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Hamiltonian systems on a one-dimensional lattice with discrete time are studied.
As the coupling constant is increased, they show a sharp transition from regular to
random motion. Below the threshold, KAM tori and a stochastic layer coexist. The
stochastic motion therein is sticky to KAM tori and has a long time-tail. The motion
above the threshold is ergodic, characterized by the power spectra and Lyapunov spec-

tra which are consistent with the results of random matrices.

§1. Introduction and Models

The understanding of the nature of Hamilto-
nian dynamical systems has progressed rap-
idly, especially for systems with 2 degrees of
freedom, as are predominantly studied by stan-
dard mapping.” In this way, the mechanism of
the collapse of KAM tori, the onset of diffu-
sion, the self-similar structure of islands, and
flicker noise are clarified.”

The characteristic feature of the Hamilto-
nian systems with many degrees of freedom
has not yet been well understood. For the
systems with many degrees of freedom, it is
believed that the small-scale structure in the
low-dimensional systems is smeared out and
the ergodicity is attained even for the weak
nonlinearity through the Arnold diffusion.’
The direction of this study stems from the

celebrated works by Fermi, Pasta, and Ulam,®
but subsequent progress has remained rather
slow.'”

Since the time scale involved in the
dynamics of many degrees of freedom can be
very large, it is desirable to start with a model
suitable to numerical simulations. In the pre-
sent letter, a class of symplectic map lattice
systems is investigated in a manner similar to
that of the recent coupled map lattice studies
for the spatiotemporal chaos.” Transition
from regular to stochastic motion is reported,
along with the Lyapunov analysis and other
statistical and dynamical characterizations.

Let us start with the following symplectic
dynamical systems:*®
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Fig. 1. The space-time color plots for model (4). Spatiotemporal pixel (i, n) is painted according to the color
code for x,(f) mod 1 in the figure. The system size N=100, with the initial conditions x,(i)=0.5+0.5
sin (2mi/N) and p,(i)=0 for all i. (a) K=0.99. (b) £=1.10.
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where the indices i=1, 2, - - -, N correspond to
the spatial lattice site with periodic boundary
conditions, and #n represents the discrete time
step. Here, x,({) is the displacement of site ;
and p,(i) is its conjugate momentum. The
symplectic condition

h N
Z dx,,+ 1(1.)"'\(1,0;& l(i): E dx,,(.')dpn(f),
=1 i=1

imposes the following restriction on the force
term:

O (Lx (k)Y 0x(j)=dF({x(k)))/ax(i). ()

Here, we consider the one-dimensional lattice
equation with nearest-neighbor interaction.
We further assume that the interaction
depends only on the difference between the
displacements of the two neighboring sites.
Thus, the force term is expressed as

F'=G(x(i+1)—x(i))+ G(x(i— 1) —x(i)),

(3)
with
G(x)=—G(—x).
In this letter, the model
G(x)=(K/2n) sin (2mx), 4)

is studied, but the aspect we discuss is ex-
pected to be observed in a large class of
dynamical systems with (3).

§2. Stochastic Transition

A remarkable feature in the system (4) is the
transition which takes place as the coupling K
is changed. Let us take a smooth initial condi-
tion such as x(/)=b+a sin 2jni/N), p(i)=0,
J=integer. We have found that there exists a
critical value K. (~1.0). If K<K,, the system
oscillates quasi-periodically in time and
returns to the neighborhood of the initial con-
ditions after short time steps (see Fig. 1(a)).
The regular oscillation continues within our
simulation steps (say, 10° steps). For K>K,,
the pattern collapses after very short time
steps (see Fig. 1(b)) and enters into a spatially
disordered state.* The change of structure is

* Spiral solutions x(i)=#j/N+const., p(i)=const.
(J=integer) lose their stability at K,=1/cos (27j/N),
which accumulate to K=1.0 as N—oo.
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characterized by the spatial power spectra. In
the regular region, only the discrete delta
peaks at nj/N (n: simple integer) are observed,
while white spectra without any notable peaks
are found in the stochastic region.

The system remains chaotic even at K < K.if
we start from a fully random initial configura-
tion. The point is that the stochastic transition
is rather sharp for most smooth initial condi-
tions. For example, the critical value K. is
almost insensitive to the choice of the
parameters b, ¢ and j in the sine-wave initial
conditions. It is also independent of the Sys-
tem size if the size is large enough (V> 8). This
kind of sharp stochastic transition is also seen
in the lattice systems with continuous time,
where the transition occurs as the anharmoni-
city is increased.?

§3. Lyapunov Spectra

Next, we investigate the Lyapunov spectra
of the model (4). A Lyapunov spectrum is
defined as the eigenvalue spectrum
{iZzAs= - 220} of a 2NX2N Jacobi
matrix;

1
lim — log {8(pr, x7)/3(po, x0))

i 1 : { r (1 C, )1 (5a)
=lim —lo ; a
e T T H] 1. 4+,

where C, is an Nx N matrix whose elements
are

0x,(J)

It is a (collection of) local expansion rate(s)
which is a basic quantity for dynamical
systems with many degrees of freedom, and
has been calculated for several dissipative and
Hamiltonian systems.'?

The symplectic condition yields A;+
Aw+1-i=0fori=1, 2, -+, N. By the third law
of Newtonian mechanics and the translational
invariance, the system has a Goldstone mode.
Thus, the spectra have at least two vanishing
eigenvalues, Ay and Ay+,. Therefore, we show
the spectra only up to the N-th, which is
always zero.

Figure 2 shows Lyapunov spectra for the
system (4) with random initial conditions for
K=0.2, 0.4,--+, 2.0. We note that, roughly

(Cy= ({X,,(k)} ). (5b)
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creases with K, and is 2 at K=K.. For exam-
ple, «=1.34, 1.57, 1.88, 1.99, 2.00, and 2.00
for K=0.1, 0.2, 0.4, 0.6, 0.8, and 1.0, respec-
tively. This kind of flicker-like noise indicates
that the motion has a long time-tail and is
sticky to KAM tori, as is often observed in the
stochastic motion in the standard map.?

§5. Discussion

We have investigated a class of symplectic
map lattices. They show a sharp transition
from regular to ergodic-like motion as ‘the
nonlinearity parameter increases. In the
regular regime, both the KAM tori and
stochastic motion have a large measure in the
phase space. The stochastic motion therein is
affected by the KAM tori and has a long time-

tail. In the ergodic-like region, the measure of

KAM tori is too small to be observed. The
Lyapunov spectra are well-approximated by
the random matrices, with uniform distribu-
tion of x and without spatiotemporal correla-
tion. Thus, the system can be termed
“‘ergodic’’. The ergodicity is also checked
through the temporal power spectra with ™2
and the spatially white power spectra.

The sharp transition from a regular to an
ergodic region may be generic in a Hamilto-
nian system of many degrees of freedom with
local interaction; this will be of importance to
the understanding of the origin of statistical
mechanics.

A detailed study on the symplectic map lat-
tice will be reported elsewhere with an exten-
sion to the high-dimensional systems and the
inclusion of the other terms in the force,
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Fig. 2. Lyapunov spectra of model (4). System size
N=16, initial condition=random, K=0.2, 0.4,-- -,
2.0 (from the bottom of the figure to the top).

speaking, the spectra are concave for K<K,,
while they are convex for K> K., and linear at
K ~K,. The shape of the scaled Lyapunov spec-
trum, i.e., A; vs i/N, is independent of N for
large N(=8).'""?

For the region K= K., the spectra are quite
similar to those of random Jacobi matrices,'”
which are obtained by replacing x’s in the
matrices (5) by (spatially and temporally) in-
dependent uniform random numbers in the in-
terval [0, 1]. This supports the picture that the
region K=K, is a fully developed turbulent
regime, where both spatial and temporal cor-
relations decay quite rapidly. On the other
hand, the random Jacobi matrix with K< K.
does not show such a strongly concave spec-
trum as the actual mapping (4) indicates.
Figure 3 shows scaled KS-entropy

g
h= { ; A,} / (NAL/2). (6)

If the spectrum is linear, then A,=(N—j)/(N
—1)A, and i=1.0. We can see that h(map)=
h(random matrix) for K= K., whereas h(map)
< h(random matrix) for K<K.. Note that the
random Jacobi matrices do not always give
linear spectra. The spectra of ergodic re-
gions are characterized not by the linearity as
claimed in ref. 14, but by the coincidence with
those of the random Jacobi matrices.

In the region with small K, the KAM region
and islands take up a large measure in phase
space, where all the Lyapunov exponents are
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Fig. 3. Scaled KS-entropy AZ {5, 4]/(NA/2).

Values of /i for model (4) (squares) and for the ran-
dom matrices (crosses) are shown. System size
N=16. For the model (4), initial condition=random.
Simulation is carried out over 10°~5 x 10° steps for
the model (4) and 2x10° steps for the random
matrices.

zero. The system undergoes a sticky motion
around KAM tori, resulting in lengthy tem-
poral correlations, which cannot be repro-
duced by the random Jacobi matrices. Thus,
we interpret that the concavity reflects the ex-
istence of large KAM regions and islands.

For the case of the initial condition x(i)
=b-+asin 2jni/N), p(i)=0, as we did in the
previous section, we have observed Lyapunov
exponents to be i) all zero for K<K.,, and ii)
the same as those in Fig. 2 for K> K.. That is,
when K>K,, the Lyapunov spectra are in-
dependent of initial conditions. In the regime
K<K., a large KAM region and a stochastic
layer coexist.

§4. Characterization of Stochastic Motion

Power spectra in space and/or time are used
to characterize the spatiotemporal chaos. The
temporal power spectra for p,(i) are
numerically calculated for our model. At
K> K., they give no sharp peaks and are well-
fitted by w2, which means that the motion of
momenta is well-approximated by pa(i)
=p,-(i)+random white noise. Contrary to
the well-known Lorentzian form, the plateau
at low frequency cannot be observed. This
comes from the translational invariance of our
system. At K<K., the spectra are composed
of the ensemble of discrete sharp peaks for the
quasi-periodic motion, while for random mo-
tion, they contain no sharp peaks and are
fitted by w™* (1<a<2). The exponent « in-



