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Abstract

Collective behavior is studied in globally coupled maps. Several coherent motions exist, even in fully desynchronized state.
To characterize the collective behavior, we introduce scaling transformation of parameters, and detect in parameter space
a tongue-like structure in which collective motion is possible. Such a collective motion is supported by the separation of
timescales, given by the self-consistent relationship between the collective motion and chaotic dynamics of each element. It is
shown that the change of collective motion is related with the window structure of a single one-dimensional map. Formation
and collapse of regular collective motion are understood as the internal bifurcation structure. Coexistence of multiple attractors
with different collective behaviors is also found in fully desynchronized state. © 1998 Elsevier Science B.V.

PACS: 05.45+b; 05.904+m; 87.10+e
Keywords: Globally coupled map; Collective motion

1. Introduction

Whereas the research of low-dimensional chaos
provided us with important notion of unpredictabil-
ity in deterministic systems, it was soon realized
that many natural systems show much more com-
plicated behavior than low-dimensional chaos. One
of the important features in natural systems is high-
dimensionality. Although deterministic aspects re-
main in the high-dimensional chaos, the present
nonlinear dynamics tools are not sufficient to dis-
tinguish it clearly from noise. Hence, the study of
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high-dimensional chaos is important both from a
theoretical and from a practical point of view.
Globally coupled dynamical systems, consisting of
many dynamical elements interacting all-to-all, are
good examples using which we can develop notions
in high-dimensional systems. This class of dynamical
systems is seen in physical, chemical and biological
systems. In physics, coupled Josephson junction ar-
rays [1] are a coupled nonlinear oscillator circuit with
global feedback. In nonlinear optics with multi-mode
excitation [2] many modes are often coupled globally
through energy currency. In bioscience and medical
science, neural [3], cellular [4], and vital [5] orga-
nizations, that are known to exhibit complex chaotic
behaviors, are described in terms of a network of
active elements. Several examples in ecological and

0167-2789/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved

PIL: 50167-2789(98)00190-0



178 T. Shibata, K. Kaneko/Physica D 124 (1998) 177-200

economic systems are also seen in terms of a network
of active agents. Among these complex networks, a
globally coupled dynamical system is the simplest
case.

So far, study of globally coupled dynamical systems
has revealed novel concepts {6] such as clustering,
chaotic itinerancy, and partial ordering. In particu-
lar, the study of collective dynamics has got much
attention [7-21]. When the interactions between ele-
ments are small enough, each element oscillates in-
dependently, without synchronization between them.
Thus the number of degrees of freedom of the sys-
tem is effectively proportional to the system size. If
each element has chaotic dynamics, the system is in
a high-dimensional chaotic state. Even in such a case,
a macroscopic variable shows some kind of compli-
cated dynamics rather than noise, ranging from low-
dimensional torus to high-dimensional chaos [12,18].
This may imply that any weak interaction between ac-
tive elements necessarily brings about some sort of
correlation 2 between the elements.

The purpose of the present paper is to study the
nature of such collective motion, using a globally cou-
pled map [6], and to present a mechanism for the ori-
gin of such collective dynamics. With the change of
the control parameters, the collective dynamics shows
some sort of bifurcation. We present how elements are
organized to show the bifurcation structure in the col-
lective dynamics.

In Section 2, the globally coupled logistic map is
introduced and its characteristic behavior is presented
as a brief review. In Section 3, an overview of differ-
ent kinds of collective dynamics is presented. In the
macroscopic dynamics, a lower dimensional motion
and a much longer timescale than those of microscopic
dynamics are observed.

We focus on the thermodynamic limit of such col-
lective behavior. In Section 4, the timescale and the
amplitude of collective motion are studied in the large
system size limit. In Section 5, a global phase dia-
gram in the parameter space is presented. Because the
phase diagram shows a complicated structure, we in-

2 This means that two point mutual correlation does not vanish
in the limit of N — oo.

troduce a scaled nonlinearity parameter so that tongue-
like bifurcation structures are clarified. Collective dy-
namics with a larger amplitude exists in each tongue
structure that corresponds to a periodic window in the
single logistic map. The elements are accumulated to
few bands corresponding to the window of the single
logistic map for a small coupling. Since windows of
the single logistic map exist in any neighborhood in
the parameter space, the clarification of the collective
dynamics with such bands is necessary to understand
the collective dynamics in general. Thus we focus on
such tongue structures in Section 6, to reveal a mech-
anism of collective dynamics, where internal bifurca-
tion of elements plays a key role. In Section 7, the
bifurcation of the tongue structure is studied in con-
nection with the internal bifurcation. Even within the
same tongue structure, we can observe different types
of collective motion. A scaling relation between the
growth of tongue structure and the coupling strength
is given in Section 8. In Section 9, hysteresis and mul-
tiple attractor phenomena of the collective motion are
reported. This paper ends in Section 10 with summary
and discussion.

2. A simple network model of chaotic elements on
globally coupled map

In the present paper the following globally coupled
map (GCM) is studied:

N
a1 (D) = (1 — ) f (rai) + % }; £Gn())

i=1273,..,N), )

where x, (i) is the variable of the ith element at dis-
crete time step n, and f(x) is the internal dynamics
of each element. For the internal dynamics we choose
the logistic map

fx)=1-ax? )

where a is the nonlinearity parameter. The nonlinearity
parameter a, the coupling strength €, and the total
number of elements N are the control parameters of
the GCM.
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The GCM can be considered as a mean-field exten-
sion of the coupled map lattice (CML) [22], in which
elements are located at discrete spatial coordinates and
interact with their neighbors. A GCM can be also con-
sidered as a CML in which the number of spatial di-
mensions goes to infinity.

In the GCM model, two opposite tendencies coex-
ist: all-to-all coupling tends to synchronize elements,
while chaotic instability in each element tends to
desynchronize them. Depending on the balance be-
tween these two tendencies, a rich variety of phenom-
ena has been found [6].

If the coupling strength € is small enough, none of
the elements take the same values, and the correlation
between elements gets smaller [7,8] (called desynchro-
nized phase). In this case, in general, all Lyapunov
exponents are positive and the number of degrees of
freedom in the system is proportional to the system
size N. In the desynchronized state, the mean-field is
not stationary, and a kind of collective dynamics is
observed. In this paper we focus on the macroscopic
state of this desynchronized state. The macroscopic
state is characterized by the dynamics and statistics of
the mean-field

1 & ,
hy = Nj;f(xnm). 3)

In the next section, we will show some phenomena of
macroscopic dynamics in the desynchronized state.

3. Phenomenology of collective motion in
desynchronized state

Since there is no mutual synchronization among el-
ements, one might imagine that the mean-field would
be effectively the same as noise and, therefore the
mean-field would go to a constant with the increase
of N. One might expect that such a high-dimensional
dynamics is not distinguishable from noise.

In fact this is not the case. One of the authors has
found that the mean-field dynamics is different from
noise, and studied its nature as “hidden coherence”
[7.,8]. A possible simple solution to such collective dy-
namics is the low-dimensional mean-field dynamics

in the thermodynamic limit (N — o0), even though
each element is chaotic and mutually desynchronized.
Such examples have been found recently in short-
ranged CML and cellular automata [10], globally cou-
pled oscillators [23,24], the globally coupled tent map
[12,16,20,21], and a globally coupled logistic map
with heterogeneous elements [18].

In the present case, the collective dynamics is not
given by such low dimensional dynamics [8], although
it has some structure distinguishable from noise. Let
us give a few sets of examples of the mean-field
dynamics.

Fig. 1(a) shows an example of the time series of the
mean-field as a function of time step n at every two
steps, and the corresponding return map of the mean-
field for N = 10°. The coupling strength is too small
to synchronize any two elements. The trajectory of the
mean-field has some fluctuation due to the finite sys-
tem size. With the increase of the system size to N =
107, however, the trajectory shows some coherent mo-
tion as is shown in Fig. 1(b). The trajectory is rather
close to quasiperiodic motion, although the points are
scattered around the “torus™ motion. In Fig. 2, power
spectra for the time series of a single element and for
the mean-field are shown. The timescale of the mean-
field dynamics is much longer than the timescale of
the single element dynamics.

Note that the width around the closed curve remains
finite when N is further increased. The collective dy-
namics 1s not on a two-dimensional torus, and it indeed
is not represented by low-dimensional dynamics as
will be demonstrated in Section 4. On the other hand,
since the mean-field dynamics does not approach a
point with the increase of N, it is also different from
noise. Hence the collective motion has some structure,
although it is high-dimensional.

Another set of examples is given in Fig. 3, which are
the time series plotted at every seven steps and the first
return maps. In Fig. 3(a), quasiperiodic-like motion
is not detected in the mean-field dynamics, but some
structure exists in the return map, whereas in the time
series, a characteristic timescale seems to exist. With
a slight increase of a, the dynamics of the mean-field
is changed as in Fig. 3(b). In this case, the return map
does not show a clear structure, and the variation of
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Fig. 1. Time series and return map. Time series are plotted at every two steps after transients are discarded. @ = 1.5449205, ¢ = 0.0005.
(a) N = 10°, (b) N = 107. Corresponding return maps (f,, h,410) are plotted over 50000 steps after transients are discarded.

the mean-field remains at the same magnitude with the
further increase of N. With a much slighter increase
of a, the mean-field comes to oscillate more regularly,
whereas the motion is scattered around torus motion
(Fig. 3).

The choice of plotting only every second or seventh
step in Fig. 3 is not arbitrary but there is a reason
for it, which will be clarified in the following sec-
tions. Our goal in this paper is to give a consistent
explanation for the above collective motion. We try to
answer the remaining questions in the collective dy-
namics: When the system size N goes to infinity, i.e.,
in the thermodynamic limit, how is the macroscopic
dynamics characterized? How does the remnant order
in high-dimensional collective dynamics emerge out
of the completely desynchronized elements? How is a
longer-time scale in the collective dynamics formed?
How does the collective dynamics depend on the

parameters a and €, and what kind of bifurcation
structure is expected, and how is it explained in terms
of dynamical systems theory?

4. Thermodynamic limit of collective motions
4.1. Amplitude of collective motion

In Section 3, we have mentioned that the mean-field
dynamics plotted in the return maps shows some struc-
tures, ranging from lower-dimensional structures, such
as a torus, to higher-dimensional stochastic structures.
First of all, to characterize the mean-field dynamics,
we compute the mean-square deviation (MSD) of the
mean-field distribution,

2

()% = (h*) — ()2, 4
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Fig. 2. Power spectrum of time series of a single element
xp (i) (upper) and the mean-field 4, (lower), a = 1.5449205,
e = 0.0005, N = 10’. While the spectrum for a single ele-
ment has a peak at the frequency 0.5, continuous component is
much larger than that of the mean-field dynamics. Hence, the
mean-field dynamics is more regular than the dynamics of each
element. The slow dynamics of the mean-field is shown by the
peak at the frequency 0.025269.

as a measure of the amplitude of the mean-field dy-
namics. The bracket (-) denotes the temporal average.

When the mean-field does not have clear structure
as in the case of Fig. 3(b), the MSD is useful to mea-
sure the variation around the fixed point. On the other
hand, when the mean-field dynamics shows quasiperi-
odic motion as shown in Section 3, it would be reason-
able to define the amplitude distinguished from “noisy
component”. As we will see in Section 4.2, however,
such separation is impossible, because the “noisy com-
ponent” does not get smaller with the increase of sys-
tem size N. Even in this case, the MSD can roughly
measure the size of the collective motion.

In Fig. 4 the MSD of the mean-field is plotted with
the system size N, which converges to some limit for
N — oo. These show the distinction of the mean-field
dynamics from pure noise and suggest some coherence
among elements.

4.2. Degrees of freedom of collective motion

Next, we study the number of degrees of freedom
in the collective dynamics in the thermodynamic
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Fig. 3. Time series and return map. Time series are plot-
ted at every seven steps. The parameters are a = 1.69620,
€ = 0.008, N = 107 (2), a = 1.69755, € = 0.008, N = 10’
(b), @ = 1.69844. € = 0.008, N = 107(c).
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Fig. 4. Mean square deviation (MSD) of the mean-field distri-
bution ((ah)2> = (hz) — (h)2 are plotted as a function of the
system size N.
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Fig. 5. Correlation dimensions are plotted as a function of scale
size r for different system size, which are indicated at the right
of each figure. The mean-field time series is embedded into
10-dimension. The parameters are ¢ = 1.699, € = 0.008 (a),
and a = 1.5449205, ¢ = 0.00050 (b).

limit. In the previous section, we have mentioned that
the collective motion, detected in the return map, has
some low-dimensional-like structure but the width
of scattered points around the ‘torus’ remains finite
in the thermodynamic limit. Since the possibility of
the present higher-dimensional torus is not excluded
only by the figure, we have measured the correlation
dimension [25] of the mean-field time series.

In Fig. 5, the change of slope in the correlation in-
tegral (dlog C(r))/(dlogr) is plotted as a function
of the scale size with increasing the system size N.

For a smaller system size, the correlation dimension
increases monotonically for decreasing the scale as
for random variables. For a lager system size, curves
have a plateau at a value less than the correlation di-
mension 2, which seems to correspond to collective
motion. In a smaller scale, however, the correlation
dimension becomes large. At this smaller scale, the
motion is hard to be distinguishable from noise. If the
scale of this regime would get smaller with the size
N, one could conclude that the collective dynamics
is low-dimensional in the thermodynamic limit. As
shown in Fig. 5, this is not the case. The slope function
converges to a certain curve with the increase of size
N, where the plateau region does not get wider. Thus,
the mean-field dynamics does not converge to lower
dimensional dynamics in the thermodynamic limit.
To check the validity of this method, it may be
relevant to mention the case of a heterogeneous sys-
tem [18], e.g., a globally coupled map with a dis-
tributed nonlinearity parameter a over elements. In
such a GCM the mean-field dynamics shows a clear
quasiperiodic motion. The width of scattered points
around the tours converges to ( in the thermody-
namic limit. Corresponding plots of slopes are given
in Fig. 6, where the plateau at the value 1 is expanded
with &, and the “noise” region is shrieked to the
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Fig. 6. Correlation dimension for heterogeneous GCM [18].
The parameters are a = 1.9,¢ = 0.11. Nonlinearity pa-
rameter for each element is homogeneously distributed over
a € [1.875,1.925]. The mean-field time series is embedded
into 10-dimension.
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Fig. 7. Rotation number R of the mean-field dynamics, plotted
as a function of system size N.

scale r ~ 0. The difference from our uniform case is
clearly visible.

4.3. Characteristic timescale of collective motion

To see how the timescale of the mean-field
dynamics depends on the system size N, we measure
the rotation number of the mean-field dynamics as
a function of the system size N. Here, the rotation
number R is defined as

1 Ab,
t—oc t 27’

&)

where A6, is the angle variable formed by the two
vectors (h,— (h), hpt1 —(h)), and (hp1 —(h), huy2—
{h)) defined around the average mean-field (h) over
time.

In most cases, the rotation number seems to con-
verge to a certain value (Fig. 7). It is suggested that
the mean-field dynamics approaches certain dynam-
ics, independently of the system size for large enough
N. In Fig. 8, the power spectrum of the mean-field
dynamics has some peaks. The low frequency com-
ponent around 0.07 corresponds to the collective dy-
namics, while the high frequency component around

3 In the heterogeneous case, the law of large numbers is re-
covered around the torus motion.
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Fig. 8. Power spectrum for the mean-field dynamics with the
increase of system size N. a = 1.85, ¢ = 0.005.

0.4 represents the element dynamics, as will be clear
in Section 5.

This section is summarized as follows. In Fig. 5,
the correlation dimension shows a plateau within the
middle scale. This plateau corresponds to the lower-
dimensional dynamics, that is shown in the return
maps (Figs. 1 and 3). For larger values of N, the MSD
and the rotation number are characterizations of this
collective motion.

5. Global phase diagram of collective motion
in parameter space: tongue-like bifurcation
structures

In this section, we will study the dependence of the
amplitude of the collective motion of the parameters
a and €.

In Fig. 9, the MSDs are plotted as a function of
the parameter a for several coupling strengths €. Here
the system size is chosen to be large enough, to see
the behavior of the MSD converged in the thermody-
namic limit. Two points should be noted here. First,
the change of the MSD is not monotonic with a, but
is rather complicated. Second, the change of the MSD
is complicated with fine structures, which still keep
some similarity against the changes of the coupling
strength €. For example, a similar but slightly differ-
ent structure is visible for a & 1.7025 for ¢ = 0.01,
a ~ 1.715 for e = 0.015, and a =~ 1.73 for e = 0.02.
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Fig. 9. Mean square deviation (MSD) of the mean-field dy-
namics is plotted as a function of a. € = 0.02, 0.15 and 0.01.
N =216

To see the structure in the parameter space closely,
we introduce rescaling of the parameters. For it, we
note that each element obeys the following dynamics:

Xyt = (1 — €)1 — ax)) + ehy, (6)

where h, is the mean-field value at time step n,
which can modify the nonlinearity of each element
effectively.

Usually, the deviation of the mean-field around the
mean-field average (k) = lim;—oo(1/6) Y 1 _ohn is
small. Hence it seems reasonable to normalize the
variable x,, so as to separate (#) from #,. Introducing
scaled variable X,, = x,,/(1 —€ +¢€{h)), the dynamics
of each element is given by

Xpp1=1— AX: +«dh,, 7

where §h, = h, — (h), and A and « are called “ef-
fective nonlinear parameter” and “effective coupling
strength”, respectively, given by

A= - — €+ €{h))a, 8)
€
=T e ®

In Fig. 10 we have plotted the MSD by adopting
the effective nonlinearity parameter A instead of a.
Note that similar structures with a different value of a
in Fig. 9 are overlapped around a certain value of A in
Fig. 10. For smaller ¢, finer structures can be seen in

MSD

1.67 1.68 1.69
effective nonlinear parameter A

Fig. 10. Mean square deviation (MSD) of the mean-field dy-
namics h,, plotted as functions of the effective nonlinearity pa-
rameter A.

a broader structure for larger €. In Fig. 11(a) the para-
meter dependence of the MSD is plotted on the two-
dimensional (A, «)-plane. Regimes with the collective
motion with a larger amplitude (i.e. larger variance)
form tongue-like structures® (called “tongue struc-
ture”), each of which starts at some point or interval
of parameter A at k = 0, and grows with «. The scal-
ing structure of tongues seems to be clearer. While the
width of each tongue seems to increase roughly lin-
early with A and «, detailed discussion will be given
in Section 8.

When the effective coupling strength « approaches
0, each tongue structure corresponds to a window
of the single logistic map (Fig. 11(b)). For instance,
between A ~ 1.75 and A = 1.79 a tongue structure
can be clearly seen in Fig. 11(a), corresponding to the
period-3 window of the single logistic map. Although
there is a countably infinite number of windows in the
parameter space of the logistic map, it is difficult to
detect the windows for a longer period numerically.
However, it is remarkable that a lot of tongue struc-
tures are visible in our model, corresponding to the
windows with a longer period.

In each tongue structure, further internal struc-
tures exist. For instance, the tongue corresponding
to period-3 window of the logistic map between

4 Similar structures are also observed in a globally coupled
tent map [20].
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A =~ 1.75and A & 1.79, has three internal structures,
roughly speaking. To understand the inner struc-
ture in each tongue, in the following two sections
we will study the dynamics of each element and its
distribution.

6. Collective behavior through self-consistent
dynamics

In this section, we will briefly describe how the
collective motion is formed, focusing on the tongue
structure.

6.1. Distribution dynamics

In the limit of N — oo, the probability distribution
function is defined as follows:

Pn(x) = JE&%Z‘S(X — xp()). (10)

The mean-field dynamics oscillates, instead of
converging to a fixed point. This implies that the
probability distribution function does also not remain
stationary but depends on time.

In Fig. 12, the evolution of the probability distribu-
tion function is shown, using numerical calculation.

a=1.844500, e=0.015, n=100000

STEPS

Fig. 12. The distribution dynamics plotted as a function of
time. The density is shown with the use of a gray scale. The
darker region indicates the higher density. The parameters are
a = 1.8445, ¢ = 0.015, N = 10°.

.01

(a)

Distribution Function

0.001

(b)

0.0015

|

NNM

R e Y o m e e 1o

a3 .

0.0014
0.0014
0.0013 1
0.0013 +
0.0012 |

0.0012 |

r‘ NPT T el L e

Distribution Function
Y 3

0.0011
0.0011

0.0010

0.0010 L " . e 0.0026 PN
04 03 02 01 0 01 02 03 06 07 08 09
x X

Fig. 13. The distribution functions at time n = 0 (x), 20 (e),
40 (o).

The parameters for the figure (a = 1.8445, ¢ = 0.015)
belong to the tongue structure in the period-3 window.
Since the mean-field dynamics has a component of
period-3, in the figure the density is plotted every third
step in order to see the slow modulation of p, (x). Due
to the chaotic oscillation of each element, the distri-
bution function spreads over x € [—0.8, 1.0], but the
distribution is not monotonous, and has some struc-
ture. In the three regions around x = 1.0, x &~ 0.0 and
x ~ —0.8§, the density is relatively large. This number
*“3” is the period of the window in the logistic map for
the corresponding tongue structure. The number of el-
ements in each of the three regions oscillates in time,
and the phase of each oscillation is mutually different.

6.2. Formation of self-consistent dynamics

It is interesting to study the collective dynamics
as an interference between mean-field dynamics and
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individual elements. Before we present a scenario
for collective motion, we show the formation of self-
consistent dynamics between the mean-field dynamics
and individual elements.

For simplicity, we adopt the case, in which the ef-
fective nonlinearity parameter A is near the period-2
band merging point. The time series and the return
map are given in Fig. 1. The distribution function
is given in Fig. 13 every 20th step. In this case,
distribution of elements can be divided into two re-
gions around x* & 0.54. During these 40 time steps
the density at the left region (x < x*), given in
Fig. 13(b), decreases with time, whereas the density
in the other region plotted in Fig. 13(c) increases
with time. Although the change of the distribution
is quite small, there is a systematic oscillation (cf.
Fig. 18).

Consider the density dynamics in each of the two
regions. In Fig. 14(a), the density in each region, N,
and Np are plotted as a function of time. N; denotes
the probability in the region smaller than x* in Fig. 13,
and Ng(= 1 — Np), ie. Ny = [ _ .. pn(x)dx, and
Ng = [« pn(x)dx = 1 — Np. (The definition for
each region is given below in detail.) The distribu-
tion in each region oscillates in time. In Fig. 14(b),
the mean-field time series h,—| and h, are plotted at
every two steps, since the mean-field has a period-
2 component. The mean-field also oscillates in time
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Fig. 14. (a) Time series of the number of elements

in the two regions. (b) Time series of the mean-field.
a = 1.5449205, € = 0.0005, N = 106.
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Fig. 15. Return map of the time series of the number
of elements in the two regions and time series of the
mean-field, plotted per two steps for even # and odd #.
a = 1.5449205, € = 0.0005, N = 10°.

with the same period as Ng, and Ny, but the phase of
the mean-field oscillation is different from that of the
population dynamics in Fig. 14(a).

To see how the mean-field dynamics and the dis-
tribution dynamics interfere with each other, we have
constructed a return map of the above two quantities.
Fig. 15 gives a return map of the distribution dynamics
and the mean-field dynamics. This figure implies that
a self-consistent dynamics is formed as follows:

i = iy, N, (1
Nn = N(hn—l, Nn—l)a
where each / and N is a function of I;,, =hy_1 —hy

and ]\7,, = N; — Ng. If the mean-field would be an
external force for each element, the population would
respond to the mean-field value. Since the distribu-
tion organizes the mean-field dynamics, the collective
motion can be described as a self-consistent relation
between the distribution dynamics and the mean-field
dynamics.

From the above viewpoint, we demonstrate now
how the distribution is modified as the mean-field
varies slowly.
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Fig. 16. Behavior of the third iterate of a logistic map: (a) after tangent bifurcation at three points, and (b) after crisis. Solid lines

with arrow indicate iterated trajectories starting from three points.

6.3. Internal bifurcation in temporal domain

If the mean-field would be an external force for
each element, we could study the dynamics of each
element as the logistic map with an external force.
This is valid if the mean-field varies slowly. In this
case, the equation of motion for each element is given
by

Xn+l = Fn(xn)s (12)
with
Fo(x) = (1 —e)(1 — ax?) + €(h) + €8h,. (13)

If we would not take 84, into account, the dynamics
of each element would be the same as the dynamics
of the logistic map. Since each tongue structure has
good correspondence with a window of the logistic
map as shown in Section 5, we focus on the window
structure of the logistic map. In the single logistic map,
the period-p window starts at the tangent bifurcation
point of the pth iterate of the map, and then the period
doubling bifurcation proceeds with the increase of a,
until the window ends up by crisis (see Fig. 16). In
this case, the probability distribution is stationary, and
hence, the probability that an element takes a value
out of p distinct regions is 1/p.

Now, take 84, in Eq. (13) into account as an external
force. The bifurcation of the perturbed logistic map
(13) has a crucial difference from usual bifurcation
of the logistic map. In Fig. 17, examples of the third
iterates of the map with external force are shown. In
Fig. 17(a) the region around x = 0 can attract the
elements, while the two regions around x =~ 0.95 and
x & —0.75 cannot. In Figs. 17(b) and (c), while three
regions cross the line y = x, one or two of the regions
collapses due to crisis. At the tangent bifurcation, the
map y = F,,(S)(x) is tangential to y = x at only one
point. This is in strong contrast with the logistic map
without external force, where tangent bifurcation or
crisis occurs at three-points of x at the same value of
a and € for the period-3 window.

In general, consider a period-p window. In the pres-
ence of the external force, for each of the p points
in the pth iterate of the map (13), the tangent bifur-
cation, or crisis occurs at different value of a and €.
Hence, the number of distinct attractors can be less
than p, and depending on @ and €. Even if the ele-
ments are attracted into p distinct regions, the prob-
ability for each of p distinct regions is not equal to
1/p.

As we have seen in Section 6.2, slow modu-
lation of the mean-field leads to the dynamics of



T. Shibata, K. Kaneko/Physica D 124 (1998) 177-200 189

04 |

0.2 |

08 | / p

06 | 4

L . .

-08-06-04-02 0 02 04 06 08 1
X

T T T T T T T T T

LS ]

©

08 | 1
06 B
0.4 L 4

0.2 1

-04 | / U

-06 | 1

-0.8 |

1 L 1

-08-06-04-02 0 02 04 06 08 1
x

08 L

06 |

04 |

02 p

-0.8 |

~08-06-04-02 0 02 04 06 08 1
x

Fig. 17. Behavior of the third iterate of a logistic map with period-3 external force. In contrast with the case of Fig. 16, only one or
two regions can attract trajectories. (a) The region around x = 0 attracts orbits as a region after tangent bifurcation, while the other
regions, which are before the tangent bifurcation, cannot attract orbits. (b) Two regions around x = 0, and x = --0.8 attract orbits,
while the region around x = 1.0 cannot attract orbits due to the crisis. (c) The region around x = O attracts orbits, while the other

regions cannot attract orbits due to the the crisis.

the distribution. With the slow modulation of &k,
in time, the behavior of each element changes as
well. In other words, with the change of Sk, bi-
furcation can occur in the effective map for each
element,

FIP = FyoFyoi o0 Faepet, (14)

which is the pth iterate of the map (Eq. (13)).
Since &h, changes over time, such a bifurca-

tion occurs in time. To distinguish this bifurcation
from the notion of bifurcation in parameter space,

this type of bifurcation is called “internal

bifurcation”. >

3 In our previous work [18], the nonlinearity parameter a was
distributed over elements. In that case, some sort of differenti-
ation of dynamics over elements enabled the collective motion.
To characterize the differentiation, the notion of “internal bi-
furcation” was introduced as a snapshot representation of one
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To characterize the effective map at every p time
steps, we introduce the invariant measure P,fp ) (x) at
time n determined by the solution of the Perron-
Frobenius equation,

1
P (x) = / PP (n8(x — FP (y)) dy. (15)
g

If P,,(p ) (x) changes slowly, the difference p,(x) —
P,fp ) (x) decreases with time.

On the other hand, a change in p,(x) can lead the
mean-field h, = [ f(x)p,(x)dx to a certain critical
value, at which the internal bifurcation occurs in the ef-
fective map, Eq. (14). For instance, a small difference
of the mean-field induces the effective map to be tan-
gential to the line y = x at one point, or it induces one
region of the effective map to be collapsed by crisis.
As a result, the nature of the invariant measure P,g’ » (x)
of the effective map changes qualitatively. This dras-
tic change in P,ip ) (x) occurs, before p, (x) approaches
PP (x). So, ps(x) cannot be close to Pi¥’ (x).

With this internal bifurcation, the distribution p, (x)
does not actually approach P,fp ) (x), because (1) the
velocity of change p, (x) is finite, and (2) the change
of p,(x) results in the qualitative change of PP (x).
Consequently p,(x) oscillates in time. This qualita-
tively explains why the mean-field does not approach
a fixed point® at the thermodynamic limit.

Let us look again at the example in Section 6.2 and
try to describe the dynamics under the above scenario.
Since the effective nonlinearity parameter A is near
the band merging point of the single logistic map, it
is useful to define the two regions shown in Fig. 14,
that correspond to the two bands of the logistic map
near the band merging point. The effective dynamics
is given by the second iterate of map,

FPx) =01 -6 -al(l —e)(1 —ax?)
+ehn1 1) + €h. (16)

system. As we will show below, we extend the notion of “in-
ternal bifurcation” to the present identical case.

6 The unstable fixed point of the mean-field value is given as
h = ff(x)po(x)dx, where po(x) is a fixed point solution of
Eq. (15) with p = 1. The fixed point solution py(x) is unstable.

1 0.02
0.5 1 0.01
e 0 0 1z
-0.5 TO: 1 -0.01
; Lo
-1 . - A -0.02
0 50 100 150 200
time steps
Ijig. 18. Temporal change of IV,, = N; — Np and

I, = I — Ip, where N; = f‘_eL pn(xydx, Np =1 — Ny,

= PP (x)dx and Ig = 1 — I, are plotted as
a function of time step. See text for the region L and R.
a = 1.5449205, ¢ = 0.0005, N = 109,

The lines y = F,Ez)(x) and y = x cross at three points
withinx € [—1, I]whena < 2 and € > 0. The middle
of these points is denoted by x;. R and L denote the
regions where x > x* and x < x, respectively.’

Consider the case where A 1s near the band merg-
ing point of the single logistic map. If the mean-field
would be on an unstable fixed point, these two regions
would collapse due to crisis. As we have discussed
above, however, the dynamics of the mean-field mod-
ulates the effective map, Eq. (16). As a result, for this
parameter regime, there are two cases: (1) the modu-
lation of the map is large enough, so that the R region
is an “unstable region”, while the L region is a “sta-
ble region™ (and vice versa), and (2) the modulation of
the map is small, so that both the L and the R regions
are “nnstable regions”. Here, we use the term “stable”
and “‘unstable” as follows. Consider a trajectory start-
ing from a region obtained by the iteration of the map
y = F,fz) (x) at a certain time step n. If the trajectory
stays within the region, we call the region “stable re-
gion”. If the trajectory leaves the region, we call the
region “unstable region”. By analyzing the map y =
F,fz) (x), we can always determine the “stability of re-
gions” at each time step.

In Fig. 18, the oscillation of population in these two
regions is shown as IV,, = N — Np (see also Figs. 14

7 Note that if we would not take 84, into account, ie. A, =
{(h), x* would be independent of time and x* would denote the
period-1 unstable fixed point of the single logistic map.
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and 15). In Fig. 18, the deviation of invariant measure
P,fz)(x) in the two regions, i.e. fn = I; — Ig, where
I = [ie1 PP (x)dx and Ig = 1 — I}, is also plotted
as a characterization of effective map (16). During the
time steps 1 € [6, 46], p,(x) approaches P,EZ) (x), until
the change of p,(x) induces P,fz) (x) to change qual-
itatively at time step n = 46. This qualitative change
in P,Ez) (x), and consequently the qualitative change in
the effective map is due to crisis in the L region. In
this way, the stability of the regions changes and some
elements in the L region move to the R region. As are-
sult, the distribution p,(x) approaches P,fz) (x) again,
until the next crisis enables a flow from the R region
to the L region.

To sum up, the distribution function p, (x) changes
slowly, in this way approaching P,(x) until the
modulation of the mean-field changes the internal bi-
furcation structure qualitatively. In this example, the
qualitative change in the internal bifurcation struc-
ture is due to local crisis. As a result of the change
of the internal bifurcation structure in the two re-
gions, the elements are attracted to a different region.
With the repetition of this stability change of the
regions, the mean-field oscillates quasiperiodically.
This mechanism of change in each band holds for
any period-p band (window) regime, where elements
are attracted to and repelled from each band region
successively with the internal bifurcation.

7. Bifurcation of collective motion
7.1. Bifurcation of tongue structures

As we have seen in Fig. 18 in Section 6.3, one of the
two regions in the second iterate of the effective map,
Eqg. (16), collapses due to crisis and the stability of the
regions changes in time. In this Section, we will show
that with the increase of A, the time interval during
which the regions are unstable becomes longer.

There are three kinds of time intervals. In one case,
both of the two regions R and L, defined in Section 6.3,
are stable. P,Ez) (x) is positive for the two regions but
there is no connection between the two positive re-
gions. In the second case, only one of the two regions
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Fig. 19. Ratio of the time steps, in which both the two regions
collapse (A), one of the two regions collapses (o), and none of
the two regions collapses (s). Ag = 1.5436890 (band merging
point), € = 0.0005, N = 107, The collapse is due to the crisis
bifurcation in internal bifurcation.

is unstable, and Pn(z) (x) is positive for one region
and zero for the other. In the third case, both of the
two regions are unstable. P,fz)(x) is positive for the
two regions and there is continuous connection be-
tween them. The ratios of these time intervals are
plotted in Fig. 19 as a function of A — Ap, where
Ay is the parameter for the band merging point of
the logistic map. For A — Ag < —0.6 x 107% cri-
sis never occurs in both the two regions L and R,
whereas for A — Ag > —0.6 x 107, the time inter-
val during which the regions are unstable gets longer.
For the parameter beyond A — Ag = 3.6 x 1075,
the two regions are unstable due to crisis bifurcation
for every time step. Hence, the period-2 tongue struc-
ture starts at the parameter A — Ag = —0.6 x 1076,
where one of the two regions of the effective map,
Eq. (16), becomes unstable for some time steps. It
ends at the parameter A — Ag = 3.6 x 10, where
both the two regions become unstable all the time due
to the crisis.

Consider an internal bifurcation condition of
Eq. (14) (for instance, crisis or tangent bifurcation in
each element.). For ¢ = 0 the bifurcation condition
holds at a single parameter value. For € > 0, due to
the oscillation of the mean-field, within the parameter
interval Agman(€) < A(€) < Apge(€) in the (A, €)-
parameter space, the internal bifurcation condition is
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Fig. 20. Mean square deviation (MSD) of the mean-field dis-
tribution with the increase of € plotted as a function of the
effective nonlinearity parameter A. The region corresponds to
the period-2 tongue structure. A denotes the band merging
peint (crisis bifurcation point of 2-band) of the logistic map
{Ap = 1.5436890126).

satisfied for some steps. Hence, the edge of a tongue
structure starts at € = 0 from tangent bifurcation point
and crisis bifurcation point. It is extended into the pa-
rameter space for € > 0, where each bifurcation con-
dition is satisfied during some time steps (see Fig. 20
for period-2 tongue structure). The scaling of the width
of the tongue structure will be discussed in Section §.

7.2. Bifurcation in a tongue structure

Even within one tongue structure, we can observe
different types of collective motion. With the change
of the parameter A and «, in the collective dynamics
a kind of bifurcation occurs. Since the collective dy-
namics remains high-dimensional, it is not described
as a standard bifurcation in low-dimensional dynam-
ical systems. Here we study a mechanism of such a
change in the collective dynamics.

In Section 3, it is shown that a slight increase in a
induces a qualitative change of the collective dynam-
ics (Fig. 3). To see this quantitatively, it may be conve-
nient to measure the rotation number of the collective
dynamics. In Fig. 21, the rotation number is plotted
as a function of A. In the regime plotted in the fig-
ure, a period-7 tongue structure is observed between
A~ Ap € [-0.744 x 1073, 1.499 x 107%], where A
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Fig. 21. Mean square deviation (MSD) and rotation number of
the mean-field dynamics are plotted as a function of A — Ay,
where Ay = 1.67407 denotes the tangent bifurcation point of
period-7 window. In the figure (a), the parameters a = 1.6962,
1.69755, and 1.69844 are indicated as (a), (b) and (c), corre-
sponding to the parameters in Figs. 3 and 22.

denotes the tangent bifurcation point of the period-7
window of the logistic map. Typical examples of the
collective dynamics are shown in Fig. 3.

As we have already introduced in Section 6.3, the
invariant measure P,f-”(x) of the effective map,

FO =F,0F, o oF,_s, a7

may be useful to see the change of the dynamics with
the increase of A. In Fig. 22, three examples of P,f7) (x)
are plotted as a function of time.

For the parameter of Fig. 22(a), the parameter A is
close to, but smaller than, the tangent bifurcation point
of the period-7 window Ag. Therefore, if the fluctu-
ations of the mean-field would be ignored, none of
the seven regions could attract the elements because
the seventh iterate of the logistic map, Eq. (17) would
not cross the line y = x. With the influence of the
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Fig. 22. Invariant measure of the effective map, Eq. (17), Py) (x) plotted as a function of time. The horizontal axis is time and the

vertical axis is x. In this figure, the region with P,f7)(x) > 0 is plotted by a solid line. When the whole region is filled by a line,
none of the seven regions of the map, Eq. (17), cross the line y = x, and all the regions are connected as a single attracting set. In
(a) and (b) some of the seven regions of the map, Eq. (17), cross the line y = x, while the other regions do not. In (c), on the other
hand, all seven regions of the map, Eq. (17), cross the line y = x, while some of the seven regions are destabilized by crisis. The

parameters correspond to those of Fig. 3.

mean-field dynamics, on the other hand, the effective
map, Eq. (17), is modified to cross the line y = x
at a few regions where P,f7) (x) > O (for instance be-
tween n = 2000 and 2100 in Fig. 22(a)). These two
or three regions can attract the elements until these re-
gions come to be destabilized by crisis (for instance at
n ~ 2100). After the crisis P,f”(x) spreads over the
whole region because none of the seven regions of the
map, Eq. (17), cross the line y = x. Then the regions
attracting the elements switch to different positions.
This process continues successively.

With the increase of A, the number of regions at-
tracting the elements due to the tangent bifurcation of
the map, Eq. (17), increases (Fig. 22(b)). In Fig. 22(b),
S, 6, or 7 regions are stabilized successively.

With the further increase of A, all the seven regions
of the map, Eq. (17), always cross the line y = x,

while some of these seven regions are destabilized by
crisis (Fig. 22(c)). With the increase of A, for each of
the seven regions, the time interval during which the
region is unstable increases. The tongue structure ends
at the parameter A — Ap = 1.499 x 103, where all the
seven regions are destabilized by crisis during every
time step. Thus, the collective dynamics of the period-
7 tongue structure ends. As a result, the amplitude
of the mean-field dynamics reduces to about 0.1 (see
Fig. 21).

Although we have explained the bifurcation in
the internal tongue structure for the period-7 case,
this kind of bifurcation structure is common to a
band region in any period. For instance, in Fig. 11(a)
with the period-3 tongue structure (starting from
A € [1.75,1.79032] at € = 0) and in the pertod-5
tongue structure (starting from A € [1.6244, 1.6333]
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Fig. 23. Scaling relation of tongue structure for period-2 (a), period-3 (b), and period-5 (c). €dk are plotted as functions of §4,
where 84 = +/MSD and §A indicate the deviation from the band merging point (A = 1.5436890126) (Fig. (a)), the crisis bifurcation
point of period-3 window (A = 1.7903274919) (Fig. (b)), and the crisis bifurcation point of period-5 window (A = 1.6333587036)
(Fig. (c)) of the logistic map, respectively. Line in each figure is proportional to §A. Hence, the edge of A in a tongue structure
varies linearly with €d4. The width of a tongue structure increases proportional to €8h.

at € = 0), similar bifurcation structure is observed,
where the change in the number of coexisting stable
regions corresponds to such bifurcation structure.

8. Scaling of tongue structures

In this section, we study the growth of the width of
a tongue structure with the increase of €. Asymptotic
behavior of the amplitude and the timescale of the
mean-field structure with ¢ — 0 are also presented.

In a period- p tongue structure, the effective map for
each element should be considered as

F\” = FyoF 100 Fypp (18)

with F,(x) = 1 — Ax? + «8h,. Due to the fluctua-
tion of 84, the nonlinear parameter in Eq. (18) ef-
fectively fluctuates within [A — A]KW{, A+ Ak8h)
up to the first order of k8h. 8h = +/MSD denotes the
amplitude of the mean-field for a given set of param-
eters and A is a certain positive constant determined
by Eq. (18). In each tongue structure within A(x) <
e[ Asmall (), Ajarge ()0)], the same internal bifurcation,
e.g. crisis or tangent bifurcation, occurs for some time
steps. Therefore the inequality

A— Akdh < Ag < A+ Axdh, 19)

is valid in the tongue structure, where A denotes
the bifurcation point of the single logistic map. Thus,
Agman 18 the maximum parameter at which the second
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Fig. 24. Scaling relation of MSD with « in the tongue struc-
tures. From the data shown in Fig. 23, the maximum values of
3h = +/MSD are plotted. They are obtained by sampling the
data of the MSD by changing A in each tongue for a given e.

inequality of Eq. (19) is violated, and Ajyrge is the
minimum parameter at which the first inequality of
Eq. (19) does not hold. Hence, a single bifurcation
point at ¥ = 0 splits into two lines, as is shown in
Fig. 20, and the lines constitute a region,

Ag— AikBha, < A < Ao+ Aikdhay,,.  (20)

small

In Fig. 23, tongue structures around the parameter A
at the crisis bifurcation point of the period-2 window
(band merging point), period-3 window, and period-5
window are shown. We should note that the coupling
strength ¢ is so small that ¥ ~ € and the dependence
on k can be replaced by the dependence on €. Agman
and Ajage increase linearly with €8h. As a result, the
width of the tongue structure grows linearly with €54.

As to the growth of the amplitude of the mean-
field, it has been pointed out that §h ~ ¢ for the
globally coupled logistic map [8,19]. In Fig. 24, 5h
in a tongue structure is plotted as a function of € for
several tongue structures. Although the growth of 8h
obeys a power law, there is a deviation from the linear
scaling with €. 3 This deviation is considered to be due

8 We should note that it is possible to take a proper limit of
€ — 0 in a tongue structure, sustaining the chaotic motion. For
example, the edge of each tongue structure (i.e., at the crisis
point) satisfies this condition. The above scaling behavior is
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Fig. 25. The longer timescales of the mean-field dynamics
plotted as a function of €. They are obtained from the power
spectrum for the parameter with maximum MSD value in the
period-2, 3 and 5 tongue structure for a given €.

to the following distinction. Whereas we have payed
attention mainly to tongue structures corresponding to
windows of the logistic map, in Ref. [19] such window
structures in the logistic map are out of consideration.
In other words, they have focused on the collective
dynamics arising from completely chaotic dynamics
in the logistic map. ® Possible differences between the
collective motions originating in chaos and window
will be discussed in Section 10 again.

The much longer timescale of the mean-field dy-
namics than the dynamics of an element is an impor-
tant characteristic of the collective motion, as is shown
in Fig. 2, in which a frequency peak of the longer
timescale arises at the frequency 0.025, whereas the
shorter timescale around 0.5 is present both in the sin-
gle element dynamics and in the mean-field dynamics.
Asymptotic behavior of these timescales with € — 0
is also an interesting problem. In Fig. 25, the frequency
of the slow component is computed from the peak of
the power spectrum, and is plotted as a function of

checked by setting the parameter A to keep chaotic motion in
this way.

9 Although our analysis is based on the rescaled parameter
A, although in the previous studies [8,19], a was used, the
difference will not be essential for small e.
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Fig. 26. One of coexisting attractors shown as a time series of
elements. In this case, elements are accumulated to three bands.
Time series of 100 elements out of 10% are plotted every third
time steps. A lot of attractors exist depending on the population
ratio to each band, while elements are desynchronized from
each other. The parameters are @ = 1.85, ¢ = 0.018, N = 10°,

¢ for each tongue structure. '° The shorter timescales
are independent of €, and are not shown in the figure.
The longer timescales get even longer with € — 0, as
~ €%, where the exponent « depends on the tongue
structure.

9, Hysteresis, multiple attractors, and coexistence
of different types of motion

Here we will study the coexistence of several attrac-
tors that can appear in the GCM. The most straight-
forward examples are “band splitting” mechanism of
multiple attractors. Here, in the “p-band splitting”, the
distribution of x, (i) splits into p disconnected regions.
There is no mixing of elements among disconnected
regions. An example, for p = 3 is shown in Fig. 26.
Since the number of elements at each region does not
change in time, the population ratio of elements at
each region gives a time invariant index for an attrac-
tor. Depending on the population ratio, there are a lot
of attractors (see e.g. {14] for the case with a tent map).

In the next example, multiple attractors are found
in hysteresis phenomena of collective motion, that can
be observed at the edge of the tongue structure in the
parameter space. In Fig. 27, the hysteresis curve of
the MSD is obtained by increasing or decreasing the

10 Here the value A for each tongue structure is chosen so that
8h is maximized for a given e, although dependence of the
frequency on A is not significant.
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Fig. 27. Hysteresis curve observed by increasing or decreasing
progressively the control parameter a while keeping the final
state of a simulation at given a as the initial condition for the
neighboring value a — 8a (x) and a + 3a (+). € = 0.008. The
MSD calculated starting from a random initial condition is also
plotted (o).

control parameter a. For calculation, the final state
of a simulation at the previous value of a is used
for the next initial condition. Thus in a — 1.69848 ¢
[0, 0.0001], two different collective motions exist de-
pending on the initial condition. Hence, at least two
different attractors coexist depending on the initial
condition. In Fig. 28, the time series and the return
map for each attractor are shown. Note that in this
case there are no separated regions in contrast with
the previous examples.

The third example of multiple attractors is the co-
existence of two types of attractors, one with a band
splitting structure (Fig. 26) and the other without a
band splitting structure (Fig. 29). In an attractor with a
band splitting structure, elements are accumulated in
a few regions. However, in an attractor without such
structure, elements spread over the whole range of x.
Moreover, for the former type, there exists a lot of
attractors with a different population ratio in each re-
gion, as is explained in the first example.

10. Summary and discussion

In the present paper, we have studied collective
motion in the desynchronized state of the globally
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Fig. 28. Time series and return map for two attractors in Fig. 27. The parameters are a = 1.69855, € = 0.008.

coupled logistic map. It is shown that collective mo-
tion with a much longer timescale and lower dimen-
sion can emerge at a macroscopic level. The depen-
dence of the amplitude of the collective motion on
a and € is studied. After some change of variables
and parameters, tongue structures are clearly seen in
(A, r)-plane. Each tongue structure corresponds to a
periodic window of the logistic map.

Focusing on tongue structures, we have demon-
strated how such a collective motion emerges. The dy-
namics of the mean-field and each element form some
self-consistent relationship, so that collective motion
is possible. This self-consistent dynamics is formed
by the following repetition: accumulation of elements
into some regions leading to a change in the mean-
field dynamics, which introduces a stability change of
the regions, and accumulation of elements into a dif-
ferent region occurs, which, again. . . This gives inter-
nal bifurcation in elements and in time.

The bifurcation is also seen in the parameter
space. Since the nature of the internal bifurcation
varies with the nonlinearity parameter a in a tongue
structure, the number of coexisting regions in x
changes, which makes the collective motion qualita-
tively different. Hence, in a tongue structure, different
kinds of collective motions have been observed. (A
schematic figure of tongue structure is presented in
Fig. 30.)

With the increase of the coupling strength ¢, each
tongue structure grows in proportion to € - 8k, where
8h is the amplitude of the mean-field variation. Hence
the width of each tongue would increase with €2, if
8h o € would hold. In contrast with earlier studies
[8,19] supporting this linear scaling, our calculation
suggests that the scaling may obey a different power
law. (See also the arguments below.)

We also reported the existence of multiple attractors,
each of them having a different collective motion. This
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Fig. 29. Time series of elements for the same parameter in
Fig. 26 starting from different initial condition. In contrast with
Fig. 26, elements spread over x. The mean-field dynamics for
this time series shows quasiperiodic-like motion. Time series
are plotted for 100 elements at every three steps. The parameters
are a = 1.85, ¢ = 0.018, N = 10°.
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Fig. 30. Schematic diagram of a tongue bifurcation structure.
Regions that grow from a bifurcation point of the logistic map
constitute a tongue structure. See Section 7.

means that there can be a nonunique self-consistent
dynamics between microscopic and macroscopic mo-
tion. Since the average mean-field is clearly different
for each attractor, the effective nonlinearity parame-
ter A is different for each attractor. In this way, the
different attractors are distinguishable clearly in the
(A, «)-plane.

The tongue structure is based on the underlying
windows of the single logistic map. Windows exist in
any neighborhood of the parameter space of the sin-
gle logistic map. The tongue structures of the GCM
expands with the increase of € from each window of
the single logistic map at € = 0. So, the tongue struc-
ture is expected to occupy a relatively large region in
the parameter space. This is one of the reasons why

we have focused our attention on the collective be-
havior in the tongue structures. Still, we have to note
that there is a positive measure in the parameter space
of the logistic map, corresponding to chaos. Hence, at
least for small coupling in the GCM, there are param-
eters with a positive measure which do not belong to
any tongue structure. Indeed, we have observed that
the amplitude of the mean-field variation drops less
than to 0.1 (see Fig. 10), at the parameter where the
tongue structure disappears. Although no clear struc-
ture in the return map is detected there, this motion
again has some hidden coherence and is distinguish-
able from noise.

Analytical estimate of the mean-field dynamics by
Ershov et al. [19] is based on singularities of distri-
butions. Only the fluctuation due to singularities of
the probability distribution function is taken into ac-
count by neglecting regular parts of the probability
distribution function. Our result may imply that the
regular parts, which are relevant to the windows of
local mapping, should be taken into account for the
collective motion. Careful analysis of both the reg-
ular and singular parts may be required. This might
be the reason why the scaling of 84 is different from
Ershov's estimation. As we have noted above, how-
ever, Ershov’s analysis is applied to the collective
dynamics originated in the chaotic regime of the sin-
gle logistic map. We need further study in the chaotic
regime to clarify the mechanism of the collective dy-
namics there, and to characterize the high-dimensional
chaos.

Even if the elements are completely desynchro-
nized from each other, for some case, some kind
of predictability may emerge in the macroscopic
variables, although all the Lyapunov exponents are
positive. It might be also important to study how
the predictability of the collective motion reflect on
N-dimensional phase space structure or on micro-
scopic quantities, such as the Lyapunov spectrum.
With such study, the mechanism for the collective
motion must be clearly distinguishable from the
self-organization mechanism [26] or the slaving prin-
ciple [27]. Although we have presented a heuristic
way to extract such self-consistent dynamics in the
present paper, it is hoped that a systematic method
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to characterize collective motion will be developed in
future, !
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