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Numerical studics are performed on a model for high dimensional hamilionian systems to investigate the Arnold diffusion.
We present estimates of the Jiffusion rate as a function of coupling, the structure of a stochastic layer, calculations of
Lyapunov exponents, and some characteristic aspects of a stochastic orbit.

Recently significant progress has been realized in
understanding stochasticity in low dimensional hamil-
tonian systems with the use of two-dimensional area
preserving mappings [1-6]. But what of systems with
more than two degrees of freedom {7—12]? The pur-
pose of this and subsequent studies is to examine the
means of transport in such systems; here we focus on
the so called Arnold diffusion, Because N-dimensional
invariant (KAM) tori cannot section and hence prevent
stochastic trajectorics from exploring the (2N — 1)
dimensional encrgy surface, it is believed that all sto-
chastic regions on the energy surface are connected.
However, there have been few direct observations of
Arnold diffusion [1,6,7], the means of transport from
one stochastic region to another, and some have dis-
claimed the possibllity of such diffusion in some near

" integrable systems [12].

One problem Is that for near integrable systems,
the Arnold diffusion can be obscrved only within very
large time scales, Tlere we use a discrete mapping to in
‘part avold this difficulty. Long computation times are
still necessary to directly observe the Arnold diffusion,
e.g. some simulations require several hours of CRAY
time,

A typical method in the study of high dimensional
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systems is the use of coupled elementary systems such
as coupled oscillators [11] *1_We have chosen a coupl-

ed standard mapping, which is given by the hamil-
tonian

N N oo
H=12 (') +(:§ Fl@..6") 2 8- n)).

i=1
, _ M
In this letter we take N =2, and

Fi = [k;/(2m)?] cos(2md’) + [b/(2m)2] cos[2m (61 +62)].
We define four variables:

=1, g=0, J=12, y=02

The mapping is given by:

Iy =1y + (ky[2m) sin(2n0,,)

+ (b2 sin[2n(0,, + ¥,))],

) 0n+l = f,n +]nf1a

Jps1 =Jy + (ko f2m) sin(2my,)
+ (b/2m) sin[2n(0, + ¥,))].
‘I’nﬂ = U’n + Jn+1 ’ @)

which was first introduced by Froeschle [11] asa
model for the time evolution of elliptical galaxies.
Here we study the case with k; <k, =0.9716...

! por a dissipative system, see ref. [13].
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[2,3], where the KAM tori separate the phase space
for the two-dimensional standard mapping. Thus, dif-
fusion across KAM tori such as the noble torus is im-
possible for b= 0.0, For b # 0,0, a stochastic trajec-
tory can reach one KAM bordered region from another
by Arnold diffusion. The coupling b is chosen to be
small (b < 0.08) so that we may compare the results
with the non-coupled system. Figs, 1a, Ib, Ic, and 1d
show the points (Z,,, 0,,) for 1 <n <2 X 10% successive-
ly. We observe that the orbit started from the stochas-
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tic layer close to the § resonance remains in the vicinity
of a KAM torus (which is close to the direct product
of the last KAM tori in the standard mapping) fora
long interval (see fig. le), and then escapes to the sto-
chastic layer near the 1 resonance. '

The time scries of (J, ) also shows similar behav-
ior, We have also studied some cases with other initial
conditions and parameters and have found that the
above behavior is rather typical for.the coupled stan-
dard mapping (2) with k; <k, unless the initial value
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Fig. 1. Iterations of the map (2) for ky =k, =0.8 and b = 0.02 with the initial values (7, 8, J, ¢) = (0.5, 0.3, 0.4, 0.2) are projected
onto the 7, 0 plane. (7,,, 0,,) are plotted for 1) 1 <n < 5 X 104, (b)'5 X 10* <» <105, (c) 105 <n < 1.5 X 105, and (d) 1.5

X105 <n <2 X 10%, (¢) Mots (n, I,,) for the entire run.

happens to hit on the KAM torus, If b # 0.0, an orbit
can cross the remaining KAM tori, Thus, a general fea-
. ture of the stochastic orbit is the adherence of the
orbit close to some KAM tori followed by the escape
of the orbit to another stochastic layer by Arnold dif-
fusion,

Next, we will consider the statistical property for
the escape from one stochastic layer (near the § reso-
nance) to another layer (near the 1 resonance), We
choose an ensemble of 625 initial points on a square
grid, such thatJ, = 0.4, ¥ = 0.2, 0.52 </ <0.568,
and 070 <04 < 0.796, which are inside of the region
surrounded by the last KAM tori for the standard
mapping. We take a rectangular region R defined by
0.28 <J<0.72 and 0.0 <0 < 1.0, and calculate how
many points are remaining in R with respect to the
time evolution of the Initial conditions, The ratio of
such surviving points decrease almost exponentially as
e~/ and the decay time 7 Is estimated from the re-
sults..7 increases rapidly as b approaches 0.0. The func-
tion 7(b) is flt by:

7= (c1/b) exp(cy/b),

where ¢; ~ 1.3 X 103 and ¢; = 1.9 X 10-2 for k,
=k = 0.8 (see fig. 2); the data fork; =k, = 0.5
also gives a similar dependence on b. From this data

" however we cannot exclude the possibility that r

~ b=% (a~ 3.0), We at present cannot distinguish
between the two functional dependences.

The analytical estimate for 7(b) is not at hand now.
If the system is close to integrable and € is a measure
of the strength of the perturbation from the integrable
system (e.g. k = b = 0.0), some estimates like

(1/€) exp(1/ef)

have been obtained by Arnold [7] and Nekhoroshov
[10]. Our results are not from the very near integrable
regime, but in considering the nonperturbative aspects
of Arnold diffusion, similar behavior for 7 as a function
of the coupling might be expected.

In the case of the standard mapping, the diffusion
resulting from the collapse of the KAM torus has re-
cently been investigated [4], where the ‘“‘cantorus”
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Fig. 2. Dependence of oscapc time on the couplmg b. Log(b7)
versus b~! is plotted for k, =ky=0.8,

determines the limiting process Tor the diffusion, and
the critical behavior for the diffusion rate near k; ~ k,,
has been obtained. In our problems, the limiting pro-
cess for the diffusion is the density of intact KAM
tori, Thus, the mechanism is quite different from
transport mediated by *“cantori’” that may exist in our
mapping. Indeed, KAM tori may influence transport
in high dimensional systems in a manner similar to

“cantori” in systems with only two degrees of freedom,

Determination of the structure of the stochastic
layer in phase space is an important problem. In the
two-dimensional standard mapping, it is shown that
the set of stochastic regions forms a fat fractal for k
> k., in the sense that regions where stochastic orbits
are excluded show a scaling behavior [5]. What is the
structure of the collection of stochastic orbits in high
dimensional systems?

It is believed-in generic high dimensional hamil-
tonian systems [1,7,9] that (1) the set of KAM tori
does not form an open set in the phase space though
they have a finite measure if the nonlinearity is small,
and (2) all stochastic layers which exist in any arbi-
trary neighborhood of a KAM torus are connected by
the so called Arnold web. If both conjectures are true,
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the closure of the stochastic orbit densely covers the
entire energy surface, The Arnold diffusion, however,
is extremely slow especially near some special tori,
and the whole region cannot be covered within a

As a method of visualization of the orbit in the
four-dimensional phase space, we take a slice of the
space in two dimensions, the slice then projected onto
the two remaining bases, In fig. 3a, the points (,,, 0,,,

Jy, ¥,,) which satisfy 0.5 <6 <0, SI and 0.5 <y <
0.51 are plotted. First, we note that there are regions
which seem to resist stochastic penetration, The mea-
sure of invariant tori in these ‘“holes” is large. How-
ever, the area of the vacant regions decreases more
slowly with increasing iterations, which leads us to -
question the relevance of the ergodic theorem within
timescales which are less than cosmological. After 4
X 108 iterations, the vacant regions still comprise
about 45% of the (I,, J,,) plane,

As can be seen in fig, 3a, “whiskers” protrude into
the vacant regions. Since the torus corresponds to the
one as in fig, 3b (which converges to two points as the
width of the slice goes to zero), the whiskers can be
regarded as a “whiskered torus”, which is essential to
the Arnold diffusion.

Since the Arnold diffusion is rather slow and the
orbit stays for a long time in the vicinity of an invari-
ant torus, some quantities show an intermittent-like
behavior, In fig. 4, the short time average value of the
action for

X
=K1 kzq Te+ k) “ €))

is depicted. K is some integer chosen so that it is
smaller than the Arnold diffusion time but long enough
to represent a statistical average, If the orbit stays at
the region near the torus much ]onger than X steps,

it shows a laminar behavior, and when the orbit goés
to another stochastic layer it shows a “burst-like” be-
havior. Thus, the high dimensional hamiltonian system
shows a behavior analogous to mtermlttency in dissipa-
tive systems,

Similar behavior also appears Tor the Lyapunov ex-
ponents. If we make short time averages of the
Lyapunov exponents and plot them as a function of
time, they paralle! the behavior of fig. 4. When the
orbit stays close to tori, the exponents are almost zero
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Fig. 3. (n). A representation of a stochastic ayer: {Ij,, J,,) are plotted, the projection includes points within a finite slice in 0,, and
Yy, and 1 < <4 X 108, (b). The same procedure is used-to illustrate a torus in phase space: 1 <n <4 X 105.
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Fig. 4. Averaged action 7 defined by (3) with X = 1000. The parameters for the map are ky = k5 = 0.5 and b = 0.01 with initial
values (fy, 09, Jo. ¥o) = (0.2,0.5,0.6,0.4).
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Table 1 )
Lyapunov exponents for ky =k = 0.5 and b = 0.02 with averages over 10 iterations.
I 0 J v Lyapunov 1 Lyapunov 2 Motion

.0-.100 0.200 0.300 0.400 4.1 %1072 74x%1073 stochastic

0.100 0.400 0.200 0.300 2.6x10°? 55%1073, stochastic

0.500 0.300 0.400 0.200 1.3x10°% 84 x10°6 quasiperiodic

0.432 0.111 0.353 0.222 1.5%10°5 9.7x 1076 quasiperlodic

0.018 0.019 0.254 0.488 4.7% 102 9.0 X 1073 stochastic
and the first two exponents show a sudden increase References

when the orbits go out to a region which correlates to
a stochastic layer for the original standard mapping.
The long time averages give two positive Lyapunov
exponents for the stochastic orbit. Some examples of
the calculation are shown in table 1. )

In summary, the following results have been pre-
sented: (1) confirmation of thcicxistcncq"of the
Arnold diffusion and its visualization; (2).the observa-
tion that a stochastic orbit stays close to‘a KAM torus,
and then escapes to other stochastic layers; (3) depen-
dence of the escape time on the coupling; (4) the struc-
ture of the stochastic layer, which we may term a fuzzy
fat fractal; and (5) Lyapunov exponents for the sto-
chastic layer, i
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