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Abstract

Strength of attractor is studied by the return rate to itself after perturbations, for a multi-attractor state of a globally coupled
map. It is found that fragile (Milnor) attractors have a large basin volume at the partially ordered phase. Such dominance of
fragile attractors is understood by robustness of global attraction in the phase space. Change of the attractor strength and basin
volume against the parameter and size are studied. In the partially ordered phase, the dynamics is often described as Milnor
attractor network, which leads to a new interpretation of chaotic itinerancy. Noise-induced selection of fragile attractors is
found that has a sharp dependence on the noise amplitude. Relevance of the observed results to neural dynamics and cell
differentiation is also discussed. © 1998 Elsevier Science B.V.

1. Introduction

Study of a multi-attractor system is important in a
variety of physical, chemical, biological, and engineer-
ing problems. In a system with many degrees of free-
dom, coexistence of many attractors is rather common.
On the other hand, memory storage to each attractor
is often discussed in the application of dynamical sys-
tems to information processing, where the abundance
in attractors is required. In neural dynamics, attribution
of attractors to memory is often adopted. In a dynami-
cal system model for cell differentiation, different cell
types are often regarded as different attractors in a ge-
netic network.,
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There are several approaches to a multi-attractor
system. Even for a system with low degrees of free-
dom, dynamical systems studies have revealed (frac-
tal) basin structures and their metamorphose [1]. If
the dynamics is of an overdamped type with a func-
tion to be minimized, the basin volume is understood
from the valley structure of such (energy) function, as
shown schematically in Fig. 1(a). In this case, the dy-
namics can be understood through the landscape struc-
ture, and static representation is possible. Indeed, for a
system with many degrees of freedoms, rugged land-
scape structure has been studied in spin glass, Boolean
net, and neural networks, where static aspects of a
multi-attractor system are studied [2).

When the system does not have such damping term,
further information on the phase space structure is
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Attractor

Fig. 1. Schematic representation of strength of an attractor: (a)
overdamped motion of x in a potential U (x) and (b) dynamics
without a potential.

required than the landscape. In a high-dimensional
Hamiltonian dynamical system, there are several at-
tempts to make direct ‘anatomy’ [3,4] of the phase
space. Connection path among several ordered states
has been studied therein.

If the dynamics is high-dimensional and dissipative,
but not of the over-damped relaxation-type, the struc-
ture of phase space remains totally unclear. Even for
dynamical systems with few degrees, the basin struc-
ture is often riddled [5,6], where the selection of attrac-
tors can be regarded almost probabilistic for an initial
point distant from the attractors. As the degrees get
larger, the study is more difficult, although there are
some attempts in cellular automata [8] and in globally
coupled map [6,7].

Here, it is necessary to distinguish the basin volume
and the stability of an attractor. The former charac-
terizes how large the area for the attraction is, while
the latter gives how strong the attraction is. There can
be several possibilities on the definition of stability of
an attractor. In Section 2 we will introduce a few of
them, and discuss one of them in detail.

As a specific example of a multi-attractor system,
we choose a globally coupled map (GCM), where
the characterization and coding of attractors are rather
straightforward. In Section 3, bifurcation of several
attractors in GCM is briefly surveyed, while detailed
features are given in Appendix A.

In Section 4, the stability of attractors in GCM
is characterized using the measures introduced in
Section 2. It is found that the there is a class of attrac-
tors that globally attracts orbits, but whose orbits are
kicked away from them by any small perturbation.
Such an attractor without the stability is called Milnor
attractor [9,10]. By adopting the quantifiers for the
stability introduced in Section 2, it is shown that the
global attraction is rather robust in contrast with local
stability. Appearance of Milnor attractors is due to
the discrepancy between the global attraction and the
local stability. In Section 5, it is shown that Milnor
attractors are quite common in the partially ordered
phase in GCM. Such dominance of Milnor attractors
is preserved with the increase of system size, and is
a general feature in a system with many degrees of
freedom, as is demonstrated in Section 6.

By perturbing an attractor with a small noise, or-
bits can be switched to a different attractor. Through
this switch, connectivity matrix among attractors is
defined depending on the input noise. In Section 7 this
connectivity is studied. In particular, in the partially
ordered phase, the dynamics is shown to be repre-
sented by connection network among Milnor attrac-
tors. This dynamics over Milnor attractors reminds us
of the chaotic itinerancy, previously found as the itin-
erant dynamics over attractor ruins. In Section 8, the
chaotic itinerancy is re-interpreted as Milnor attractor
networks.

Existence of attractors with weak stability may lead
us to suspect that the orbits might not be attracted
to them in the presence of noise. In Section 9, we
have studied the rate of attraction to each attractor
in the presence of noise. In contrary to our naive
expectation, weak, or even Milnor, attractors may
attract more orbits in the presence of noise. This
mechanism is discussed in relation with the global
attraction in the phase space. Complicated depen-
dence of the attraction rate on the noise strength is
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found, which reflects the complex connection among
attractors.

Relevance of our observation to biological networks
is given in Section 10, focusing on dynamic informa-
tion processing in neural dynamics, and developmen-
tal process of cell society. Summary and discussion
are given in Section 11 (see also [11] for rapid com-
munication).

2. Stability of attractors

It is natural to define stability of an attractor in
relation with the degree of return of an orbit to the
attractor when it is perturbed. Now there are choices
on the measure of return, and the way how to perturb
the orbit.

Let us start with a trivial example with over-damped
motion in a ‘potential’ (see Fig. 1). In this case, the
stability of fixed points at the bottom of each valley can
be discussed by the depth of a hill H, and its basin size
W, + W,. Consider two extreme cases, one is stability
against a one-shot noise and the other for the stability
under continuous presence of noise. The stability in the
former case is related with the minimum of (W;, W>),
since the orbit perturbed to xp + § remains within
the same valley if § < minimum of (W), W>) (see
Fig. 1). On the other hand, the dynamic stability in the
presence of noise is often characterized by the height
H, as is typically expressed by the Kramers formula
exp(—H /(kT)) for the transition probability from one
valley to another when the system is under a Gaussian
white (or a similar) noise with k7T corresponding to
the noise strength. !

Here we aim at generalizing the stability to a high-
dimensional dissipative case, without a potential. To
characterize an attractor, we discuss the basin volume,
and measures of static and dynamic stability.

The basin volume of an attractor is estimated as
the ratio of initial points that are attracted to it, by
choosing them randomly. Even though the basin is
generally not a smoothly connected object, with its

"' When the system is under a colored noise, it is generally
expected that not only the height but also the shape of valley
(such as its slope) is related with the stability.

fractal or riddled basin structure, this estimate still
works as an effective means.

Although the basin volume (W7 + W>) and the static
stability (minimum of (W), W»)) are highly related
in the above one-dimensional static potential case,
they are in general independent. Even if the basin is
smooth, the static stability is distinguishable from a
basin volume. As a simple illustration consider the
case schematically given by Fig. 1(b). As long as a
one-shot perturbation is smaller than o, the orbit re-
turns to the attractor after the perturbation. For this
simple case, the stability is related with the minimal
distance between the attractor and its basin boundary,
in contrast with the basin volume.

Although there can be several possible ways for
the definition of (static) stability, it is defined as fol-
lows here: perturb an orbit on an attractor at one time,
and leave the system evolve according to its dynamics
(without perturbation), and check if the orbit comes
back to it, after transients are decayed. The static sta-
bility is defined from a measure of the degree of return
to the original attractor.

To be specific, we define the return probability as
follows. Consider an N-dimensional dynamical sys-
tem for x(i) (i = 1,..., N). Take an orbital point
x{(i) on an attractor, and perturb the orbit by o, i.e.,
x(i) + o xrnd(i), as rd(i) a random number taken
from [—0.5,0.5]). By taking this perturbed point,
evolve the system according to the dynamics (without
the noise term), and check if the orbit reruns to the
original attractor or not. Repeat this trial a large num-
ber of times, and define the return rate P(o) as the
ratio of returns to the number of all trials. P (o) char-
acterizes how paths to other attractors are opened as
the orbit is perturbed from the attractor. The smallest
o (o.) such that P(c) is less than 1 gives an esti-
mate for the strength of an attractor. In the previous
examples, o, gives the minimal distance between the
attractor and the basin boundary.

Later we will see that there are “attractors” with
o. = 0. Although such “attractors” are not asymptot-
ically stable, we will see that a large number of initial
points is attracted to them at some parameter regime.
For such attractors, P(40) = lim,_.¢ P(0) gives an-
other measure for the strength.
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Table 1

Summary of quantifiers and terms adopted in the present paper (see text for details)

Basin volume ratio V

The ratio of initial points attracted to the attractor,
to all the randomly chosen initial points

Return rate P(o)

o, (strength)
Om

P(+0)

Robust attractor
Milnor attractor
Fragile attractor
Pseudo attractor

Probability transition matrix T (i, j, o)
Basin volume V(o) in the presence of noise

Rate of points that return to the original attractor
after a random perturbation with the size o is applied
The minimum strength of perturbation that leads to P(o) < 1
The minimum strength of perturbation with P(o) < 0.5
Characterizes the asymptotic stability
An attractor with o, > 0
An attractor with o, = 0, i.e., P(+0) < 1
An attractor with P(+0) < 1 but close to 1
An attractor with P(4+0) <« 1, to be regarded as a transient
state that is trapped as an artifact of digital computation
Rate of transition form attractor i to j with the perturbation &
Ratio of initial points attracted to the attractor
with the random noise over initial time steps

Of course, it is often important to discuss the form
of P (o) itself, which is relevant to characterize global
attraction in the phase space. As another estimate for
the strength, we define oy, as the half-return threshold,
i.e., the smallest o such that P(o) is less than 0.5.

Besides the stability, it is also interesting to dis-
cuss connection among attractors. Using the above
perturbation, one can define the probability transition
matrix T (i, j; o) from one attractor i to another at-
tractor j. (P;(c) = T(i,i;0)). With this transition
matrix, ‘connectivity’ among attractors in the pres-
ence of noise, or ‘distance’ among attractors In its
rough sense, can be discussed (see for [8] for a related
approach).

On the other hand, the dynamic stability can be
discussed as the residence probability to each attractor
in the presence of noise. However, it is in general,
not possible, to check precisely if the orbit stays at
an attractor in the presence of noise. One possible
way to define the dynamic stability is the use of the
return rate P(o) and the transition matrix 7'(i, j; o)
after the noise is added over long enough time steps
continuously. Instead of it, we check to which attractor
the orbit is settled after the noise is added for (long
enough) time steps. The rate of attraction V(g) is
defined as a function of noise strength o. The value
V(o) — V(0) for an attractor gives a measure of the
net flow to the attractor from others, in the presence
of noise.

Some quantifiers and terms adopted in the present
paper are summarized in Table 1.

3. Revisit to partially ordered phase in GCM

In the present paper we apply the general method
introduced in Section 2 to a specific dynamical system
with many degrees of freedom. As an example of high-
dimensional dynamical systems with potentiality of
many attractors, we adopt the globally coupled map
(GCM) [7] given by

N

Xo1(D) = (1= fGa@) + = D F(i), (M)

J=l1

where n is a discrete time step and / is the index for
elements (i = 1,2,..., N = system size). Here we
choose the logistic map f(x) = 1 — ax? as the lo-
cal element in Eq. (1), as it has been investigated as a
standard model for a high-dimensional dynamical sys-
tem. > Throughout the paper we fix the parameter € =
0.1. In the model, attractors are known to be coded
by clustering, that is the partition of N elements into
mutually synchronized clusters, i.e., a set of elements

2 Use of identical map to all elements imposes high symmetry.
This restriction may lead to some change on the dominance
of Milnor attractors, but is not essential to the problems to be
discussed. See Section 11.



326 K. Kaneko/Physica D 124 (1998) 322-344

in which x(i) = x(j) [7]. Attractors in GCM are clas-
sified by the number of synchronized clusters k and
the number of elements for each cluster N;. Each at-
tractor is coded by the clustering condition [N;(>),
N2(=), ..., (=)Ni)]. Due to the symmetry, there are
at least (N'!/TTizy Ni) Toversets of =, 1/my! attrac-
tors for each clustering condition, where m; is the
number of clusters with the same value of N;. This
estimate is based on the assumption that the cluster
with the same number of elements is indistinguish-
able due to the symmetry. For example the attractor
with [2,2,2, 2, 2] has 945-fold degeneracy (see also
Appendix A for the coding).

With the increase of nonlinearity a or decrease of
coupling €, the following phases appear successively
after the collapse of a completely synchronized state:

(1) Coherent phase: Only a coherent attractor (k =
1) exists.

(i1) Ordered (O) phase: All attractors consist of few
(k = o(N)) clusters.
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Fig. 2. Parameter a dependence of the basin volume of exist-
ing attractors for each partition code. The vertical axis gives
the number [N}, N3, ..., Ny ]. For example the largest partition
code corresponds to 1111111111, and the smallest one is 55.
By taking 10000 initial conditions, and iterating our dynam-
ics over 100000 steps, we have checked on which attractor the
orbit falls. Hereafter the basin volume rate is computed with
this procedure, and is measured as the sum of all rates over the
attractors with the same partition [N, ..., Ni], unless other-
wise mentioned. The rate of initial conditions leading to such a
partition is plotted as different marks. A(> 50%). x (> 10%).
O(> 5%). 4+ (> 1%). and O (> 0.1%).

(iii) Partially ordered (PO) phase: Attractors with a
variety of clusterings coexist, while most of them
have many clusters (k = O(N)).

(vi) Turbulent phase: Elements are completely desyn-
chronized, and all attractors have N clusters.

In the ordered and partially ordered phases, there
exist a variety of attractors depending on the partition.
In Fig. 2, basin volumes for attractors with different
clusterings are plotted, where the decimal represen-
tation of the clusterings [Ny, Na, ..., Ni] is adopted
for each attractor. Successive appearance of attractors
with the cluster numbers 2, 3, 4,.. ., proceeds at the
ordered phase, and attractors with a large number of
clusters are dominant at the PO phase.

See for details on the complexity in partition, as well
as its change with the parameter. Detailed discussions
on the bifurcation structure are given in Appendix A.

4. Existence of fragile attractors and stability of
global attraction

Now we study how the stability of attractors
changes, by using the return probability P (o), defined
in Section 2. See Fig. 3 for examples of P(c) for
some attractors. There are two types of behaviors in
P(o). The first one is that with P(o) = 1 up to some
threshold o > 0. Indeed, this behavior is expected
for an asymptotically stable attractor. In this case, the
‘strength’ of attractor is measured by defining o, as
the smallest o such that P(o) < 1, as mentioned.

In contrast with our naive expectation from the con-
cept of an attractor, there are some ‘attractors’ with
o = 0, ie, P(+0) = limso P8) < 1. If 0. =
0 holds for a given state, it cannot be an ‘attrac-
tor’ in the sense with asymptotic stability, since some
tiny perturbations kick the orbit out of the ‘attrac-
tor’. The attractors with ¢, = 0 are called Milnor
attractors. In other words, Milnor attractor is defined
as an attractor that is unstable by some perturbations
of arbitrarily small size, but globally attracts orbital
points with a finite Lebesgue measure. Since it is not
asymptotically stable, one might, at first sight, think
that it is rather special, and appears only at a criti-
cal point like the crisis in the logistic map [9]. Recent
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Fig. 3. P(o) for several attractors for @ = 1.64, and N = 10.
For all the figures, we have 10000 initial conditions randomly
chosen over [—1, 1] for each parameter, to make samplings.
P{0o) is estimated by sampling over 1000 possible perturbations
for each o. We often use the abbreviated notation like 317
for [3,1.1,1,1,1,1,1]. Plotted are robust attractors [32221]
(with the basin volume rate V =~ 6.3% and o, ~ (.01) and
[3322] (with V =~ 15% and o, = 0.0012), fragile attractors
[31111111] (with V = 42 %), [22111111] (with V =~ 29 %),
and pseudo attractors {4321] (with V = 0.2 %) and [4111111]
(with V = 4.8 %).

discovery of riddled basin attractors, however, leads
us to expect that such attractors may not be so spe-
cial [1,6]. One of the claims in the present paper is
that they are rather common at a high-dimensional dy-
namical system, in particular at the partially ordered
phase.

Milnor attractors of our model are rather well sep-
arated into two types: one with P(+0) close to 1; the
other with P(40) close to O (see Fig. 3). For the for-
mer type, which we call ‘fragile’ attractor, P(c) is
close to 1 up to some perturbation strength o and de-
creases for larger 0. The other type with much smaller
P (40), to be called ‘pseudo-attractor’, shows increase
in P(o) for larger o. (See also Table 1 for the ter-
minology adopted in the present paper.) One relevant

index to characterize the strength of these attractors is
given by P(+0).

The above distinction between the two types of Mil-
nor attractors may look mathematically ill-defined. In
our simulations, however, the values of P(+0) are
rather well separated, either into > 0.5 or < 0.1.
Practically speaking, we call attractors with 0.5 <
P(40) < 1 as ‘fragile’, while those with P(+0) <
0.5 are pseudo-attractors.® Indeed, the reason why
we call the latter as ‘pseudo’ is that this attraction 1s
thought to be due to a finite precision in computa-
tion. In [14], we have reported that iterations of (1)
with any finite precision can lead to a pseudo-attractor
due to artificial synchronization (see also [15]). If the
split exponent, measured over some time steps, re-
mains negative for long enough time, then two ele-
ments may be synchronized down to its smallest bit
in the computer. Then, even if they are supposed to
desynchronize later, they cannot do in a digital com-
puter. Indeed, the ‘pseudo-attractors’ in our simulation
have very small basin ratio, which can be affected by
a way of computation. Hence we mostly focus on the
stable and fragile attractors later.

As another measure for the stability of an attractor
against a larger noise, we also use ‘half-decay thresh-
old’ o,, defined as the smallest o such that P{o) < 0.5
(see also Table 1 of Section 2). For a fragile attractor
o is positive, while it is zero for a pseudo-attractor.

It is interesting to note that P(o) sometimes in-
creases with the increase of o (see Fig. 4). Such an
increase is generally seen in weak attractors, and in
Milnor attractors. As a simple example in the ordered
phase, take a two-cluster attractor. At a = 1.5, we
have attractors with the clusterings [5, 5], [6, 4], [7, 3]
and [8, 2]. At this parameter regime, the [5, 5] attractor
has the largest o, which decreases as the partition is
biased. P(o) for the [5, 5] attractor decreases mono-
tonically, while those for [7, 3], [8, 2] attractors have a
double humped structure. After P (o) approaches 0, it
shows an increase for larger o, and has an extremum
around o ~ 0.5. Indeed P (o) for large o is smallest
for the [5, 5] attractor, and gets larger as the partition
is biased. This is an example showing that a weaker

* This term follows (see [14]).
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Fig. 4. P(o) for two-cluster attractors, with the clustering [5, 5],
[6,41, [7.3], and [8,2].

attractor can have a larger global attraction, which in-
deed is generally seen in our system.

Extreme examples of global attraction are seen in
pseudo- and fragile attractors. In the pseudo-attractor,
P (o) increases slightly as o is increased from 0. In
this sense, there are some points attracted globally to
the pseudo-attractor, although there always exists a
path going out of it.

In Fig. 5, we have plotted the change of P (o) for
the [2,2,1,1,...,1] attractor with the increase of the
parameter a, as it changes from robust, to fragile, and
then to pseudo attractors. One can clearly see that the
function P(c) is not much changed for large o, al-
though the structure at smaller o is largely changed.
The robustness in global attraction is commonly ob-
served for a variety of attractors when they lose the
local stability. This is in strong contrast with P(0)
characterizing the local stability, which often shows
sensitive dependence on the parameter,

This discrepancy between global attraction and lo-
cal stability, as well as the stability of global attrac-
tion against the parameter change, will be important
later. It should be noted that the basin volume reflects
global attraction more, which leads to the existence of
weak or fragile attractors with a large basin volume.
Indeed, as will be shown in the next section, the basin

P(O™)
1
1

A

02 |

.01

le-03

.001

Fig. 5. P(o) for [2,1,1.1,..., 1] with the change of a for
a=1,6,1.62,...1.63. The attractor is robust for a = 1.6 and
1.61, fragile for 1.62, and pseudo for 1.63. The inlet is the
expansion near P(g) = 1.

volume changes smoothly, in contrast with the sensi-
tive change of P(0) with a.

The strength and basin volume of attractors are not
necessarily correlated. It should be noted that such
fragile attractors can have a large basin volume. Often
o, is small (i.e., the attractor is weak) even if the basin
volume is large, when the orbit is located near the basin
boundary. In Fig. 6, we have plotted o, versus basin
volume rate V.4 Points from a = 1.57,58,...1.62
are overlaid with different marks. Roughly speaking,
there are three groups of attractors. One of them keeps
some relationship between the two (V  o" withm ~
(1 ~ 3)), while two other groups are deviated from
this trend. One is a group of fragile attractors with
o. = 0 with a relatively large basin volume and the
other is a strong attractor (o, ~ 0.005) with relatively
smaller basin volume.

4 As mentioned in Section 2 it is measured as the rate that
orbits from randomly chosen initial conditions fall onto the
attractor.
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Fig. 6. Strength o, versus basin volume. o, is estimated from
P (o) measured by changing o 20% successively from 1073
The points at o, = 1073 just represent that o, < 1073 (mostly
giving o, = 0). For Figs. 6-8, we have estimated o, from 100
possible perturbations: o, is regarded to be less than the value
of o adopted in the run, as long as all of 100 trials result in
the return to the original attractor.

It may be useful to note some relationship be-
tween the basin volume and the strength by taking a
schematic example. If the basin is given by a hyper-
ellipsoid with the radii ri(<), r2(<), ..., ()rn, and
the attractor is localized around the center of it, the
strength o, is given by the minimum of r; (i.e., r).
In our clustered attractors, there is often some degen-
eracy of r; due to the symmetry. If few r;’s (j < m)
are relevant to o (r; ~ o) while others remain large
and insensitive to the choice of attractors, we could
roughly estimate V o o' x O(1). In this context the
points on the same power-law correspond to attractors
with similar basin shapes.

5. Dominance of Milnor attractors at the PO
phase

Here we study parameter dependence of the attrac-
tor strength to see the dominance of attractors in the
PO phase. In Fig. 7, we have plotted the strength o, of
attractors with the change of a. We note the decrease
of strength at the PO phase. The average of attractor
strengths (over random initial configurations) is plot-
ted in Fig. 8. The results are summarized as follows
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Fig. 7. Dependence of o, on the parameter a, for N = 100.
By measuring o, for attractors fallen from 10* random initial
conditions, a histogram of log o, is constructed with a bin size
0.1. The number of initial conditions leading to log)( o within
the bin is plotted as different marks. & (> 50%), x (> 10%),
O (> 5%), +(> 1%), and ¢ (> 0.1%). For all figures we
have estimated o, following the procedure given in the caption
of Fig. 11. The points plotted at o, < 10~4 (below the line)
represent all attractors with o, < 10~4, while for most of them
oc=0.

(by fixing the parameter € at 0.1).

(1) agl62 3 (ordered phase). Robust attractors with
2 or 3 clusters take up a large basin volume, al-
though a robust attractor with [1, 1, ..., 1] with
a single band (with a synchronized band motion)
may also coexist. No fragile attractors exist.

2) a é 1.65 (complex ordered (CO) region in the or-
dered phase). There are a variety of attractors with
different partitions, although the number of clus-
ters is not huge (in other words, it is o(N) for
large N). The number of attractors increases to-
wards the border between CO and PO phases, and
the basin volume for each attractor is small [11].
Some attractors start to have positive Aq,. There
appears fragile attractors with a large basin vol-
ume, besides strong attractors with a small num-
ber of clusters.

3 The boundary of these phases changes with N when N is
not large enough, e.g. <50. For example, the region of PO
phase shifts upwards with the increase of N. For N = 50 and
100, the PO phase exists around 1.665 S a < 1.695.
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Fig. 8. Average strength o, plotted as a function of a. The
basin volume of each attractor is estimated as the rate of initial
points leading to the attractor, divided by the degeneracy. The
average is taken over 10* random initial conditions. For N = 10,
the strength is measured by increasing a by 0.001, while for
N =50 and N = 100 it is measured by the increment 0.01.

(3) a £ 1.68 (partially ordered phase). The split expo-
nent (Ap) averaged over initial conditions starts
to be positive at this phase. In other words, the
tendency to split elements overcomes the synchro-
nization. Thus the number of clusters is typically
large (O(N)), while the basin volume for each at-
tractor is larger than the case (2). For example, for
N = 10, the attractors with [2,2,1,..., 1] with
P(+0) = 0.72 has 60% basin volume, and that
with [1, 1, ..., 1] with P(4+0) = 0.99 has 36%,
ata = 1.661. For N = 10, all detected attractors
are Milnor attractors, around a = 1.66.

4) At a ~ 1.69, a single desynchronized attractor
takes up all basin volume.

What causes the dominance of fragile attractors at
the PO phase? First we note that global attraction in
the phase space is still kept, when an attractor loses its
stability. This is expected by the fact that P(o) keeps
a rather large value at large o, even when P (+0) starts
to be smaller than unity. Recall that P (o) for large o
is not so much changed, while the change from robust,
fragile, to pseudo attractors proceeds (see Fig. 5).

This robustness of global attraction is a key to the
understanding of the dominance of Milnor attractors
at the PO phase. Note that there are a large number of
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Fig. 9. The basin volume ratio of Milnor attractors with the
change of a. For each a, we take 1000 initial conditions, and
iterate the dynamics over 100000 steps to get an attractor. We
check if the orbit returns to the original attractor, by perturbing
each attractor by o = 10~7 over 100 trails. If the orbit does not
return at least for one of the trails, the attractor is counted as a
Milnor one. For N = 10, the ratio is measured for 1.5 < a < 1.7
with the increment 0.001, while for larger sizes it is measured
only for 1.62 < a < 1.7 with the increment 0.01.

attractors at the border between O (CO) and PO. Most
of them lose the stability at the CO and PO phases
successively. When the stability of an attractor is lost,
there appears a set of points in the vicinity of the attrac-
tor, that are kicked out of it through the temporal evo-
lution, while the global attraction still remains. This
is a reason why fragile attractors are dominant around
the PO phase. In Fig. 9, we have plotted the sum of
basin volume rates for all the Milnor attractors. Dom-
inance of Milnor (fragile) attractors is clearly seen.
The results imply that attractors are often near the
crisis point [16] and lose or gain the stability at many
parameter values in the PO phase. Furthermore, the
stability of an attractor often shows sensitive depen-
dence on the parameter. It is interesting to see how
P (+0) and basin volume change with the parameter a,
when an attractor loses asymptotic stability. In Fig. 10
we have plotted the change of the two quantifiers for
the attractors with [3,1...,11and {2,2,1,...,1]. In
Fig. 15(a), the basin volume has a peak when the at-
tractor loses the stability and then decreases slowly
as P(0) gets smaller than unity, and the attractor be-
comes a Milnor one. Although the local attraction gets
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Fig. 10. Change of the strength and basin volume rate with the increase of a by 0.001. For each attractor, the orbit is perturbed by
o = 1077 over 1000 trails, to get the return rate P(+0), while the basin volume is measured from 10* initial conditions. If none
of the initial conditions leads to the attractor, the strength is not plotted (while the basin volume is plotted as 0). (a) the attractor
[3. 1, ..., 1] with the band splitting (3:7) and (b) the attractor {2, 2, 1,....1]

weaker as P(+0) is smaller than 1, the global at-
traction remains. Furthermore, the basin volume often
has a peak around the parameter value of the change
of stability (i.e., where P(+0) starts to be less than
1), which is rather commonly observed for several
attractors, such as {2,1,...,1] and [1.1,...,1] at-
tractors. It is also noted that P(0) often shows sen-
sitive dependence on a, when it is smaller than 1.
The attractor [2,2, 1,..., 1], with a relatively large
basin volume, is often fragile, around 1.63 < a <
1.67.

6. Size dependence

The dominance of fragile attractors is preserved as
N is increased, as shown in Fig. 9 (cf. footnote 5),
while (o,), the average of o, over initial conditions,
is also shown in Fig. 8. Roughly speaking, {o.) seems
to be smaller with the increase of N at PO phase,
although the size dependence of (o) is irregular. As
is discussed and seen in these figures, the PO phase

shifts to a higher value of a. Except this shift, the
dominance of fragile attractors is rather common, and
preserved for large N.

On the other hand, we have also plotted the average
of o), in Fig. 11, with the increase of the size N. The
average of (o) decreases with N, which is related
with the escape paths from attractors. To consider the
paths, let us discuss the size dependence of P(o) for
each attractor.

With the increase of N, the strengths o, for attrac-
tors with a proportional partition (e.g., [6, 4] for N =
10 versus [60, 40] for N = 100) approache a size
independent value, while the value of o, decreases
monotonically. In Fig. 12, P(o) for the two-cluster
attractors with equal partition (i.e., [5, 5] for N = 10
and {50, 50] for ¥ = 100) are plotted with the increase
of the size N. The strength o, is invariant, while the
slope in the decay of P(o) gets larger with the in-
crease of N. The latter is due to the increase of the
dimension of the path out of the attractor, since the
decrease rate in P(o) for o > o reflects the volume
of the path.
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Fig. 11. Size dependence of (op). The value o, is esti-
mated from P(o), measured by changing o as 1074+4/4 for
(j=0.1,..., 16), by taking 1000 possible perturbations, while,
for N = 50 and N = 100, we have made only 100 possible
perturbations.

The dimension of the exit path is highly correlated
with the number of elements in synchronized clus-
ters. For example, take an attractor with the clustering
(3,1,1,...,1]. If the perturbation destroys the syn-
chronization of the first three elements, the orbit is
easily kicked out of the attractor, while stronger per-
turbation for the desynchronized seven elements is re-
quired to kick the orbit. Thus the relevant dimension
of the exit path is less than 2 (= 3 — 1). Roughly
speaking, the dimension of the exit path for small o is
correlated with Zj(N i — 1). The decrease in (o,,) at
the CO and PO phases (as in Fig. 11) is due to the in-
crease of dimensionality in paths out of the attractors.

In Fig. 13, we have plotted P(c) for many-cluster
attractors for N = 50 and N = 100. Here (for a =
1.65 at the CO phase), two groups exist. One has a
larger o, and positive Aspy, and a larger number of
clusters with the clustering [Ny, N2, 1,1, ..., 1] (e.g.,
(12,10,1,.. 11 for N =50 and {22, 21,1, ..., 1] for
N = 100). For this group, not only the threshold o,
but also the decay slope of P(o) near o ~ o, does
not change so much with the size N. The other group
has a smaller or null ., negative Aspl, and a fewer
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Fig. 12. P(0) for two-cluster attractors with the equal partition.
N =10 ([5,5], N = 20, ([10,10]), N = 40, N = 70, and
N =100 ([50,50]). a = 1.5.

number of clusters. Examples are [12,12,9,8,6,2, 1]
for N = 50 and [29,22,21,19,6,2,1] for N = 100.
Although o is not changed significantly, the decay in
P (o) is faster with the increase of N, as in the case
for the two-cluster attractors.

In general, the path of exits gets larger with the
size N for a few number of clusters (k = o(N)).
The decay in P(o) with o is faster. On the other
hand, for an attractor with many clusters (k = O(N)
with [..., 1, 1,..., 1] part in the clustering), the de-
cay slope of P(c) does not change much with the
size N. The exit path does not increase so much, as
is expected in the above argument for the path for
[3,1,1,1,...,1].

These two distinct behaviors of P(o) on the size
lead to the following implications. First, at the PO
phase, where the attractors with many clusters (with
the clustering [1,1,.. ., 1]) are dominant, the decrease
of {0,,) with size will stop (see {0,,) for N = 50 and
100 with 1.67 < a < 1.7 (see footnote 5). On the
other hand, in the CO phase where the attractors with
fewer clusters coexist, the decrease with size continues
down to the value close to (o) (of course (o,,) is
bounded by (o)). As shown in Fig. 11, the decrease is
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Fig. 13. P(o) for several attractors with @ = 1.65. (a) N = 50 and (b) N = 100.

prominent near the edge of CO and PO phases, where
{o¢) is close to 0.

The observation that the decay slope of P(o) for
many-cluster attractors (with [1, 1 ,. . ., 1]) does not in-
cieast with the size afso imphes that the globad ativec-
tion to them is relatively larger than attractors with few
CrasRas, when Ur izt b fuge. n de PO phese,
the attractors with [1,1,.. ., 1] are often fragile. The
long-term dynamics is expected to constitute in the

saccessive aliernations tetween (global) attraction w©
soch TTagiie atiraciors and departures fiom them. This
will lead to chaotic itinerancy dynamics as will be dis-
CrsRA T St 6. Tij WU Wigunenn ipirs Or
importance of chaotic itinerancy for a system with a
large size.

7. MNor a0raelor neYwork

Following the method in Section 2, we have also
STARA TR WASTIUN TIRNITA WITRUIE AawTs, el
gves e rae of wanson from one AW 1@ av-
oiner when e Jormer s peynrped by o X i), I
general, Milnor attractors are connected to a variety
of attractors. Hence, small perturbations to such at-
tractors tnake ihe orbil faii ino a variety of different
ARFactors. On (he oiber Band, robist 5573008 3¢ 5535 -

tually disconnected each other, and the transition be-
tween such attractors requires a large amplitude noise.
Typical connections that appear at a small noise are:
(i) ‘Split’; process of [...,n;,...] — [...,ny
Ty ... Wit Ry = Wy 4 Ry, The simplest and
most frequently observed case is the evapo-
faton of an tienerd Tivm o Vhiswi given Uy
[....n;,... 0> [....,n; — 1, 1,...].
(i) ‘Fusion’; process to join two clusters; the in-

verse process of split 1...,xy, ..., 0m,...] =

1....ni, ... with n; = n; 4+ n,. The simpiest

and the most frequent case is the absorption of
an €iemernt.

(iii) ‘exchange of elements’;[...,n;, ..., Ny,
[....n;=1,...,0;+1,...]
Although these three processes are most common
for small perturbation o, a composite process is
also round, ror a switch rrom RMilhor atfractors wiih

] =

[1,1,...,1]. In this case, several elements from the
[1,1,1,..., 1] part join to form more than two clus-
®is Ui a Jhswi with it Gem two eemneis. Tol
exampie, at ¢ = 1.6, the wansiion from the fragile
AMraciory2, 3, ... 103,23, ..., 0 orid ), .0
is seen for ¢ = 40, although the transition matrix
to [3,1,...,1] (fusion (ii)) or to [2,1,..., 1] with
a different pair of the two elements (exchange

))))))

¥as 3 Jasger vadpe. On ihe odher hand switch From
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Fig. 14. Examples of connection networks, from i to j, such that
T(i, j; +0) # 0. Connections that exist at & — 0 are plotted
for all fragile attractors, and most psuedo attractors. The arrow
to itself is not the return to itself (which always exists with
some rate), but a switch to a different attractor with the same
clustering and different components. The attractors enclosed in
a circle are fragile attractors, and those with the parenthesis are
pseudo attractors, while those only with the clustering numbers
are robust ones. (a) a = 1.63, (b) @ = 1.65, and (¢) a = 1.66.

robust attractor to others at o = o, consists of the
above three fundamental processes. For example, at
a = 1.63, the transition from the robust attractor
[3,1,...,1]to [4,1,..., 1] (fusion (ii)) starts to appear
first around o ~ 0., and the transition from the robust
attractor [3,3,2,2] to [3,2,2,2,1] (split (i)) starts to
appear around o ~ oc.

In the limit of ¢ — 0, only Milnor attractors are
connected to other attractors. There are connections
to robust attractors if any, but mutual connections
among Milnor attractors are also observed. Here the
connection among Milnor attractors is still asym-
metric: often, there is a connection from fragile at-

tractor A to fragile attractor B, but not from B to
A.

In Fig. 14, we have plotted examples of the con-
nection among attractors in this limit. In the com-
plex ordered phase, there are a variety of connections
from fragile to robust attractors. Connections among
fragile attractors form a network as {2, 1,....1] —
[4,1,...,11 — [4,2,1,..., 11 - [2,1,...,1] or
[2.2,....1] < [4,1,..., 1] as shown in Fig. 14(a).
Here it is expected that an orbit is kicked out of Milnor
attractors and is absorbed to robust attractors, when a
very small noise is continuously added to the system.

As a is increased and the system enters the PO
phase, there appears connection network among frag-
ile attractors, as in Fig. 14. Note that the arrow to it-
self indicates not the return to the original (since it
occurs always with some probability), but the transi-
tion from a different attractor with the same cluster-
ing structure and with different components (e.g., for
the arrow to [2, 1,1, ..., 1], the elements forming a
2-element-cluster is different).

When o gets larger, there appears connection from
some robust attractors. Note that the connection to
fragile attractors is more frequent than the connec-
tion to robust attractors. Hence, in the presence of
noise with larger o, flow to fragile attractors may be
larger than to robust attractors. This will be impor-
tant to noise-induced selection of Milnor attractors in
Section 9.

From several data in the connection matrix, it may
be possible to have the following picture on the phase
space structure of our GCM: In the ordered phase,
several attractors exist far apart with each other. The
distance can be measured by the minimum pertur-
bation to make the switch between the two. At the
complex ordered phase, several robust attractors still
exist far apart, while the fragile attractors exist in
the intermediate region in the phase space, and are
connected to several robust attractors. At the PO
phase, basins of Milnor attractors are often mutu-
ally connected. Each Milnor attractor is connected
with many other Milnor attractors, and the connec-
tion is intermingled. At the turbulent regime the
basin for a single attractor covers the whole phase
space.
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8. Chaotic itinerancy revisited

In high-dimensional dynamical systems, chaotic
itinerancy among several ordered states is often ob-
served [7,17,18]. Orbits are globally attracted from
a high-dimensional chaotic state to these ordered
states, where they stay over long time steps, until
they exit from the state at a longer run. These or-
dered states are also called as attractor ruins, and are
lower-dimensional objects in the phase space.

One must note straightforwardly that the Milnor
attractors satisfy the condition of the above ordered
states constituting chaotic itinerancy. When Milnor
attractors that lose the stability (P(0) < 1) keep
attraction for large o, the total dynamics can be con-
structed as the successive alternations to the attraction
to, and escapes from, them. Note that the Milnor
attractor keeps global attraction, which is consistent
with the observation that the attraction to ordered
states in chaotic itinerancy occurs globally from a
high-dimensional chaotic state.

The notion of chaotic itinerancy may be rather
broad, and some of CI may not be explained by the
Milnor attractor network. In particular, chaotic itin-
erancy in a Hamiltonian system [3,4] may not fit
directly with the present correspondence. Also, the
‘ordered states’ in CI may not be close enough to
Milnor attractors. Still, the attribution of CI to Milnor
attractor network dynamics is expected to work as
one ideal limit.

9. Noise-induced selection of attractors

Coexistence of attractors with different degrees of
stability makes us expect the relevance of noise to the
choice of an attractor. One might expect that the noise
leads to the choice of strong attractors. To discuss this
problem, we have simulated the model by applying a
white noise with the amplitude § (i.e., a random num-
ber homogeneously distributed over {—§8/2, §/2]. In
Fig. 15, we have plotted the temporal average of Agpy
over all elements over 10000 steps. Successive merg-
ing of attractors is visible. Here it should be noted that
arobust attractor is not necessarily selected. In Fig. 15,
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Fig. 15. The splitting exponent A averaged over 100 000 time
steps, for a GCM with the noise term (8/2) x md, (i) added
throughout the temporal evolution. Each dot represents the value
of Ay from an initial condition, for the corresponding noise
amplitude value § given by the horizontal axis, while 1000
randomly chosen initial conditions are sampled for each value
of . a =1.64.

in the order of Ay there are the following attrac-
tors: [2,1,..., 1] (fragile; Asp ~ 0.11), [3,1,...,1]
(robust; Asp = 0.024), [3,3,1,..,1] (fragile Agy ~
—=0.09), [4,4,1,1] (robust; Agp ~ —0.17), besides
several robust attractors with —0.17 < Ag;) < —0.09.
As is seen in Fig. 15, many orbits remain close to the
fragile attractors (around Agp A 0.11 or —0.09), even
in the presence of noise. On the contrary, robust at-
tractors around —0.17 < Agy < —0.09 merge with a
smaller strength of noise.

When the noise is continuously added, however, the
dynamics is represented by successive switches over
attractors. Then, it is not easy to check the residence
at each attractor in the presence of noise, since the
criterion of the neighborhood of each attractor is not
clearly given. Instead, we adopt a different method
to check the noise effect, as outlined in Section 2:
Iterate our dynamics in the presence of noise, over
long enough time steps, and then turn off the noise,
and check on which attractor the orbit falls. With this
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process we measure the attraction ratio V;(8) for a
given attractor i.

Roughly speaking, our attraction rate gives an es-
timate on the residence time for the neighborhood of
each attractor. As it is very difficult to define the neigh-
borhood of each attractor, we use the present method
as a numerically convenient tool.

Besides this convenience, this method is also rel-
evant to consider the response of our system. For
example, in a neural system some inputs are applied
and then turned off. Of course the input cannot be
purely random, but consider Freeman’s experiment
[20] for example, where odor input is applied to a
rabbit, and the neural activity in the olfactory bulb
is measured. Long-term chaotic transient (of chaotic
itinerancy type) is observed for unknown odor to the
rabbit. The external input of this odor may be regarded
as almost random for a neural system of a rabbit. In
general the present method itself may be relevant to
the study of response of a nonlinear system against
inputs.

Before discussing V;(8) for each attractor, we sur-
vey some quantities over all attractors, averaged by the
probability V;(8) (i.e., average over initial conditions).
First our numerical data show that the average cluster
number is decreased for the ordered and partially or-
dered phases. In other words, there is a tendency that
the synchronization among elements is enhanced in
the presence of noise.

This tendency leads to an opposite effect to the
strength of attractors, shown in Fig. 16, where the av-
erage of o, over initial conditions and the attraction
rates to Milnor attractors are plotted, for § = 0.01.
In the ordered (but not CO) and PO phases, the at-
traction to robust attractors is slightly enhanced by
the noise, which leads to the increase of the average
strength {o.). At the CO phase, however, the attrac-
tion rate to Milnor attractors is increased by the noise,
which leads to the decrease of {o.). Dependence of
the average {(o.) on the noise amplitude § is given in
Fig. 4 of [11], where the decrease is observed within
some range of § (0.04 <3 50.2), for the CO phase.
The mechanism of attraction to fragile attractors is re-
lated with the robustness of global attraction, as will be
discussed.

10000 T T T T T
8000 l
g
8000
§ -
g without noise —+— 4
'é with noise -+-- s
= 4000 | L
3
g
2000 - 4
° . 2 A
1.5 1.52 1.54 156 1.58 16 1.82 164 1.66 1.68 17
a
02 T T
X
:
2
2
]
<

Fig. 16. Change of the average strength (o) and the rate of
fragile attractors, versus the parameter value a. Starting from
random initial conditions, we have computed the GCM model
(1) with an additional noise term (8/2) x md, (i) over 10* steps
with & = 0.01 and checked which attractor is selected after the
noise is turned off. N is 25, although the same behaviors are
seen for larger N. (a) The rate of fragile attractors with and
without the noise term. (b) The average strength (.} ith and
without the noise term.

To see this mechanism in more detail, we have
measured the dependence of attraction rate to sev-
eral attractors on the noise amplitude §. A remark-
able feature here is its sensitivity in the choice. At
some noise strength, attraction rate to some attrac-
tors is enhanced rather sharply. After successive
changes in the attraction rate, it comes back to the
level of noiseless case, for large 8, since, for large
4, the memory of previous attractors is lost, which
essentially leads to random sampling over initial
configurations.
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Fig. 17. Rates of attraction to some attractors with the change
of transient noise amplitude & for N = 10. Computations are
carried out in the same manner as Fig. 16. ¢ = 1.64. Only
attractors with relatively large attraction rates are plotted, where
those with “rob” are robust attractors and others are fragile.

We have studied the noise dependence of attrac-
tion rates to each attractor for a variety of parame-
ters. For the ordered state, the noise has only a minor
effect: only the rates for attractors with small o, are
slightly reduced. On the other hand, in the CO phase,
there are successive enhancements of attraction rates
to some attractors. In Fig. 17, we have plotted the
number of initial points attracted to given attractors,
versus the noise strength applied during transient time
steps. This stochastic amplification is a novel noise ef-
fect, which reflects complex connection paths among
attractors. The peak around 8 = 0.04 for the attractor
[3,1,..., 1] and that around & ~ 0.05 for the attrac-
tor[4, 1, ..., 1] in Fig. 17, for example, are due to the
gap between the perturbation threshold allowing for
the transitions from such attractors to others and the
reverse ones. It should be noted that these attractors
are fragile.

Why is the increase of the attraction to fragile at-
tractors possible? Although the detailed mechanism
for it depends on the phase space structure, it should

be noted that there exists global attraction to frag-
ile attractors, as represented by P(o). As is already
mentioned, fragile attractors often attract globally
(for large o) more initial points than robust attrac-
tors. Hence the orbits kicked out of attractors may
be attracted to fragile attractors more. When a large
enough noise is added to kick the orbit out of a robust
attractor, the return rate to fragile attractors can be
larger than to robust ones. Thus, when a noise am-
plitude exceeds o, of a robust attractor, the attraction
rate to some fragile attractors can increase. Compli-
cated structure in the attraction rate in Fig. 17 reflects
such successive opening of the path from each robust
attractor.

10. Relevance to biological networks

10.1. Neural dynamics: dual coding and marginal
attractor

It is interesting to note relevance of the present re-
sults to biological problems. In neural network stud-
ies, dynamical systems with global coupling is typ-
ically adopted, although the coupling is not usually
identical. Many features in GCM, however, are still
valid even if the coupling is not homogeneous.® In-
deed, one can construct a chaotic neural network as
a globally coupled map with coded couplings, where
the partially ordered phase is relevant to the informa-
tion processing [27,28).

In Freeman’s study mentioned earlier, he has pro-
posed that the chaotic dynamics corresponds to a
searching state for a variety of memories, represented
by attractors [20]. Furthermore, Kay and Freeman
have observed the dynamics that can be regarded as
chaotic itinerancy [26].

S1f element dynamics x — f(x) is different by elements,
instead of inhomogeneity in coupling, the difference may be
more essential. Still, we have observed clustering, partially
ordered phase, and collective dynamics in such heterogeneous
GCM. Milnor attractors and chaotic itinerancy are often found
in the PO phase. Hence we believe that most of our conclusion
is relevant to the heterogeneous system. See also Section 11.
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We note that the fragile attractors in the CO or PO
phases provide a candidate for such a searching state,
because of connection to a variety of stronger attrac-
tors which possibly play the role of rigidly memorized
states. Selection of fragile attractors by some noisy
inputs in Section 9 also supports this correspondence.

It may be possible to introduce a degree of stability
in memory, corresponding to the degree of strength of
attractors. For a dynamical system to work as a mem-
ory, some mechanism to write down and read it out is
necessary. If the memory is given in a robust attractor,
its information processing is not so easy, instead of
its stability. On the other hand, Milnor attractors can
support ‘dynamic memory’ [17,29-31]. In a Milnor
attractor, some structure is preserved, while it is dy-
namically connected with different attractors. Also, it
can be switched to different memory by any small
inputs. The connection to other attractors is neither
one-to-one nor random. It is highly structurized with
some constraints as discussed in Section 7, while it
keeps some variety. The switching process is expected
to be hierarchically organized, since the clustering in
such attractors in the PO phase is hierarchical. Hence
the Milnor attractors are good candidates for dynamic,
hierarchical memory. We propose that the Milnor at-
tractor (network) is essential to the interface process
between inputs and robust memory, which is coded by
a robust attractor.

Another important feature in our system is dual
coding. Note that our attractor is coded by cluster-
ing condition. Depending on possible combination of
synchronization between elements, there are a vari-
ety of attractors. This coding by synchronization may
remind us of recently popular hypothesis on the tem-
poral coding [21,22] or dynamical cell assembly hy-
pothesis [23]. Against this type of hypothesis, there are
some criticisms pointing out that: (i) a large number
of connections among units may be required; (ii) syn-
chronization or de-synchronization may require long
time; and that (iii) another unit (neuron) may be nec-
essary to detect synchronization [24]. It is interesting
to mention that our system is free from all these crit-
icisms. First, only the connection to a single mean
field is necessary in our system, and we do not need
N x N connections. Second, the synchronization and

de-synchronization occur within a few time steps when
an input is applied to change the orbit. Last, and most
importantly, our system has dual coding to overcome
the third criticism. Depending on the way of synchro-
nization, the dynamics of the mean field 4, varies (see
also Fig. 18 of Appendix A). Instead of the condition
for synchronization (clustering), each attractor can be
characterized by a different type of mean-field dynam-
ics (e.g., periodic or chaotic, the period of the cycle
etc.). It is important to note that the check of synchro-
nization requires comparison between N x (N —1)/2
pairs, while the mean field has just a single variable.
Since this mean field is applied to all elements, all el-
ements ‘know’ to which type of attractor they belong.
Thus the information on synchronization is also stored
on each element.

10.2. Relevance to cell biology

Another possible application of our results is to
cell biology. In the context of dynamical systems it is
sometimes assumed that each cell type corresponds to
an attractor of some internal cellular dynamics or ge-
netic networks [25], while the differentiation is related
with the selection of attractors.

On the other hand, interference between internal
cellular dynamics and cell-to-cell interaction has
explicitly been taken into account in recent studies
[32,33]. We have studied a class of models with non-
linear intra-cellular dynamics, cell-to-cell interaction,
and cell division to increase the number. ’ It is found
that cells at an earlier stage change their character by
generation, while the same character is preserved to
offspring cells at later generations. As to the internal
cellular dynamics, this process is understood as a

7 Again, one might doubt the relevance of the use of identical
dynamics to all elements here. Note first that all cells have
identical genes, and in the sense that the dynamics equation
itself is identical, and the use of identical elements is validated.
Still, the synchronization is lost, and dynamics is differentiated
by cells in our coupled cell model [32,33]. Still there can be
several attractors, some of which are rather weak. Hence the
notion of weak (and Milnor) attractors is expected to be relevant
to cell biology.
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switch from a weak attractor® at the initial stage to
a strong attractor later, due to the cell-to-cell interac-
tion. When chaotic dynamics is allowed for internal
dynamics, another type of cells is found that repli-
cates or switches to different types probabilistically
[34]. This type corresponds to stem cells. Here the
switched states keep their type by division, and are
regarded as determined cell types. In the phase space,
the intra-cellular dynamics of the stem-like cell has a
wandering orbit visiting the neighborhoods of a few
states that correspond to determined cells.

Switch among attractors by a noise in Section 9 is
important in this respect. A Milnor attractor can switch
to several robust attractors there. A cell state, if rep-
resented by a Milnor attractor, can switch to several
different states depending on the interaction, instead
of the noise. Noise-induced attraction to Milnor at-
tractors in Section 9 will be relevant to the appearance
of stem cells. It is also interesting to note that due to
the chaotic dynamics therein, the switch Jooks proba-
bilistic as is often assumed in the differentiation from
a stem cell [35].

11. Summary and discussion

In the present paper, we have studied several aspects
on the strength of attractors in a high-dimensional dy-
namical system.

We have introduced the return probability of orbits
to an attractor, as a function of perturbation strength
o. This function P(o) characterizes geometry of at-
traction to an attractor. By introducing several quanti-
fiers on the stability of an attractor, it is found that the
fragile (Milnor) attractors dominate the basin volume
in the PO phase of the GCM.

This dominance originates in the discrepancy be-
tween local stability and global attraction. Milnor at-
tractors which lose the local stability often keep global
attraction. Indeed, it is found that the global attrac-
tion is rather robust against the change of bifurcation
parameter, in contrast with the local stability. By this

8 To be precise, the corresponding dynamical state is not nec-
essarily an attractor, but often is a state stabilized by the cell-
to-cell interaction.

global attraction, fragile attractors often have relatively
large basin volumes.

At some parameter regime in the PO phase, only
Milnor attractors are observed, where the dynamics is
represented by switching process over Milnor attrac-
tor network. Chaotic itinerancy, universally observed
as a higher-level dynamics over low-dimensional or-
dered states, is re-interpreted as such Milnor attractor
network dynamics.

Gap between local stability and global attraction
also leads to a rather strange noise effect. Attraction
rate to each attractor depends strongly on the noise am-
plitude. Some attractors are selectively attracted only
with some range of noise amplitudes. Furthermore,
Milnor attractors are selected for some range, due to
their global attraction.

Such a selective attraction may be relevant to func-
tion in a biological system. Enzymatic activity of a
biopolymer, for example, has a sharp dependence on
temperature. When the polymer dynamics is repre-
sented by a high-dimensional dynamical system, there
should be a mechanism so that it responds selectively
to the amplitude of external noise. Our model can pro-
vide an example of such noise-selectivity, where by
switching the noise on and off, it is possible to make
a cyclic process between Milnor attractors and robust
attractors. *

Although our results are based on the GCM (1), it is
expected that the same qualitative behavior is observed
in high-dimensional dynamical systems (for weak at-
tractors in a coupled map lattice, see [19]), since the
previous findings in GCM [7,37] have been confirmed
in a coupled differential equations also [38,39].

One remaining question is the relevance of our re-
sults to a heterogeneous system. We have adopted a
GCM with identical elements, which makes us easy to
code an attractor only by clusterings. If the elements
are not identical, complete synchronization between
two elements is not possible. Hence we have to check
an attractor not by the condition x (i) = x(j) but by

? Indeed, when a coupled pendulum with many degrees of
freedom is under a heat bath and corresponding damping term,
chaotic itinerancy is observed, which allows for continuous
energy absorption and storage [36].



340 K. Kaneko/Physica D 124 (1998) 322-344

introducing the average “distance” between x,, (i) and
x,(J). Since the classification by the distance is not
automatic, we have to judge it case by case. This is
the reason why we have treated only the homogeneous
case.

On the other hand, Milnor attractors often disap-
pear with the introduction of asymmetry, ie., by a
slight difference in parameters between dynamics in
two units. Then one might suspect the importance
of Milnor attractors in a heterogeneous system. To
overcome such a criticism, we have made some pre-
liminary simulations on a GCM with non-identical
parameters a. First note that it is already verified
that many attractors coexist in the heterogeneous
case [40]. Chaotic itinerancy dynamics is often ob-
served at some parameter region corresponding to the
partially ordered phase. Then we have examined if
there are Milnor attractors. '® Although it is not easy
to distinguish all attractors in the present case (due
to lack of simple coding), we have found at least a
dozen Milnor attractors for a GCM with the param-
eter a distributed over 1.6 < a < 1.7, for N = 10.
Of course, future detailed studies are required, for
example, as to quantitative estimates on the ratio of
attraction to Milnor attractors. Still, we expect, from
the preliminary studies, that Milnor attractors are not
so rare and that they have global attraction. The ob-
served CI will possibly be explained by the Milnor
attractor network.

Dominance of Milnor attractors gives us a suspect
on the computability of our system. As long as digital
computation is adopted, it is always possible that an
orbit is trapped to a state from which it should depart
by computation with a higher precision. In this sense
a serious problem is cast in numerical computation of
GCM. !

This computation problem also exists in the switch-
ing over Milnor attractor networks. In each event of

10 Note that even if the Milnor attractors of the original homo-
geneous GCM may disappear by the introduction of inhomo-
geneity, new Milnor attractors can appear with the introduction
of inhomogeneity.

' Indeed, in our simulations we have often added a random
floating at the smallest bit of x(i) in the computer, to partially
avoid such computational problem.

switching, which Milnor attractor is visited next after
the departure from a Milnor attractor may depend
on the precision. In this sense the order of visits to
Milnor attractors in chaotic itinerancy may not be un-
decidable in a digital computation. In other words,
analog computation with GCM may decide what a
digital machine cannot do. With this respect, it may
be interesting to note that there are similar statistical
features between (Milnor attractor) dynamics with a
riddled basin and an undecidable dynamics of a uni-
versal Turing-machine {41].

Existence of Milnor attractors may lead us to
suspect the correspondence between a (robust) at-
tractor and memory, often adopted in neuroscience
(and theoretical cell biology). It should be men-
tioned that Milnor attractors can provide dynamic
memory [17,29-31] allowing for interface between
outside and inside, external inputs and internal
representation.
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Appendix A
A.l. Coding of attractors

The number of attractors in Section 3 can be
under-estimated, since different attractors can exist
for the same partition. For example, period-2 type
band motion sometimes remains. Although elements
are desynchronized, they keep the same phase rela-
tionship as to the band motion (see Fig. 18 for some
examples of such coexisting attractors). The attractors
in Fig. 18 can be classified by adopting band-splitting
instead of clustering. The attractor of Fig. 18(a) is
given by (2-band; (5:5)) while that of Fig. 18(b) by (2-
band; (7:3)). For the attractors with the clustering of,
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Fig. 18. Overlaid time series of x, (/) of the attractor with the clustering [1, ..., 1], accompanied by the time series of the mean

field. a = 1.66, ¢ = 0.1, and N =

say [3,1,1,...,1], there can be a few attractors with a
different partition into two bands. In one attractor el-
ements split into two bands with 4 elements clustered
into [3,1] and 6 elements mutually desynchronized,
denoted by the band (4[3, 1], 6[1,1,...,1]), while
another attractor with the same clustering [3, 1, ..., 1]
coexists at a = 1.65 (and € = 0.1), which has a band
splitting to 3 and 7 elements, where the former are
synchronized and the latter desynchronized. Since for
most parameters one-to-one correspondence between
clustering and an attractor holds (at least for that with
a large enough basin volume to be detected numeri-
cally), and the classification both with the band and
clusterings is complicated, we distinguish the attrac-
tors only by the clustering, unless the use of both is
necessary.

10. Two examples: (a) the band splitting with 5:5 and (b) band splitting with 7:3.

A.2. Characterization of complex partition to
attractors

For a system with a larger number of elements, enu-
meration of all attractors by [Ny, Nz, ..., N¢] is al-
most impossible. Hence it is necessary to introduce
some other simple measures. The simplest measure is
just the number of attractors, which is enhanced at the
border between O and PO phases. A better quantifier
to incorporate with the clustering is the ratio that two
elements fall into the same cluster defined by ¥ =
Zj (NJ‘/N)2 [12]. See Fig. 19 for the parameter de-
pendence of the basin volume rate to each Y value.
Note that Y is close to 1/2 for a (typical or evenly
partitioned) 2-cluster attractor, 1/3 for a typical 3-
cluster attractor, and so forth. Successive appearance
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Fig. 19. The basin for each Y value, with the change of a. The
rate of initial conditions leading to such value of Y is plotted
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(> 1%), and & (> 0.1%). See text for the definition of Y.

of attractors with a larger number of clusters is seen
in Fig. 19.

The ‘partition complexity’ is defined in [12] as the
fluctuation of ¥ over initial conditions. It is found that
this fluctuation remains finite in the thermodynamic
limit at the PO phase, whose value is enhanced at the
border between O and PO phases.

Another simple way is the use of entropy-like
function from the cluster probability. The proba-
bility p™!(i) is defined as the basin ratio of at-
tractors with the cluster number i. The function
= 3 P ()logp™(j) has a peak again at the
boundary between O and PO phases [13]. Hence
measures to characterize the variety of attractors
defined from the basin volume ratio has a peak
at the PO phase (precisely speaking at the border
between O and PO), while correspondence of the
PO phase with the spin glass has been emphasized
[12,13].

Another measure for the split of elements is given
by the split exponent A, defined by

hapt = (1/N) D30
j

=(1/N)) log|(1 —€) f'x(j)). (A1)
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Fig. 20. Basin volume for attractors with Aspls a8 a is changed.
The rate of initial conditions leading to such value of Agpt With
the bin size 0.01 is plotted as different marks. A (> 50%), x
(> 10%). O (> 5%), + (> 1%), and < (> 0.1%). The average
over 10000 initial conditions is also plotted as a line.

where the exponent gives a measure for the average
split rate of two elements taking close values [14].

As is shown in Fig. 20, the basin volume of the at-
tractors with Ay, & 0 increases around the onset of
partially ordered phase, while the completely desyn-
chronized phase appears with the further increase of
a. Attractors with Ay, > O start to appear around a =~
1.61, which corresponds to the appearance of attrac-
tors with many clusters, while the average of Aspl OVer
initial conditions starts to be positive at the PO phase
around a = 1.66.

A.3. Bifurcation in attractors of GCM

Let us discuss the bifurcation of the GCM in a more
detail, adopting the basin volume change. In Fig. 21,
the basin volume rates to attractors of given partitions
are plotted for N = 10. As the parameter a is in-
creased, attractors with more clusters appear succes-
sively. Two-cluster attractors disappear around a ~
1.58, three clusters at @ = 1.6, 4, 5, and 6 clusters
around 1.65. Roughly speaking, for a > 1.65 the at-
tractors with the type of [k, 1,1, 1, ...] are dominant
as to the basin volume.

At the ordered phase with smaller a (e.g., a <
1.65 for € = 0.1) two- and three-cluster attractors
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Fig. 21. Change of the basin volume rates with the parameter a. N = 10. (a) The basin volume rates for two-cluster attractors.
(b) The basin volume rates for three-cluster attractors. (¢) The basin volume rates for attractors with the partition [/, 1, ..., 1].

are dominant. Two-cluster attractors lose their sta-
bility successively from biased partitions (e.g.
[9,1L[8,2].[7, 3],...). Note that there are several
‘cliffs’ in the basin rate of a two-cluster attractor (see
e.g., the basin rate for [5,5] attractors). Indeed the
cliffs are seen when an attractor with a split cluster
from it has a larger basin volume. For example, the
cliff around a ~ 1.55 for a [5, 5] attractor is due to
the increase of the basin volume of the [5,4,1] at-
tractor. By some change in the phase space structure,

new paths to [5, 4, 1] attractors are opened, by which
some orbits previously attracted to {5, 5] attractors are
attracted to [5,4,1].

As the number of clusters increases, more paths
are opened or closed with the parameter change,
which leads to complicated bifurcation structures for
attractors with 4,5, and more clusters. Among them,
a clear structure is seen as successive appearance of
[{,1,...,1] attractors with decreasing /, when a is
increased from 1.5, as shown in Fig. 21(c).
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