preserved in the
same way as the frozen random phase of CML
[27]. In one domain X, (i) changes in time as
large-small-large- - -, while it changes in a re-
verse phase in the other domain. As in the frozen
phase of CML [27], these domains of the same
phase relationship do not change in time (sce
for details [29]). In this respect, our hypercubic
coupled map has both the natures of locaily and
globally coupled maps.

In the partially ordered phase, therc are a va-
riety of clusterings with a large number of clus-
ters. There some elements stay very close and
oscillate almost synchronously over some lime
steps, but then they are separated due to chaotic
instability. In a very narrow regime around a =
1.53 and € = .3, we have found a chaotic itiner-
ancy state, where relevant bits change according
to temporal evolution. In Fig. 3, change of rel-
evant bits for the clustering is secen. In Fig. 3a,

(]
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Fig. 3. Space-time diagram for the coupled map lattice on
a hypercubic lattice (2) with ¢ = .3. On the corresponding
pixel at a given time and clement; a2 bar with a length
proportional to (x,(i,j) — 0.1) is painted if x, (i.j) > .1.
Every 4th timc step is plotted. (a) a = 1.525. K =5 (i.c.,
N = 2%). Plotted from time steps 60000 to 62400. The
itinerancy does not stop (we have checked up to 500000
steps). (b) a = 1.54, K = 6 (i.e., N = 25). Plotted from
time steps 10000 to 12400. The system is attracted to a
two-cluster state around the time steps 12100, and remains
the state forever.

for example, the system approaches a two clus-
ter state given by x0 x x* and *1 x »x denoted as
the stage B. Then the state switchesas B — C —
B—-A—-C—A— D — ... where the stage
A means the split into two clusters 0 % x  xx and
1 = * x *, the stage C into * *x 0 % x and = * | * %,
and D into O # x x = and 1 # *x*.

When the number of bits K is larger than 5,
this state is scen only as very long transients be-
fore the system finally falls on an attractor with
few clusters. For example, see Fig. 3b, where
the system finally is attracted into an exact two-
cluster state around 12100 steps and remains
there forever.

With the introduction of external inputs to
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each element, it is also possible to have a clus-
tered state following the external information
[29]. Let us assume, for example, that the exter-
nal inputs are constructed by common inputs for
some bits (“relevant bits”) and “noise” parts for
all bits (see e.g., Eq. (9) of Section 6). By apply-
ing this class of inputs, our system is attracted
to a state clustered by the relevant bits. Relevant
information is thus extracted through this pro-
cess spontaneously, which is stored as the rele-
vant bits in the clustering.

4. Homeochaos and clustering: dynamic
maintenance of diversity

In a system with interacting population dy-
namics, it is an interesting question how diver-
sity of genes are maintained. In [25], we have
proposed a concept “homeochaos” as a mecha-
nism for sustaining dynamic stability with diver-
sity. Population dynamics models with interac-
tion among species, mutation, and mutation of
mutation rates have been studied [25,26].

In particular, we take a 2-dimensional map for
local dynamics here, since we are interested in
the interaction between hosts and parasites (or
preys and predators). Each individual has a gene
coded by a bit sequence as in Section 3. We as-
sume that the parasite can attack a host only if
their bit strings are completely matched. By this
restriction, we can have a 2-dimensional map for
the local population dynamics of each bit string.
To be specific we have studied the model

R (i) = a[l = h(i)]1[h()]exp(=Bp(i)), (3)
p'(i) = h()[1 —exp(-Bp(i))], (4)

instead of the l-dimensional logistic map in
Section 3. Here the set of variable (A(i),p(i))
gives the population of the host and parasite
of the “species”®® i. The term exp(—fBp(i))

#3 Here we use the term “species” as types of bil string,
not in the strict sense in biology.

represents the fraction that is killed by the cor-
responding parasite {.

Further we assume that each “species” i/ can
have different mutation rates, in other words,
each is coded by (i,j) rather than i, where
J denotes the mutation level. Thus our sys-
tem is described by a set of populations of
“species” i and the mutation level j denoted by
{hn (1, ), pnli, j)} at time n.

Since the mutation level does not affect the
interaction, the local dynamics is obtained
straightforwardly from (3) and (4); First we
introduce A5 (i) = Zjh,,(i,j) and ps(i) =
> Pn(i, j)), the sum of the populations of each
“species” over all mutation levels. Then the local
dynamics of %} (/) and p; (i) obey exactly (3)
and (4). The local dynamics 2(i,j) — H (i, ))
is given by multiplying the dynamics of A° (i)
by A, (i, j)/h5 (i), the fraction of the popula-
tion of the level j. (Of course the dynamics
p(i,j) — p’(i,j) is given by multiplying the
corresponding equation by p, (i, j)/p; (i).)

After this population dynamics each group
(i, /) has a mutation change from its nearest
neighbor point in the hypercubic lattice ay (i)
in the same way as in Section 3, with the rate
given by the mutation level j (here we assume
€j = 2Um=0/% and jnax = 30). Furthermore
we assume that the mutation level also changes
by mutation, given by a diffusive coupling be-
tween neighboring levels of j (j — j £ 1), with
the (mutation ) rate €; (see [26]).

Thus the total dynamics (which is a little bit
complicated but is straightforwardly obtained )
is given by the coupled map lattice with the dif-
fusive coupling by the mutation. The coupling
strength €; depends on the level j, as stated, and
there is also diffusive coupling between neigh-
boring mutation levels j + 1.

Through the mutation of mutation rate, the
mutation level is sustained at a high level, with
some temporal fluctuation.. As is studied in
[26], weak high-dimensional chaos is observed
here, which affords the stability with diversity.
All “species” i keep their finite population with
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temporal variation. This stability with diver-
sity is called “homeochaos”, and is proposed
to be essential to the stability of biological net-
works [25,32]. Examples may cover not only
ecological systems but also immune networks,
where high mutation rates are physiologically
confirmed.

In Fig. 4, we have plotted snapshots of A (i)
successively. At time step 9000 (Fig. 4a), popu-
lations split into 7 clusters with the bit condition
oxoxx*x*o. (o shows a relevant bit to clustering. )
The first, third, and last bits are relevant to clus-
tering. (Among possible 2 x 2 x 2 clusters, two
groups 0% I xxx1 and 1% 1xxx1 are fused to form
a single cluster. Thus the number of clusters is
seven.) At time step 18000 there are 12 clusters
with 4 relevant bits as o o x * x 0 o, while 4 clus-
ters exist at 21000 with the condition o % x % o %
#4 We also note that a highly chaotic state is in-
terspersed between two clustered states. An ex-
ample of the snapshot pattern there is given in
Fig. 4d. Summing up, we have observed changes
of bit clustering with chaotic itinerancy .

In Fig. 5a, we have also plotted the time series
of the effective degrees of freedom, defined as
the number of clusters with a given (finite) pre-
cision; i.e., when %°(i) and A*(j) agree within
the precision, they are assumed to be the same
“effective” cluster. Drops of the effective degrees
give the emergence of “almost” clustered states
as in Fig. 4a. Corresponding time series of the
average mutation level is given in Fig. 5b.

This type of chaotic itinerancy is seen in a nar-
row parameter regime in the previous section
(e.g. only around a4 ~ 1.52 in the model in Sec-
tion 3 for € ~ .3, as long transients. In the above
two variable model, it is seen only around a =
3.75 (as long transients) when the mutation rate
is fixed (e.g., at j = 25). On the other hand,
such behavior is seen over all regimes for a >
3.5, with the inclusion of mutation of mutation
rates. Hence there must be a mechanism to ad-

#4 Small difference by the last bit is also detectable, though.
Including this difference here are 8 clusters.

just the effective coupling strength (i.e., the mu-
tation rate here) so that the system stays around
at the partially ordcred state. Such adjustment
mechanism is essential to homeochaos.

A high mutation level (i.e., large coupling ¢;)
is necessary to have a state with few clusters. As
the mutation level is increased, the oscillations
tend to be synchronized (recall that the number
of clusters in coupled maps decreases with the
increase of coupling strength; see Sections 2 and
3). By examining the change of mutation rates
(coupling strengths) and the change of clustering
in detail, it is possible to propose the following
feedback mechanism which keeps the system at
the partially ordercd state:

(i) increase of mutation level leads to the syn-
chronization of population oscillation, since the
coupling is increased;

(ii) the synchronization leads to decrease of
the mutation level,

(iii) the decrease of mutation level leads to the
split of synchronized clusters, since the coupling
is decreased (see Sections 2 and 3);

(iv) split of clusters is associated with the ir-
regular temporal dynamics, which leads to in-
crease of mutation level, and then to (i) [26].

This feedback mechanism is necessary to
maintain our system at the partially ordered
state with the chaotic itinerancy of bit cluster-
ings. Since such partially synchronized state is
thought to be important in biological networks
[3,9], the above mechanism for evolving to,
and maintaining, the state is important. It is
an interesting future problem to elucidate a
similar feedback mechanism in other biological
networks.

5. Extensions to coupling forms with more
complicated structure

In a biological system, the elements are not
homogeneous. It is often necessary, then, to as-
sume that local dynamics or a coupling strength
depends on elements. Also time dependence of
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such parameters may be necessary.

Here we extend the previous GCM by allow-
ing for inhomogeneous parameiers by elements,
instead of identical parametcrs for all. There
are two possibilities here; choice of distributed
a(i) instead of a constant nonlinearity a or dis-
tributed € (i) instead of a constant coupling €.
For the latter case, the model is given by

Xap1 (i) = [1 - €(D)]f (xa(0))
€(i) .
+T§f(x,,(m. (5)

In Fig. 6 we have plotted a snapshot of
x,(i) for a system with homogeneously dis-
tributed coupling over [€min, €max] (1.€., € (1) =
€min + (€max — €min) ({/N)). As is seen, the
clustering structure depends on the coupling
strength at each element. Elements with large
coupling (¢ > .22) form a single synchronized
cluster, while the number of clusters increases
successively with the decrease of the coupling
strength at the element. Such clustering bifurca-
tion looks similar with the phase change (i) —

(iv) in Section 2. Howeyver, this is not a trivial
extension. The clustering change in Section 2 is
the bifurcation with system parameters, while
the change here is included in a single network
system, where all the elements therein are con-
nected by a unique mean field. Still “internal”
bifurcation among elements occurs here. At the
edge parameter region between clustered and
turbulent states (¢ ~ 0.12 in Fig. 6), the motion
is rather complicated with chaotic itinerancy.
Desynchronized bursts emitted from the ele-
ments with smaller € (i) flow to elements with
larger € (i), where clustering can change in time.

The behavior discussed here is also seen in
a model with the distributed nonlinearity, i.e.,
a(i) = Gmin + (dmax — @min) (i/N). The “inter-
nal” bifurcation from the ordered state to the
turbulent one occurs with the increase of the in-
dex of elements ;.

If the range of distribution of coupling is small,
the behavior there approaches that in the previ-
ous section. According to the width of the cou-
pling range variety of clusterings decreases. We
note that the hidden coherence still emerges in
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the turbulent state, even if the parameters a or ¢
are distributed [21].

6. Synaptic dynamics

In traditional ncural networks, coding is as-
signed at firing patterns x (i), while the synaptic
change and memory are assumed to be assigned
on the interaction strength between two elements
i and j. Recently therc are some arguments that
dynamical coding, given by the correlation be-
tween x (i) and x (j), may be important [8,9].
Then it may be interesting to pursue this “con-
verse” limit: in other words, let us assume that
the synaptic change and memory are assigned on
the coupling € (/) at /, not on the interaction be-
tween / and j. Thus we take the following model:

Xnp1 () = [1 — €, (D) 1S (xn (0))

S S ), (®)
J

+

where €, (1) is in-(de-)creased according to in-
puts on the ith element. To be specific, we take

the following dynamics; first increase the cou-
pling to the mean field, according to the input
sn (i)(> 0) by

€'(i) = €,(i) + ysn (i), withy >0, (7)

and then rescale the coupling so that the average
of € (i) is conserved:

€' (1)
€0

Indeed the latter equation is introduced only
for a suppression, and may be replaced by other
forms to suppress the overgrowth of €, (). What
we need here is a mechanism for (a) the suppres-
sion of an indefinite increase of coupling € (i)
and (b) the competition among elements for the
increase of coupling.

When common inputs are applied to elements
Ip < i < iy, synchronization degree of the oscil-
lations x,, (i) for iy < i < i increases. Depend-
ing on the input strength, two elements {, j with
common inputs often synchronize completely.
After inputs are eliminated, a pair of (almost)
synchronized elements remains coherent or cor-

(8)

En+l(i) = €p X
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related. We have thus achieved clustering ac-
cording to inputs [33]. This clustering is often
preserved even if the coupling €, (/) 1s again re-
stored to be homogeneous.

Generally, the clustering is formed according
to the structure of inputs. We have made some
simulations with correlated inputs in p groups
per N/p elements. In particular we take

sp (1) = Ry (int(i/p)) + rn (i), (9)

where R, (¢) is a random signal (depending on
the argument ¢ ), with the amplitude 1. With the
form R, (int(i/p)), common inputs are applied
to each group kN/p < i < (k + 1)N/p, while
rp is a noise depending on elements but with
much smaller amplitude 6 (6 < 1). Adopting
this form, inputs are random, but are strongly
correlated within each group of N/p elements.
In Fig. 7 we have plotted the spacetime diagram
when these inputs are applied (p = 4). Corre-
lated motion within each N/p elements is seen.
Some of the correlation remain even after the
inputs are eliminated (see Fig. 7b).

To see the correlation in oscillations {x;, (i)}
more quantitatively, we introduce the difference
matrix

4ij = ((xn(G) — xa(i))?), (10)

where (- --) is temporal average. The difference
matrix is plotted in Fig. 8 for the inputs in the
above structure. We note that the partial clus-
tering is formed according to the structure of in-
puts, as long as the number of input groups is
small (i.e., typically p < 8). This organization is
not trivial since we have not imposed any direct
change of the coupling to increase the coherence
among elements with correlated inputs. No en-
hancement of the connection between pairs is re-
quired here. Indeed, given an element, the cou-
pling strength takes a same value for any pair
between it and other elements.

The formation of clustering according to in-
puts works well if the parameters a and € are
chosen so that the number of clusters there is not
far from the expected cluster number by inputs.
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Fig. 7. Spacc-time diagram for the globally coupled map
Eq. (6) with Egs. (7) and (8) with the inputs Eq. (9),
with p = 4. a = 1.85, 0=01,y=0I,N = 128. On
the corresponding pixel at a given time and element, a bar
with a length proportional to (x» (i, j) — 0.1) is painted
if xn(i,j) > .1. (a) Every 16th time step is plotted from
8000 to 16000. (b) Continued from a), after the inputs are
stopped at the time step 20000. Over the time steps 24000
to 32000.

If the number of clusters at the corresponding a
and €q values is smaller than that of the inputs,
some of the groups are fused into a same cluster.
Relationships between some input groups are
self-organized by the internal dynamics. Gener-
ally, the above clustering is formed by the bal-
ance between internal dynamics and the external
inputs. In Fig. 8a, for example, 3 out of 4 input
groups are mapped into the clustering, but the
other group is not clearly mapped. In Fig. 8b,
two of the four input groups are mapped, while
the other two split into smaller clusters.

There is a recent report of an interesting exper-
iment by Hayashi [34], where synchronization
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among neurons is increased when a rat is contin-
uing a task with a feedback to the brain. In our
model this corresponds to the growth of ¢ (/) for
all elements. With further continuing the task,
the synchronization reaches its maximum, and
the rat’s brain goes to an epileptic state, where
the information processing ability is lost. In our
model complete synchronization would be at-
tained if the suppression term (Eq. (8)) were not
included. To avoid such catastrophe, we have to
introduce some mechanisms to suppress the in-
crease of € in our model. We may expect that
such mechanism exists in the real brain, and that
its breakdown leads to the epilepsy.

7. Growing coupled maps: origin of diversity and
differentiation

One missing feature in our network of chaotic
elements so far, is the possibility to change the

degrees of freedom themselves. In biological
systems, oftcn the number of elements itself
varics. Such growth of elements is also seen in
the economics, where the number of agents can
change in time through reproduction and extinc-
tion. Here we study a very simple model with
the growth of the number of elements, taking a
coupled map model. A related but more realis-
tic model for cell division and differentiation is
given in [19].

We assume that there is a variable x (i) deter-
mining the cell state, and that cells compete with
each other for a source term s. Source term s is
supplied from outer environments with a con-
stant rate ¢. The ability to get this source depends
on the internal state x (i), with some nonlinear
function f (x). Thus the dynamics of each x (i)
is given by

Xns1 (1) = X (i) + [ (xn (i) + Sn, (11)
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_ eSS al))

Sn N

(12)

The term X, 4 (i) — X, (i) = f{(x,(i)) + Su
gives a source term that the element / takes at
the time step #. The second condition assures
Y idxne1 (i) = xu (1)} = c, that is, the sum of
the source term balances with that supplied ex-
ternally.

Further we introduce the following dynamics
for cell division and death.

(A) Divide the cell i if x, (/) > T,. After the
division, x of the cell / and the new element
N + 1 is assigned to be (x, (i) —T,)/2 + 6 and
(xn (i} — T)/2 — 6, with a very small random
number 4.

(B) Remove the cell 7 if x, (i) < Ty. Here we
fix Ty = 1 and T,; = 0, although our results are
essentially independent of the choice of 7 and
T,. The function f (x) is chosen to be f(x) =
Ksin(2nx)

Time scries of the number of cells and the ef-
fective number of clusters are plotted in Fig. 9,
while the maximal and average numbecrs of cells
arc plotted as a function of K in Fig. 10. We note
that the growth is maximal around K =~ 4.3.

In the corresponding coupled map model with
a fixed number of clements (i.e., globally cou-
pled circle map [23]), the system is in a coher-
ent phase for K < 2, at the ordered phase for 2 <
K < 4.1, at the partially ordered phase around
4.1 < K < 4.4, and at the turbulent phase for
K >44.

Thus our result suggests that the growth is en-
hanced at the partially ordered state. If oscilla-
tions of all elements are synchronized, they com-
pete for the source term at the same timing. This
hard competition is not good for an effective use
of resources. By the clustering, a sort of time
sharing system is constructed. Thus resources are
effectively used with some ordering by elements.
On the other hand, if the elements arc completely
desynchronized, no ordering for the use of re-
sources is possible. In this case effective use of
resources is again impossible. Thus the growth
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is enhanced at the partially ordered state, where
synchronization is lost but there remains some
ordering.

At the partially ordered state, typical clus-
tering is quite inhomogeneous. Some elements
form a large cluster, while there arec many other
elements with desynchronization. Cells belong-
ing to a large synchronized cluster grow slower
than desynchronized cells. When these synchro-
nized cells divide, the number of cells suddenly
increases by N,, the number of elements in the
cluster. This increase causes a hard competition
for resources, and often leads to spontaneous
death of many cells. Such multiple death re-
minds us of the programmed death known in
real biological developmental processes.

Our growth and division model may also have
relevance to economics, where many individu-
als or companies compete for finite resources.
Growth, division, death (bankrupt) factors are
important in economics. Time sharing for re-
sources is useful there. Economic crash may be
related with the above multiple cell deaths, and
may be due to synchronized behaviors of agents
for resources.

The present model, of course, is too simple to
the study of cell growth and differentiation. Here
we have discussed this model as the simplest il-
lustration. For a model including metabolic re-
action, and other stimulating results, see [19] in
the present proceeding. In the present model we
have not found a state corresponding to the stage
III in [19]. Possibly we need at least a model
with two variables, phase and amplitude, to have
the stage III where separation of poor and rich
cells emerges.

8. Summary and discussions

In the present paper we have discussed rele-
vance of dynamic clustering to biological prob-
lems. In a network of chaotic elements, they
often split into synchronized clusters due to
chaotic instability. Identical elements sponta-
neously differentiate. Thus the clustering can
give a basic concept for the origin of diversity.
Indeed we have applied the clustering mecha-
nism to cell differentiation in Section 7.

By using a hypercubic topology and local non-
linear dynamics, we have studied clusterings
with bit structures. Clusters are spontaneously
formed reflecting the bit structure. Relevant bits
are spontaneously formed, which opens up the
possibility of self-organizing genetic algorithms.
Since viruses form quasispecies coded in a hy-
percubic space as Eigen et al. discusses [35], it
may be interesting to search for dynamic clus-
tering there.

When chaotic instability and averaging by
couplings are somewhat balanced, a partition
into clusters is very complex. In this partially
ordered state, dynamics is also complex with
chaotic itinerancy over ordered states. Rele-
vance of the partially ordered states and chaotic
itinerancy to biological networks have been dis-
cussed throughout the paper.

In the hypercubic topology, chaotic swilches
of relevant bits are formed successively. Besides
possible relevance to dynamics of immune net-
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works and virus populations, such chaotic itiner-
ancy of bits may be of use in genetic algorithms.

Relevance of the partially ordered states to
ccological and immune networks is studied with
the inclusion of the change of effective cou-
plings as mutation of mutation rates. It turns
out that the system maintains its stability as
homeochaos, by forming a feedback mechanism
to keep the system around partially ordercd
states. The homeochaos provides a mechanism
of the maintenance of diversity, important in
ecological and other biological networks.

In a model allowing for the growth of the
number of elements, we have found that cffec-
tive time sharing system of resources is formed
in partially clustered states. A balance between
synchronization and desynchronization is nec-
essary here, for the effective use of resources,
which enable the growth of the number of cells
(agents). This study of growing cells, originally
motivated in the cell differentiation and divi-
sion. may be applied to economics, where a
breakdown of the time sharing system by syn-
chronization may lead to economic crash.

In a GCM with synaptic couplings, we have
observed the clustering formation through some
interference of external inputs and local dynam-
ics. To have a capacity to construct a map of
complex environment, it is desirable to have a
potentiality of complex partitions to clusters,
supported by partially ordered states.

To sum up we have studied classes of exten-
sions of coupled maps to hypercubic topology,
synaptic couplings, growing degrees, and so on,
in order to understand the origin and maintc-
nance of diversity and complexity in biological
networks.
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