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Abstract

An extension of coupled maps is given which allows for the growth of the number of elements, and is inspired by the cell
differentiation problem. The growth of elements is made possible first by clustering the phases, and then by differentiating
roles. The former leads to the time sharing of resources, while the latter leads to the separation of roles for the growth. The
mechanism of the differentiation of elements is studied. An extension to a model with several internal phase variables is
given, which shows differentiation of internal states. The relevance of interacting dynamics with internal states (“intra-inter”
dynamics) to biological problems is discussed with an emphasis on heterogeneity by clustering, macroscopic robustness by

partial synchronization and recursivity with the selection of initial conditions and digitalization.

1. Introduction

Coupled map lattices (CML) have been used to
study many diverse phenomena of spatially extended
systems [1]: (i) spatio-temporal chaos, (ii) statistical
mechanics of an ensemble of chaotic elements, (iii)
turbulence, (iv) pattern dynamics, (v) neural dynamics
and applications to information processing, and (vi)
biological network problems.

Although the CML approach has been developed
rapidly in the first four fields [2] and partly in the neu-
ral information processing field, it has not been devel-
oped so much in applications to biological networks.

One of the important merits in applying CML tech-
niques to biological networks lies in the ability to
capture the interplay between inter-unit and intra-unit
dynamics. Such “intra-inter dynamics” seems to be
essential to a variety of biological problems. In cell
biology, there are complex metabolic reaction dynam-
ics in each unit (cell), which are affected by the inter-
action among cells. In neural systems, the viewpoint

of intra—inter dynamics must be essential to the for-
mation of internal images. An ecological system also
consists of interacting units with internal dynamics.
A CML gives a simple model for a system composed
of interacting units with internal dynamics, and thus
fits with biological problems better than a cellular au-
tomaton, where there is no internal dynamics in each
element.

Indeed, there have been some studies for cellular
biology adopting this dynamical systems approach.

The importance of temporal oscillations in cellular
dynamics was studied in pioneering work by Goodwin
[3]. Recently, the existence of oscillatory dynamics for
cell division processes has been discussed both exper-
imentally and theoretically in cycline and M-phase-
promoting factor [4]. On the other hand, different cell
types are attributed to the coexistence of many at-
tractors by Kauffman [5] where a Boolean network is
adopted for each cellular dynamics. Starting from such
internal cellular dynamics, cell-to-cell interactions are
included to study the Turing-type pattern formation
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mechanism [6]: Attraction to different states is found
in a coupled system of Boolean-network-type differ-
ential equations [7], while a CML corresponding to
Goodwin-type oscillators is studied by Bignone [8].

As for the interactions, these studies basically adopt
the pattern-formation mechanism of the Turing insta-
bility [6]. The internal dynamics is based either on sta-
ble cycles, or on switching-type threshold dynamics
allowing only for fixed points. Use of chaos or tran-
sient unstable dynamics has not been discussed. An-
other missing factor in these studies is the change in
degrees of freedom by cell division and death, while
selection of the system size and boundary condition
through the dynamics itself is one important charac-
teristic feature in a biological system. These are few of
several motivations to introduce the isologous diversi-
fication to be discussed in Section 2. With the theory
we try to answer the questions of the mechanism of the
differentiation process in conjunction with the growth
in cell numbers, and how cellular memory is formed
that is transferred stably through cell divisions.

In general, there is an important missing factor in
applying the CML approach to study a biological prob-
lem. Indeed, this drawback is common in the dynam-
ical systems (DS) approach to modeling, which may
be termed the “separation” problem. A model con-
structed using the DS approach consists of time, a
set of states, an evolution rule, an initial condition of
the states, and boundary conditions. It is generally as-
sumed that these four sets themselves are separated
from each other: Although the states are changed ac-
cording to the evolution rule, the set of states itself
(e.g., the number of variables) is fixed independent of
the rule. The states cannot change the evolution rule
itself. Initial conditions and boundary conditions are
chosen independently of the state values and of the
evolution rule. In biological problems, such separation
between all these elements of the model may not be
valid, or at the very least the origin of their separation
should be discussed.

Let us first discuss the separation between the set of
states and the evolution rule. In a biological system,
the evolution rule itself is formed and changes in con-
nection with the temporal evolution of the states. A
simple example is the change of the number of vari-

ables itself with time: Let us consider the dynamics of
a cell society. When one considers the chemical vari-
ability of cells, we need a set of variables for each
cell. Then, the number of variables should change with
the cell division and death. Or, consider another ex-
ample: population dynamics. There the emergence of
new species leads to a change in the degrees of free-
dom. Such growth of elements is also seen in eco-
nomics, where the number of agents can change in
time through reproduction and extinction.

Another aspect of the separation problem lies in the
segregation of parameters and variables. In dynamical
systems, the roles of “parameters” and “variables” are
predetermined and fixed. In a biological system such
separation may not be possible, or rather, it is impor-
tant to discuss how some sets of variables turn into
parameters.

The next important problem lies in the choice of
initial conditions or boundary conditions. For a cell
to grow repeatedly, the initial condition of its internal
state should satisfy some condition. This initial condi-
tion, however, is determined by its mother cell’s state.
Thus, the initial conditions of a state, and its evolu-
tion are not clearly separated. Through the evolution
of the state, initial conditions are selected that allow
for recursive growth.

Recently, the author and Yomo have proposed a
novel scenario for cell differentiation termed “isol-
ogous diversification theory” [9]. The cell differen-
tiation and developmental processes involve internal
metabolic reactions, which are nonlinear, as well as
cell division and death, which lead to change of the
degrees of freedom of the system. Thus, the study of
cell differentiation is one prototype of our intra—inter
dynamics picture for biological systems.

The present paper is organized as follows. In
Sectioin 2 we explain the isologous diversification
theory in terms of a coupled metabolic reaction model.
In Sections 3 and 4, we study a minimal model of the
differentiation process, given by a globally coupled
circle map which allows for a change in the number
of elements (cells). Cells divide or die according to
the history of the rotation of their phase. We also
elucidate the mechanism by which the phases of oscil-
lation, as well as their growth rates are differentiated.
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In Section 5, we extend the model to include several
phase variables and see how differentiation of ele-
ments is embedded into the internal dynamics. The
paper concludes in Section 6 with a discussion of our
results.

2. Isologous diversification for cell differentiation

The author and Yomo have studied a class of intra—
inter dynamical models which are a dynamic model
for the cell differentiation process [9-11]. This class
of models consists of a metabolic or genetic network
within each cell, and interaction between cells through
competition for nutrition and the diffusion flow of
chemicals to media. In each cell there is a set of chem-
ical variables. When a cell is isolated, its chemicals
are assumed to show oscillatory behaviors of a Lotka—
Volterra type, that is, the concentration of each chemi-
cal component switches between a low and high level
periodically in time. As for the inter-dynamics, cells
are assumed to interact with each other through the
media. The interaction here is global, and the system
belongs to a class of globally coupled dynamical sys-
tems. The cell is assumed to divide and thus gives birth
to a new cell when a product of the metabolic chemi-
cal reactions exceeds some threshold. The concentra-
tions of chemicals of two divided cells are chosen to
be almost identical upon the division.

Starting from a single cell initial condition, we have
found the following scenario for cell growth and dif-
ferentiation.

(1) Synchronous oscillations of identical cells: Up to
some threshold number of cells, all oscillate syn-
chronously, and their states are identical.

(2) Differentiation of the phases of oscillations of
internal states: When the number of cells ex-
ceeds the threshold, they lose identical and co-
herent dynamics. The phases of oscillations split
into several groups (clusters). This clustering
is a general consequence of coupled oscillators
(maps) [12-15], when there is strong interaction
among them (similar clusterings are also found
in a system without local but with collective
chaos [16]).

(3) Differentiation of the amplitudes of internal states:
At this stage, the states of cells are different even
after taking the temporal average over periods.
The pattern of orbits in the chemical phase space
differs by groups. The dynamics as well as the
average behavior of cells is differentiated.

(4) Transfer of the differentiated state to their off-
springs by reproduction: The differentiated char-
acter of a cell is transferred to its offsprings. This
“memory” is made possible through the transfer
of initial conditions for the chemical variables of
the reproduced new cell.

As the cells continue to reproduce, the competi-
tive interaction among them gets stronger and leads
to successive diversification of their behavior. Gen-
erally speaking, identical elements tend to become
diversified through the interplay of nonlinear oscilla-
tions, cell-to-cell interaction, and reproduction. The
first three stages listed above are consequences of
globally coupled dynamical systems. The emergence
of the fourth stage, on the other hand, is attained only
through the reproduction of cells, where the initial
conditions are selected so that the oftsprings keep the
same character as their mother cell. We believe that
this emergence of recursivity or memory is an impor-
tant feature of coupled dynamical systems with repro-
duction, and thus is essential to the information flow
and memory in biological systems.

Of course, the idea to attribute a different cell
type to a different state of chemical dynamics is
not new. As mentioned in Section 1, the exis-
tence of multiple fixed point states in Boolean net-
works has been proposed to provide different cell
types [5], while different oscillatory states coexist
with the inclusion of cellular interactions [7,8]. In
comparison with these previous dynamical-systems
models for cell differentiation, however, the pro-
posal of our theory is novel as to the following
points:

(1) Importance of instability: In the second stage,
clustering by coupled nonlinear oscillators is es-
sential to the trigger of differentiation. For the
clustering, the orbital instability of a system is
required, either by internal dynamics or through
interactions. The dynamics of the attractor itself
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is not necessarily chaotic, but an instability at
least during transient time steps is required.
Non-diffusive interaction: In contrast with the
previous theoretical models for differentiation,
the interaction form is not diffusive as postu-
lated for the Turing instability, but is based on
the (global) competition for chemical resources.
With this interaction, differentiation proceeds.
In particular, this form seems to be essential to
the fixation of differentiation (with amplitude
clustering) at the third stage.

Stability at an ensemble level: Our differentia-
tion is based on the interaction among nonlin-
ear elements. In such a coupled system, stability
of a collective dynamics has been studied, that
is formed by an ensemble of chaotic elements
[12,17,18]. Such stability is essential to our sce-
nario, and is indeed found in our simulations [10].
For example, when all cells of some type are re-
moved, other cells of a different type are trans-
formed into the removed type, through divisions.
With these changes of cell types, the cellular dis-
tribution comes back to the original one. This sta-
bility is especially important for the maintenance
of a biological system.

Change of degrees of freedom in conjunction with
dynamics: Cell division and death lead to the
change in degrees of freedom, which provides a
novel class of dynamical systems. There a novel
type of instability is proposed as “open chaos”
[19] where the orbital instability in global phase
space is in conjunction with the change of de-
grees of freedom. Another important factor in
such a system is the selection of system size.
With cell division and death, the variation of the
total number of cells remains within some range.
Such autonomous selection of the system size is
important in a biological system. For example,
apoptosis is essential to the selection of the total
number of cells in a system, and our model may
give a conceptual model of it.

Recursive transmission through selection of ini-
tial conditions: The cellular memory at the fourth
stage is formed as the result of the selection of
initial conditions for a cellular state (i.e., a partial

system of the total dynamical system). This ar-
gument is possible only for a system with a cell
division process, internal dynamics, and interac-
tions. As for the choice of initial conditions of
the internal cellular system, this selection could
be related with the basin for multiple attractors.
However, in our model, the cellular interactions
are also relevant to the formation of multiple cel-
lular states and the selection of one of them. The
coexistence of multiple states and the selection
are also the outcome of both the interactions and
internal dynamics.

3. Coupled map model with division and death:
Relation with growth and synchronization

The cell differentiation model adopted in [9,11]
is rather complicated in order to correspond with
biochemical reactions. In this section we consider a
very simple, possibly the simplest, model with inter-
nal oscillatory dynamics, competitive interaction, and
growth in the degrees of freedom.

First we assume that there is a variable, x (i), de-
termining the cell state, and that cells compete with
each other for a source term s. The source is supplied
from the outer environment with a constant rate s. The
ability to get this source depends on the internal state
x(i). Thus the dynamics of each x (i} is given by

Xnp1 () = x,(0) + f(xq (i) + Sn, (1)
Sn:S‘Z,’f(xn(J))' )
N

The term x,41 (i) — x,(i) = f(x0(i)) + Su gives a
source term that the element i takes at the time step n.
The second condition assures Y, {xp41() — x,(i)} =
s, that is, the sum of the source term balances with
that supplied externally. The summation is over the
number of elements N.

Since x,(i) represents an internal state, which is
oscillatory, it is natural to relate it with the phase of
oscillation. This correspondence inspires us to choose
the periodic function of f(x) = (K/2m)sin(2mrx),
so that the dynamics depends only on the phase,
represented by the fractional part of x(i). It is useful
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then, to relate the threshold for division with the
number of cycles after the previous division. Hence
we assume that the condition for division and death is
governed by the the number of oscillations, given by
the integer part of x,(i). Taking these considerations
into account, we choose the following rules for the
division and death:

(A) Divide cell i if x,(i) > Tg. After division, x, (i)
of cell i and the new element N + | is assigned
to be $(xx(i) — Tg) + 6 and (xa(i) — Ty) — &,
respectively, with & a very small random number.

(B) Remove cell i if x,(i) < Tg.

Here T, > 1 and Ty < O are integers giving the
threshold for growth (division) and death, respectively.
We often call element i as cell i, and the duration
from its birth (or division) to the next division (or
death) as the cell’s lifecycle, following the analogy
with cell biology. The number of time steps from its
latest division (or birth) to the next division (or death)
is called its lifetime. Although no difference exists
besides the error term between the two cells i and
N + 1, produced by the division of the cell i, one
of them remains to be called cell i. Since each cell i
can divide several times, we attribute a lifecycle and
lifetime to each division process, here. (Thus there can
be several lifetimes for cell i according to successive
divisions).

The model of (1) is a globally coupled map (GCM)
with the coupling term given by (2). Thus it is ex-
pected that the dynamics of (1) leads to the clusters of
synchronized oscillations as in globally coupled cir-
cle maps [13], which are relevant to the dynamics of
growth. Here a cluster is defined as a set of elements
having identical fractional parts of x(i) up to a pre-
scribed precision. The integer part of x, (i) is not taken
into account for the definition of clustering, since the
dynamics (1) only depends on the fractional part, and
two elements with the same fractional part show iden-
tical oscillations until the division occurs to which the
integer part is relevant. In other words, the dynamics
of the phase variable x (i) is identical up to this preci-
sion for elements belonging to an identical cluster. If
all elements belong to a single cluster, they are syn-
chronized perfectly. Since the integer part of x, (i) can
be different even for two cells belonging to the same

cluster, the division condition can be applied to them
at different time steps. (Note that the history of two
elements (such as the time of the latest division) can
be different even if two elements are synchronized at
the moment). Through this division process, two com-
pletely synchronized elements (even up to an infinite
precision) can change their values. Thus the cluster-
ing condition itself is dynamic, in contrast with the

clustering of an attractor in GCM [12].

In the present paper we define a cluster at each time
step with a precision of 107>, A state of an ensemble
of cells is classified by the number of synchronized
clusters k and the number of elements for each cluster
Ny, i.e., the partition of N elements to k clusters as
(N1, N2, ..., Np).

Here we mainly discuss the simulations with Ty =
0. In this case, the number of cells does not grow
indefinitely. As K is increased, we have seen roughly
three phases: |
(1) Ordered phase.

(2) Partially ordered phase.

(3) Desynchronized phase.

Each phase is characterized as follows (see Fig. 1
for the time series of x, (i) for each phase):

(1) Elements tend to be synchronized: As shown in
the time series (see Fig. 1(a)), elements’ oscil-
lations split into two clusters for some interval,
and then all of them tend to be synchronized, and
later split into two ( or a few) clusters. This pro-
cess repeats with time as x, (i) increases, within
each cell’s lifecycle. As the number of cells in-
creases, their oscillations increase the mutual co-
herence, in the present model. When the number
gets larger, all cells’ oscillations become coherent.
Then there appears simultaneous death of multi-
ple cells, and the number of cells decreases dras-
tically, from which the growth again starts (see
Fig. 2(a) for the change of the total number of
cells N). Thus the system has two levels of cy-
cles; one is the intra-cellular oscillation, and the
other the inter-cellular oscillation associated with
the change of the number of cells.

!see [20] for the discovery of these phases for T, = 1.
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(2) Partially ordered phase: Around K =~ 3.3 the os-
cillations of identical cells can be desynchronized.
The cluster number fluctuates between | and N,
while the coupled system consists of a single large
synchronized cluster (i.e., N| ~ %N ) and many
other desynchronized elements. Here the num-
ber of cells can grow up to a very large number.
Indeed, as is seen in Fig. 2(c), there are two tem-
poral regimes; for most of the time the number
oscillates around O(10), but occasionally there ap-
pears an intermittent burst to a very large number
of cells (100-700). The time series in the former

3

regime is given in Fig. 1(b), while that for the lat-
ter case is given in Fig. 1(c). In this partially or-
dered phase, the number of cells often stays at a
large value for about a million steps, until there
is a simultaneous death of many cells. After the
death of many cells, new cells start growing as in
Fig. 1(d). Detailed study of this phase is given in
Section 4.

Desynchronized states: For K > 3.4, elements’
oscillations are typically desynchronized. For
most time steps, all elements are desynchronized
with each other, i.e., the cluster number is N (see
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Fig. 1(e), where the number of cells fluctuates
between 2 and 6). Growth of the number of cells
is suppressed. The number fluctuates at a low
level, with an irregular oscillation.

To see the above changes quantitatively, the max-
imal and average numbers of cells are plotted as
a function of K in Fig. 3. There is a sharp peak
at K = (3.2-3.3), independent of the choice of
threshold 7. At 3 < K < 3.4, the maximal cell

number is over a thousand (see Fig. 1), which is
due to the existence of a temporal regime allow-
ing for a steady increase to a large number and
its maintenance (see Fig. 2(c)). In Fig. 4 we have
also plotted the average fraction of cluster num-
bers, i.e., {(k)/(N), where ( ) is the temporal aver-
age. There is a sharp increase at K ~ 3.3, beyond
which the fraction is close to 1, meaning complete
desynchronization.
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Fig. 3. The average (a) and maximal number (b) of cells over the time steps 5000—105 000. Simulations are carried out with s = 0.1,
Ty = 0, and starting from one cell. T3 = 100 (solid line with O), 10 (dotted line with O), and 1 (broken line with o).

To see the instability of synchronization, it is use-
ful to introduce the split exponent following the defi-
nition given in GCM [21]. It is defined as the rate of
amplification of x,(i) — x,(j) of two elements such
that x, (i) & x,(j). Since the global interaction term
is common to all elements, the exponent is given by
the average of the expansion rate for the one-body part
of Eq. (1), 1.e., xp41 = x,(i) + f(x,()). Thus it is
defined as

To+T

Aspl (i To, T) = (1/T) Y log |1+ £/ (3)

n=Ty

The above exponent is an average over time steps
Tp to To + T'. If the element remains existing forever,
it is possible to take the infinite time limit to obtain a
well-defined quantity like the Lyapunov exponent, as
long as we do not take into account the perturbation
caused by the “division process”, which is not repre-
sented by the mapping process. In our problem cells
can divide or die, where a threshold-type instability

sets in. Still, the following quantifiers should be rel-
evant to discuss the split instability: (a) The average
of the exponent over all cells and over all time steps
— this quantity, denoted as Asp, measures the aver-
age tendency of desynchronization. (b) The average of
Aspl(i; Ty, T') over a cell’s lifecycle (i.e., from its latest
division (or birth) to its next division (or death)) — this
quantity is obtained just by taking Ty as the latest first
division time (or birth) and T + Ty as the next division
time (or death). The quantity measures an average de-
gree of synchronization of a cell over its lifecycle.
The change of the average split exponent Apy versus
K is given in Fig. 5. The exponent becomes positive
around K =~ 2. We note that the growth of cell num-
bers starts to increase at K > 2. Between 2 < K <
2.9, which corresponds to the ordered phase, the aver-
age exponent remains close to zero, as the “synchro-
nization to few clusters” and “split by division” are
balanced. This balance is shown in Fig. 1(a), where
the above two processes repeat in each cell’s oscilla-
tion within each lifecycle. For K > 2.9 the exponent
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10 (dotted line with O), and 1 (broken line with ).

starts to be positive, and increases slowly thereafter
with K, until K ~ 3.3, where the increase starts to
be larger. The regime 2.9 < K < 3.4 corresponds
to the partially ordered phase. For K > 3.4, ie., at
the desynchronized phase, the exponent smoothly in-
creases with K.

The internal dynamics differs between cells that
succeed in division, and those that will die. In Fig. 6,
we have plotted the histogram of the split exponent
over a cell’s lifecycle for the cases of division and
death, while the split exponent versus the cell’s life-
time 1s given in Fig. 7. As in Fig. 7(b), most cell deaths
occur within a few steps after a cell’s latest division.
Such “quickly” dying cells produce a peak in the his-
togram for Ay > 1 in Fig. 6(b), while those cells
that died 10 steps after their latest division produce a
peak around 0.3. Some dividing cells also produce a
broad peak around 0.3, while those cells dividing after
100000 steps lead to a different peak of the exponent,
around 0.15, as shown in Figs. 6(a) and 7(a), respec-

At
1.20
L10

Fig. 5. Split exponent Agy plotted with the change of K, cor-
responding to Figs. 3 and 4. Ty = 100 (solid line), 10 (dotted
line), and 1 (broken line).

tively. In Fig. 7(a), we note that there are two groups
of cells with differing split exponents. This implies
that cells with long lifetimes are differentiated into
two groups; one with very long lifetimes and the other
with less long ones (but much longer than quickly dy-
ing cells).

Indeed such long-living cells appear while the num-
ber of cells is large as in Fig. 2(c). We will discuss the
mechanism of this differentiation in Section 4.

As is seen in Fig. 3(a), the growth of cells is en-
hanced in the partially ordered phase where elements
are partially synchronized. It should be noted that the
maximum rate of growth occurs not at the marginal
stability point (A & 0), but in the regime with a small
positive value, in contrast with the “edge of chaos”-
type picture.

If the oscillations of all the elements are synchro-
nized, then all elements compete for the source term at
the same time. This intense competition does not allow
for an effective use of resources. Instead, through the
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T4 = 0 (a) for cells that divide successfully after their lifecycle, and (b) for cells that die after their lifecycle.
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clustering of elements into different groups, a sort of
time sharing system is constructed. Thus resources are
effectively used, because there is some ordering of the
elements. In the partially ordered phase, the “roles”
of the elements are also differentiated. As will be dis-
cussed in Section 4, cells in large coherent clusters
stop dividing but remain existing without dying, while
other elements’ oscillations are unstable and proceed-
ing to grow faster. For larger K, elements are com-
pletely desynchronized, and no ordering for the use
of resources is possible. In this case effective use of
resources is once again impossible.

Before discussing the detailed dynamics of the sys-
tem, let us briefly mention the dependence of our dy-
namical behavior on 7, and Ty. First, the essentially
same behavior is observed for Ty = 0, independent
of T,. The three phases are found with an increase of
K. The dynamics of x, (i) and the number of cells are
basically the same as we have discussed above.

Second, when Ty is negative, cells can grow in-
definitely in number, according to our simulation
results so far. This is because in our system, s is con-
stantly supplied, and cell’s number can increase with
the rate 5/(NT,) on the average as long as the death
condition is not satisfled. When 7y is negative, the
death condition is not satisfied if K is small, where
the growth seems to continue indefinitely. The growth
rate is slightly enhanced as the desynchronization is
increased, up to K = 3.5, where cell death starts to
set in and limits the growth.

4. Growth with differentiation of roles

Here we study the dynamic origin of the sudden
change from a steady regime with a small number of
cells to the explosive growth in the number, seen at the
partially ordered phase as in Fig. 2(c). As an example,
let us consider the case given in Fig. 8. Around time
steps 4 x 10°—6 x 10°, the number of cells increases

2 At Ty = 1, however, there is an explosive growth for K ~
3.5, where some deaths of cells effectively enhance others’
growth, since removal of negative x(i) by death adds up the
source term. This is an artifact in our model, since the conser-
vation of the source term is not satisfied when a cell dies.
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Fig. 8. Temporal evolution of the number of cells N, plotted
per 10® steps. K =3.3, s = 0.1, Ty = 10, and T4 = 0.

to a large value. This regime is clearly distinct from

other regimes. As seen previously in Fig. 2(c), such

growth regimes appear intermittently.

In Fig. 9, the split exponents of divided (Fig. 9(a))
and dead (Fig. 9(b)) cells are shown versus time, while
the cluster sizes of divided and dead cells are plotted
in Fig. 10. Here the cluster size of a cell is defined as
the number of cells which have an identical fractional
part of x, (i) up to the given resolution. One can sce
clearly that the nature of divided and dead cells in this
temporal regime, as characterized by Aqp, is different
from that in the other regime. From these results and
the direct measurement of the time series of x, (i), the
growth regime is characterized as follows:

(1) Cells split into two groups. One group of cells
forms a large cluster (typically on the order of
%N ), while the other cells are mostly desynchro-
nized with each other, although they can form a
synchronized cluster of a smaller size and col-
lapse intermittently.

(i) The former group of cells neither divides nor
dies. In this temporal regime, only groups of cells
that are desynchronized with each other divide
and lead to growth in the total number of cells.
This desynchronization of divided or dead cells
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is clearly seen in the time series of their cluster
sizes. For example, as Fig. 10 shows, there is a
remarkable lack of clusters larger than size 10
around the time steps S x 10°-6 x 10°. In Fig. 9,
cells with large and small split exponents are lost
during that regime, which corresponds to the fact
that the elements in the synchronized cluster are
no longer dividing.

(iii) The collapse of the growth occurs because of the
synchronous division of many cells belonging to
the large cluster. It is clearly seen in Fig. 10 that
cells belonging to the cluster divide and die suc-
cessively at around the 6.2 x 10° time step. We
have also measured the time between divisions
for each cell (i.e., cell lifetime). This time fluctu-
ates around 1 x 10°~10 x 10® for most time steps,
but around time step 6.2 x 10, it suddenly jumps
to 20 x 10°-300 x 10, meaning that the cells
that did not divide during the growth regime have
successively divided. With this division and the
subsequent simultaneous deaths of many cells,
the number of cells is drastically reduced back to
the normal level.

It is rather interesting to note that the formation of
two distinct regimes (i.e., sudden growth and normal
growth) is supported by the emergence of the two dis-
tinct groups of cells. The group of cells forming the
large cluster 1s necessary to support the growth of the
other group which consists of desynchronized cells.
The growth of the latter group, on the other hand, sup-
presses the growth of the former and maintains the
stability of this cell society with its inhomogeneous
clustering. The differentiation of the roles that the two
groups play in producing growth of new cells and
maintaining the stability of the system makes possible
the growth regime.

Following this separation of roles, it is interesting to
draw a cell lineage diagram. In Fig. 11, we have plot-
ted this diagram, where the division process with time
is represented by a horizontal line between mother and
daughter cells, while a line is terminated when the cor-
responding cell dies. The diagram shows the differen-
tiation of cells as to the number of offspring, as well
as the successive appearance of multiple simultaneous
deaths.

Lineage
time x 103

i I I !
50.00 — —

45.00 —

25.00 — —
2000 — —
15.00 — i -
10.00 — -

0.00 - -

! | ! ! ! | celtindex
000 100.00 200.00 300.00 400.00 500.00

Fig. 11. Cell lineage diagram corresponding to the simulation
in Fig.8. The vertical axis shows the time, while the horizontal
axis shows a cell index. (For the practical purpose of keeping
track of the branching tree, we define the index for the lineage
as follows: when a daughter cell j is born from a cell i’s kth
division, the value s;p=s; + 2=k is attached to cell j from the
mother cell’s s;. The index for cell j is defined in the increasing
order of i i.e., the index is sorted so that s; increases in
the order of j. Note that the index for the lineage diagram
is different from index i, given just as the order of birth). In
the diagram, a horizontal line shows the division of the cell
of a smaller index producing the cell of a larger index, while
a vertical line is drawn as long as the cell exists (until it dies
out).

5. Differentiation of internal states in coupled
circle maps

5.1. Multi-phase model

In the model in the previous sections, the internal
dynamics was represented by only a single phase dy-
namics. Since the single circle map has one variable
and one attractor for most parameter regimes, the dif-
ferent dynamic behaviors appear only through cluster-
ing relationships with other cells. Indeed the different
behaviors of a cell are governed by the size of the
cluster it belongs to, rather than by its internal states.
Thus it is necessary to study a model with internal
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variables rather than a single phase variable, in order
to study the fixed differentiation memorized in the in-
ternal states of a cell.

The author and Yomo have studied a model with
biochemical reaction dynamics [9-11], given by a set
of ordinary differential equations with switching-like
oscillatory dynamics. There the amplitude of the oscil-
lation of chemical concentrations in a cell is essential
to the fixed differentiation coded in an internal state
of a cell.

Here we consider briefly a simpler model with sev-
eral phase variables within each cell. Assume that the
internal dynamics is composed of several cyclic pro-
cesses, which are each represented by a circle map.
The internal dynamics, given through the interaction
among the cyclic processes, is just represented by a
coupled circle map:

X () = x () + f(x' (1))
+ ) dear ) — i)+ S (@)
1}
S =Y f )

s = - A )

form =0,1,2,..., M. This superfix m corresponds,
for example, to each metabolic chemical cycle in-
volved in each cell, or generally speaking, to some in-
ternal process. Here we call this superfix m a chemical
species for simplicity.

We choose the source term s > 0, and s™ = 0
for m > 0, assuming that the component 0 is the
source chemical (e.g., nutrition), while the other com-
ponents’ cycles correspond to the metabolic processes
that bring about the growth of the cell. Taking these al-
locations into account, we define the condition to grow
and divide by Y"p_, Int(x’(/)) > T, while the death
condition is defined by Int(xf,’(i)) < Ty, where Int(z)
denotes the integer part of z. When a cell divides, a
new cell is created with chemical species concentra-
tion x,7 (i) — Int(x)) (i)) — 8", where 8™ is a small ran-
dom number (taken from a uniform distribution over
[—1073, 10°}), while the original cell has chemical
concentrations x;;' (i) — Int(x (i)) + sm.3

3 Here we have not divided the fractional part of x}7(i) into

two, in contrast with the model in Section 3. Indeed the choice

The coupling terms a’™ and the function g rep-

resent the interaction between the cyclic processes.
Taking into account the periodic nature of these
processes, we adopt again sine circle maps f(x) =
(K/2m)sin(2rx) and g(x) = (¢/2n)sin(2mwx) to
model them. Since the coupling term represents the
flow of chemical process, it is postulated that @ =
—a™! . First we assume that a%™ = ¢ to assure the
flow from the source chemical to other species. Next,
for other coupling coefficients a*™” we set most of
them to zero, but leave a few of them at a constant
c. Such pairs (/, m) that give @ # 0 are randomly
chosen with the rate L per chemical species. In the
present section we take M = 8, and L = 2. In other
words, we have chosen a model with sparse con-
nections. We have made several simulations for this
particular coupling sequences of the a*™ with this
particular L, M condition.

5.2. Differentiation in chemical compositions

For most parameter regimes, no growth in the num-
ber of cells is observed. We have found that either all
cells die out or cells stop increasing at a small number
(e.g., from 2 to 8). This is because no flow from the
source x¥ to the other variables is formed, and thus
the growth condition Zn/:’:] Int(x}'(i)) > T, is not
satisfied. When division stops, chemical oscillations
of an individual cell are synchronized across all cells.
Hence, time sharing for resources is not attained, and
further growth is suppressed.

Only at 0.59 < ¢ < 062 and 0.8 < K < 1.1,
we have found successive growth and death processes.
Here we survey the dynamics in this region.

First we note that all chemical oscillations are
desynchronized from cell to cell as the number of
cells increases. This desynchronization appears at a
rather early stage (after one or two divisions). The
temporal average of chemicals starts to differ later, af-
ter a few divisions. Here again, clustering is essential
for steady growth; otherwise no growth is observed
as in most other parameter regimes.

is rather arbitrary. Qualitatively identical results are obtained
even if half of x; (/) — Int(x;}' (i) is transmitted at the division.
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Fig. 12. Temporal evolution of the number of cells N for the
coupled circle map of model (4). For Figs. 12-15, we use the
parameters K = 1.1, ¢ = 0.59, s = 0.8, T, = 1000, and
Ty = —10. Simulations are carried out over 5 x 107 steps,
starting from a single cell initial condition. The number of cells
is plotted per 10 steps. In the simulations, we have adopted
a'™ = ¢ for the pairs (1,5), (1.8), (2,5), (2.7), (3.1}, (3.6),
(4 l) (4.2), (5,7, (5,8), (6.2), (64), (7,3), (7.4), (8,3), (8,6) with
a™! = —g''™ while other couplings are left to be zero. The
same behavior, though, is observed for most other couplings
satisfying with L = 2.

An example of the time series of the number of cells
is given in Fig. 12. In the figure, there are clearly two
distinct types of temporal regions; those with and those
without a frequent change in the number of cells. In
Fig. 12, the latter regime is seen, e.g., around 3 x 107
and 5 x 107 steps. Such multiple temporal regions
are typically observed at the parameter region near
the boundary for growth (such as ¢ ~ 0.59 or K =~
1.1), while regimes without the growth do not contain
clearly separated regions (for example at ¢ = 0.6 and
K =1.

To see the average property of a cell, we define
Ry (i) = Int(x;" (i) /(n — Ty). 6

where Ty is the time of the latest division (or birth)
of the cell. In other words, R} (i) measures the av-
erage rotation of the chemical cycle m at the cell i,

per step. The rotation R?d(i) at the next division time
step Ty gives the rotation rate over the lifecycle of the
cell. This rotation R (i) gives the contribution of each
chemical species to the process of division. This quan-
tity gives a measure for the activity of each chemical
cycle, or roughly speaking, each chemical composi-
tion.

In Fig. 13 we have plotted R} (i) for several time
steps n ((a)—(d)), against the cell index, while the ro-
tation R’}; (i) at the division is plotted against time
in Fig.14. On the average, the M chemical species
split into two groups, one for R (i) > O (which has
two species in the figure), and the other for R} (i) <
0 or slightly positive (which has the other six). In
other words, the chemical species become differenti-
ated within each cell.

The above “chemical” differentiation applies for
each cell. Besides this intra-differentiation, cells are
separated into several groups as well, as shown in
Fig. 13. In Fig. 13(a), the rotation R" (i) for each m
does not differ by cells so much. As for the average
chemical compositions, all cells are almost identical,
although the phase of oscillations itself is not syn-
chronized. With time, cells with differently behaving
R™ (i) appear as in Fig. 13(b). Roughly speaking, there
are two types. In one type, the difference of rotations
between two chemical groups (with two and six com-
ponents, respectively) is much larger; for this type of
cell, positive values of R)'(i) for two chemicals are
much larger than the other type, and the negative val-
ues for the other six chemicals are smaller. In the other
type of cell, the difference between the rotations of
two groups of chemicals is much smaller. Often the
sign of R} (i) is opposite, that is, six chemical species
have slightly positive R)"(i), and the other two have
slightly negative ones.

We note that to satisfy the division condition, the
sum of R;'(i) over chemicals m must exceed the
threshold. Thus the above two types correspond to
two strategies to satisfy the threshold condition: one
is to have few chemical species of large positive rota-
tion values, while the other is to keep the magnitude
of negative rotation values smaller. The former cell
is chemically specialized, while the latter cell sus-
tains chemical diversity, in the sense that all chemical
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Fig. 13. Continued

cycles contribute to the growth. Differentiation of cell
types is associated with that of chemicals contribut-
ing to the growth. With this differentiation, the cells’
competition for the chemicals is reduced, which is
relevant to the growth.

This differentiation is not a snapshot property (i.e.,
depending on the phase of oscillation), but the average
property over a cell’s lifecycle.

With a cell’s division, the average rotation R)" (i) >
0 may switch its sign. Indeed the rotation RY(i)>0
oscillates with time » through the division. Hence the
types of a cell may change with division. To see if
the differentiated type of a cell is recursively transmit-
ted, we have plotted the return map of R’,’.; (i) versus
R?d( Jj) for the cell i born from the cell j by division.
If complete recursivity held, the plot would lie on a
diagonal line. Starting from a randomly chosen initial
condition, there is an approach to recursive transition,
but it is attained very poorly. The memory is not pre-
served as in the model in Section 3.

The rotation R™(i) stays only within some finite
range. In Fig. 14, a majority of cells are recursive
around —2 x 1073 to 1 x 1073, while cells deviated
from this region are less recursive. Some of the devi-
ated cells around 0.5 x 1073 to 1 x 1073 remain there,
but most of them lose this characteristic at their next
division. As in Fig. 14, there is no point along the di-
agonal region for highly deviated cells, which means
that such deviation is only a one-generation property
not transmitted to daughter cells.

5.3. Temporal switch of stages

In Figs. 12 and 13, we have seen that there are two
distinct temporal regimes as to the growth patterns.
In Fig. 15, we have plotted the rotation R}d @ <0
(over a cell’s lifecycle) versus its time of division, to
see the difference between the regimes. There, a larger
fraction of cells has R}d (i) < 0, while cells with the
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Fig. 13. Rotation R (i) plotted against the cell index i. The value with a mark gives R,(,m)(i) for m = 1,2,....8, for the cell

(m)

with the index i. Each line connecting between Ry" (i) is plotted only for the sake of visualization (i.e., to see the distinction by
chemical m clearly). Here cells that do not have marks at the corresponding i are already dead at the time. (When cell i dies, no
cell with the index i exists any more. The cell index is attributed in the order of birth, without compressing the indices for dead
cells.) For example, cells with the indices 179,180,.... 198 have died at (b). Two lines with R;'(i) > 0 correspond to the chemical
species m = 4 and m = 6. (a) Time step n = 10%, when the cell number N = 33, with the dead cell of the index 32. (b) Time step
n =28 x 109, (c) Time step n = 20 x 108, (d) Time step n = 30 x 108.

opposite rotation appear with a smaller rate. It should
be noted that Figs. 12 and 13 suggest that the birth of
cells is more frequent when the value R (i) is scat-
tered by cell i. If the distribution of R'T'; (i) over cell i
is concentrated, division is suppressed. For example,
around time step 3 x 107, a single type of cell domi-
nates as in Fig. 13(c). That is, R} (i) for all m takes
almost all the same values for cell i. Around this time
step, growth is inhibited, as is seen in Fig. 12 (see also
Fig. 15). As in Figs. 13(d) and 15, growth is sustained
by the heterogeneity of the cell society.

We have also measured the histogram of R} (i) over
all cells for some time intervals. The distribution has
two broad-band peaks during the time course when
cells are dividing frequently, although more than %

of the cells are accumulated in one peak (at R <
0). Cell division stops when the distribution has one
(broad) peak. The coexistence of different types of
cells seems to be necessary for the overall growth of
cells.

Summarizing several simulations, the cell society
evolves as follows: As cell types get similar (e.g., with
the same sign of R™ (i) for all species m), cell division
is suppressed. A homogeneous cell society, however,
is unstable, and the cells’ small differences start to be
amplified. A few cells start to be differentiated (i.e.,
to have a different sign of R (i)) when growth is
enhanced. Then cells divide several times, followed by
some cell deaths. Successive changes between a rather
homogeneous cell society, and a highly heterogeneous






