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Abstract. Clustered motion of particles is found in Hamiltonian dynamics of symplectic
coupled map systems. Particles assemble and move with strong correlation. The
motion is chaotic but is distinguishable from random chaotic motion. Lyapunov analysis
distinguishes global instability from local fluctuations. Clustered motions have finite
lifetime. They have fractal geometric structure in the phase space, as the orbits are
trapped to ruins of Kam tori and islands.

1. Introduction

Order and chaos are often considered to be opposite notions in nature. One may
associate order with stable and regular behaviour, and chaos with unstable and
random behaviour. In this paper we discuss a new kind of cluster-like order in
Hamiltonian systems which is at the same time chaotic.

Ordering processes are typically found in dissipative systems, where, after
sufficiently long time, the dynamics leads to an ordered state represented by an
attractor. Most studies on pattern formation belong to this class of transient process
towards ordered attractors. For such systems ordering is a rather trivial evolution,
since the dynamics is such that the system evolves in the direction of increasing order.
On the other hand, order formation in Hamiltonian systems is non-trivial, because
long-time behaviour of Hamiltonian systems is considered to be well described by
thermal equilibrium.

Hamiltonian systems and their chaotic dynamics have been intensively stud-
ied [1,2]. The phase space of typical Hamiltonian systems is known to have both
regular and irregular orbits. Regular orbits consist of KAM tori and islands, which
correspond to quasi-periodic motion, whereas irregular ones represent chaotic orbits.
For Hamiltonian systems with many degrees of freedom, local instability often leads
the system to uniformly random states, i.e. thermal equilibrium.

Uniform thermalization, however, is not the only feature of chaotic motion
in Hamiltonian systems. Order formation must be an emergent property in
a Hamiltonian system, as is seen in astrophysics (globular stellar clusters),
microclusters [3], and in many other ficlds. Even pattern formation in dissipative
systems should be initially described by a Hamiltonian system, if we start from a
molecular level description.
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This paper is organized as follows. In the next section, a symplectic map model is
introduced for the ordering in Hamiltonian system. The discovery of clustered motion
is reported in section 3, with its qualitative aspects. Lyapunov spectra and vectors
of the model are examined in section 4 and confirm that our model has two kinds
of chaotic sea and that the global instability of the clustered motion is distinguished
from local fluctuation of particles. In section 5 we study the origin of stability of the
clustered motion by examining their lifetimes, phase space structure, and fluctuation
properties. The clustered motion is then found to be sticky to ruins of KAM tori and
islands. The last section is devoted to summary and discussion.

2. Model

In this paper we introduce a very simple model giving rise to order formation
within Hamiltonian dynamics. We use a symplectic version of a coupled map lattice.
Coupled map lattices are models defined on discrete space and time, so that they
are particularly suitable for numerical investigation of phenomena in which long time
behaviour is important [4-12].

We have N particles in our model (see figure 1). Each particle is on a unit circle,
and the state of each particle is defined by its phase (position) 2wz, and its conjugate
momentum p;. Temporal evolution is defined by

(z;.p;) — (z},p)) 1=1,2,...,N

- N
K . -
P; :pl+ Wji]mnz’ﬂ'(xj —CL'i) K >0 (1)

z; = z; + pi-
Since K > 0, the interaction term (/'/2xV/ N — 1)sin2x(z; — z;) between two
particles z and j is attractive.

This model includes the interaction between every pair of elements as in a
gas, in contrast with the lattice type modelling. In a lattice model with a short-
range interaction, a tendency to thermalization with uniform ergodic behaviour is
observed [4,10]. Although our model has a long-ranged gas-type interaction, our
observation of a clustered state is also seen in a short-ranged gas-type interaction [13].

The model (1) satisfies the symplectic condition

N N
Y dz;Adp; =) dzi Adp] )
i=1 i=1

so that the model can be regarded as a Poincaré map for a Hamiltonian system with

N + 1 degrees of freedom. Another interpretation of our model is as a ‘kicked’

Hamiltonian, as in the standard mapping [1].

X
sin2rt(xi-x])

Figure 1 Our model. A two-particle interaction is
schematically shown.

X]
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The total momentum is a constant of motion of the model (1)

N
E p; = constant 3)
j=1

so that the N degrees of freedom are decomposed into 1@ (N — 1), where 1’ stands
for the linear motion of the centre of mass. For N = 2, our model is reduced to
the standard map of Chirikov and Taylor. The coupling constant K is scaled by
VN =1 so that the model is expected to show extensive behaviour in the strongly
chaotic regime K > 1. In this regime correlation among particles is negligible and
the force terms (27N —~ 1)K Zj-vzl sin [27(z;(t) — z;(¢))] can be approximated
by stochastic variables independent of the system size N. This approximation leads
to proportionality of the diffusion coefficient to K 2 which is numerically confirmed
for K 21 [4].

In this paper, we study a case with X < 1 where the motion of the particles
forms a cluster.

3. Clustered state of particles

Figure 2 shows a typical example of clustered motion in the model (1). Particles
initially distributed over a unit circle (with almost zero momenta) gradually move
together to form a macro cluster. Some particles may not participate in cluster
formation and wander around the cluster. These particles increase the entropy of
the spatial configuration and serve to stabilize the clustered state. They play a role
of effective dissipation for the dynamics of clustered motion, just like the ‘halo’
structure of globular stellar clusters. Roughly speaking, particles in a cluster show
mutually oscillatory behaviour as is seen in chaos near elliptic (fixed) points. In our
example the number of particles in the cluster is rather large (typically N —2 10 N).

[.0
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Figure 2. A typical example of clustered motion of the model (1). System size N = 12,
and K = 0.1. Initial condition is chosen to be z; = random, homogeneously distributed
over [0, 1), and p; = 0.

‘Absorption’ or ‘evaporation’ of a particle to/from a cluster is also possible. In a
weak nonlinear regime with a small number of particles, we have often observed
temporal switches between /N -particle-cluster and (/N — l)-particle-cluster states
through absorption and evaporation. Exchange of particles between a cluster and
wandering states can occur, although the fluctuation in the number of particles in a
cluster is very small.
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0.0

Figure 3. Random motion of the model (I). All parameters are the same as figure 2,
except that initial condition is p; = random homogeneously distributed over [-0.5, 0.5).

The degree of clustering is evaluated by calculating the following quantity

N 2
def | 1 :
L = |—= E exp (2xiz; 4
\/N P P ( ™ 2"]) ( )
N if all z;’s are the same ( fully clustered)
= . ’ : ©)
0 if z;’s are uniformly distributed.

A useful relation for Z is

N ‘
N T. —
/[O,I)Nd xZé(Z J> 1 (6)

j=1

which means that the value of Z is unity for uncorrelated random motions (see
figure 3). The é function comes from the conservation of total momentum (3). The
relation (6) serves as a criterion for clustering as

a state is called ‘clustered” & Z > 1. (M

4. Lyapunov analysis

The clustered motion in figure 2 appears to be rather regular. It is, however, chaotic,
as we can see from the Lyapunov spectra.

The Lyapunov spectrum is a characteristic of asymptotic orbital instability of
dynamical systems. It is a set of real numbers with 2V elements {A[,..., A\, 5}
defined by the eigenvalue spectrum of the squared Jacobi matrix

der 9(p(t),z(1))
— 3(p(0),2(0))

(eMT, ..., e?~T) = ejgenvalue spectrum of ‘J(T)J(T) as T — co. (9)

J(1)

®)

For actual computation of exponents we use the standard method with Gram-
Schmidt orthonormalization [14-15]. Other numerical methods to obtain Lyapunov
spectrum are shown in [16]. If we arrange the exponents in the decreasing order
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Figure 5. System size dependence of Lyapunov  Figure 6 System size dependence of Lyapunov
spectra for the clustered state. K = 0.1, N = spectra for the uniformly random state. KN =101,
8,16,32. N = 8,16, 32.
A = Ay 2 - = A, then we have A; 4+ Ay, = O from the symplectic

condition (2), so that only the Jarger part of the whole spectrum is plotted.

Figure 4 shows Lyapunov spectra of the model (1). Even for clustered states
we have positive Lyapunov exponents, which indicates that the clustered states are
chaotic. For clustered states, the rescaled spectrum

{AM(),0< ¢ <2lAM(i/N) = ) as N — oo) (10)

is almost invariant with a change in the system size N (see figure 5) [17-20].

For the uniformly random state, however, the spectrum varies with increasing N
(figure 6). This result is rather puzzling, because the scaling of the coupling constant
K/2mV/N — 1 is determined so that the behaviour of the model will be similar for
all N if correlations between the particles are quite small. This may indicate the
existence of a hidden correlation among particles in the (apparently) random state.
The exponential behaviour of exponents A; o« exp(—cj) in figure 6 is interesting,
although its origin is not yet understood.

Note that there is only one exponent whose value is 0, which corresponds to the
conservation of the total momentum (3). All the other exponents for a clustered state
are positive, so that both the cluster itself and particles inside it move chaotically in
time. Also, we can see a clear distinction between the spectra of a clustered state and
a non-clustered (random) state, particularly for the exponent A, _,. This implies that
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two distinct chaotic regions coexist in phase space. (See section 5 for the coexistence
of chaotic seas, which is shown in a two dimensional section of the phase space in
figure 11.)

The existence of the almost zero exponent Ay _, in the clustered state brings us
to a viewpoint based on the following ‘heat-bath picture’.

Suppose we have a cluster composed of N — ¢ particles. As long as most of the
particles are in the cluster (ie. N > £), it is natural to approximate the whole N-
particle state by a composition of ( N — £)-particle dynamics and the other £ particles
acting as a heat bath for the cluster. Then the motion of (N — £)-particle dynamics
is approximated by the coupled-map system of (N — £) particles with noise, and we
expect another null exponent for the (/N —¢)-particle dynamics. In this approximation,
the heat bath can be regarded as behaving independently of the cluster as long as we
neglect its interaction with the cluster. Hence the temporal average momentum of the
heat bath is approximated by zero, which leads to another zero Lyapunov exponent.
As is observed in figure 2, for example, a ‘heat-bath’ particle (a particle which does
not belong to the cluster) moves almost freely over some period.

Although the heat bath picture is a zeroth approximation and the interaction
between the cluster and the other particles must increase the value of the exponent,
the existence of a small exponent in addition to the null one is consistent with the
above picture. For the other exponents, their values are lowered slightly since the
chaotic instability is lowered due to the decrease in the number of degrees of freedom
involved.

This ‘heat-bath’ picture can be confirmed by the observation of Lyapunov vectors
of the model. An analysis of Lyapunov vectors for lattice models is given in [21].
Lyapunov vectors are the principal axes of the ellipse evolving in the tangent space
(see figure 7). If we follow the Lyapunov vector in accordance with the temporal
evolution, we will see the directions in which instabilities arise. Hence if we
obtain Lyapunov vectors for the time-reversed system, Lyapunov vectors represent
the directions from which instabilities arise.

Examining each vector, we can judge whether the instability associated with an
exponent arises from the clustered motion (macroscopic motion) or from internal
thermal noise. Since each 2/N-dimensional Lyapunov vector consists of N pieces of
2-dimensional vectors, it represents infinitesimal displacements of each particle

(dz™),dp™)) (€ R*Y) = (v & (da® ap*y e R2 i =1,2,..., V) (11)

where the index k& denotes the vector corresponding to the kth exponent A,.

If the vectors {vfk),z’ = 1,2,...,N} are well aligned, the corresponding
Lyapunov vector is related to an instability of the collective motion of the cluster
(see figure 8). If, on the other hand, the directions of vectors (11) are scattered, the
corresponding instability comes from the uncorrelated motion of each particle and is

regarded as thermal noise.
The degree of alignment of each vector (11) corresponding to A, can be measured

by the following quantity
S 1 = o = T (O 4 {1 = 200 o)
>y i#]
=2V -1 —4> o W =N~ 1) — 4B (12)
i<y
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forward evolution

v = | dx. projectipn to the
i i 7th particle

dpi .
t=0 t=T /
backward evolution Pg/v )é
' well aligned not aligqed N
J —macroscopic instability —local instability
" —v;*v; large = vjev; small

Figure 7. Lyapunov vectors for forward and  Figure 8. A Lyapunov vector is projected onto each
backward time evolution. Initial infinitesimal  particle. The difference between macroscopic and
spheres are shown to grow into ellipses. The black local instabilities are shown schematically.

arrows represent the vectors that correspond to the

largest Lyapunov exponent, and the white ones to

the smallest Lyapunov exponent. Namely, length

of the black arrow o exp(Amax), and length of the

white arrow o exp(Ag,) for forward evolution,

and length of the black arrow o exp(—Amax),

and length of the white arrow o exp(—Agiy)for

backward evolution. Remember that Amax =

— Amin as our model is symplectic.

where we adopt the following normalization of a Lyapunov vector

N 2 2 N
2 [(dzf'k)) + (a(?) } =Y P =1 (13)
] i=1

1=

and the inner product of vectors for the kth exponent is defined by

def k k

S50 o0 (14)
1<)
Figure 9 shows each Lyapunov vector associated with two exponents; A, the largest
one, and Ay_;. As is seen in the figure, the Lyapunov vector for Ay _,; looks
quite well aligned. Thus the instability which corresponds to the exponent Ay _;
comes from the instability of the motion of the cluster. This is why the Lyapunov
spectra (figure 4) of the clustered state and the random state differ for this exponent.
This difference is quantitatively illustrated in table 1, where the values of the inner
product of vectors s(¥) are shown for the Lyapunov vectors corresponding to the
exponents Ay, Ay, ...y, Ak, ... Ay_1, An- Since the matrix ' J(T)J(T) is symmetric,
the 2N x 2/N-matrix {vfk)}, t=1,2,...,N, k=1,2,...,2N is orthogonal and a
sum rule Y"1, s(*) = 0 holds.
Values of s(*¥) are bounded as

1 (fully random direction) € s(*) < (N — 1) (fully aligned). (15)
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Up to the (N — 2)th vector, the inner product is close to —1/2, consistent with
the random motion. For the (N — 1)th vector the degree of alignment clearly differs
between the random and clustered motions. For the random one, it is still close
to —1/2, while the inner product is almost O for the clustered motion, implying the
existence of some tendency for alignment. (The Nth vector is almost completely
aligned since it represents a uniform translation corresponding to the conservation
law of total momentum (3).)

Table 1. Values of the inner product s(¥) (equation (14) for N = 8, see text).

k s(¥) (uniform) s(k) (cluster)
1 —0.499 —0.499
2 —0.498 -0.498
3 —0.499 —0.498
4 —0.491 -0.489
5 —0.483 -0.497
6 —0.455 -0.470
7 -0.451 -0.078
8 3.378 3.033

5. Lifetime of clusters and phase space structure

Now we discuss the lifetime of clustered states. Since all parts of the chaotic sea
in phase space are topologically and dynamically connected [22,23] in a Hamiltonian
system with many degrees of freedom, the chaos in the clustered state and the
uniformly random chaos must be connected through a (thin) path. Thus the clustered
states must have finite lifetime. Through time evolution, a clustered state switches
to another chaotic state, random chaos. Of course, the reverse process is also
possible. In the course of time evolution, the two types of motion are distinguished as
quasistationary and metastable states, which makes possible the previous quantitative
distinction between the two states.

Crossover from clustered to random chaos reminds us of the ‘induction
phenomenon’ [24]. It is a transition from regular oscillation to chaotic motion found
in weakly non-integrable systems. Nekhoroshev’s theorem [25-28] can be applied to
estimate the length of the period for the duration of a regular oscillation [29]. This
estimate is possible because the induction phenomenon is a transition from a state

10 .%o .

number of orbits
o

Figure 10. The lifetime distribution of clustered states.
Initial condition: z; = random, p; = 0. System size
litetime N =8, K = 0.25, total number of orbits = 10°.
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Figure 11. A 2 slice (py, p2) of phase space. N =4, K = 0.3. In the @x2=)
8-dimensional phase space, the slice is taken by setting the following six constraints;
Ty = ~0.075, z2 = —0.025, z3 = 0.025, py = 0, Y} z; = ¥ p; = 0. The last two
constraints come from conservation of the total momentum (3) so that the points shown
in the figure have the same value of total momentum. We set 512 x 512 lattice points on
the 2-dimensional section, take the points as initial conditions for time evolution. Among
the initial conditions, dots are plotted for the initial points such that the temporal decay
rate of the finite time maximal Lyapunov exponents Amax(t) measured for ¢t = 200
steps is faster than 1/v/t are shown. The function 1/Vt is adopted for convenience to
distinguish between Amax(t) = constant (chaos) and Agax(t) 1/t (tod, islands).

in the vicinity of a torus to chaos. Our transition from clustered to random states
is clearly different from induction phenomena, since it is a switching between two
types of chaos. For such types of crossover, we have as yet no theoretical method
to estimate the lifetime of each state. The lifetime of clustered states also increases
rather rapidly with the decrease of nonlinearity. This dependence suggests a possible
estimate for the lifetime similar to Nekhoroshev’s.

Figure 10 shows the distribution of the lifetime of clustered states for an 8-particle
system. The initial condition is chosen to be z; = random, p; = 0. This initial
condition is chosen because clustered states appear to have large measure around the
origin (z,p) = 0. For each orbit, the lifetime is defined as

lifetime of clustered state & steps for which the value of Z > 1 (16)

where the quantity Z is defined in equation (6). The distributions for K =
0.25,0.3,0.4,0.5 have an exponential tail.
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Figure 12. Same slice in the phase space as in figure 1. Among 512 x 512 initial
conditions, points at which Z > 1 are shown, which are considered to belong lo

clustered state.

1— I} 6 . . e, —
o [ °°° '.N=16
5 o, .
: SN
& oot -

1 R=cPnax®.,b<N *

0.1 1
Pmax : length of the cell in P-space

Figure 13. Relative volume of clustered states in
the phase space, plotted as a function of hypercube
cell length, for N =4 and N =16, K =03. A
total of 10° initial points are sampled to check if
they are in a clustered state. The ratios of clustered
orbits in an N -dimensional hypercube with the edge
length Pmax in the momentum space are plotted.

Thl.l

1073 uniformly random state |
<]
Q
c
&
g clustered state

N=8, K=0.1
- 1
1077160 1000

length of each interval T

Figure 14. Variance of the short-time (maximal)
Lyapunov exponents for a clustered state and the
uniformly random state. In the clustered state the
variance shows an anomalous power-law behaviour
implying long time correlation, whereas the variance
shows normal convergence to 0 in the uniformly
random state. N =8, K = 0.1
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The geometrical structure in phase space gives us a hint of a mechanism for the
stabilization of the clustered state, as is shown in figures 11 and 12. Figure 11 shows
a 2-dimensional slice of phase space for a 4-particle system. We measure the maximal
Lyapunov exponent for a finite temporal interval ¢. If the initial condition (9, Pp)
belongs to KaM tori the exponent A, (t) varies as Amax(t) o< 1/t. In figures 11 and
12 dots indicate initial conditions where A_, (t) < 1/v/%, which can be considered as
belonging to KAM tori, islands, or their remnants. Clustered states are again estimated
by the condition Z > 1 and are shown in figure 12. We note that they spread over
the web structures of KAM tori and islands. The outer region has a complicated fractal
structure as is shown in figure 13. In the figure, the relative volume of clustered states
is plotted as a function of a length of the edge of the sampling cell P_,.. The volume
V(Ppax) decays with a fractional power of the edge length P_.. in the momentum
space (e.8. V(Ppuy) & Py > for N = 16.) This result means that the outer region
of clustered states has a fractal structure. For the central region, clustered states
occupy almost all the volume, which seems to be supported by KAM tori and islands.

From the above observation, we reach the conjecture that the clustered state
is strongly affected by the existence of remnants of KAM tori and islands. This
conjecture is supported by examining the fluctuation properties of dynamical variables,
€.g. Lyapunov exponents [29]. Suppose we measure a Lyapunov exponent for a finite
interval, say T and denote it as A(T). Sampling A(T), we get a distribution of these
short-time Lyapunov exponents. Here we study the T-dependence of the variance
of this distribution. Since A(T) is calculated as a sum of stepwise expansion rates
during T-steps as

_1ly [v(1)|

t=1

we expect

T~ 0<axl when long time correlation exists

-1 : : . (18)
T without long time correlation.

@NT) o {

Figure 14 clearly shows the existence of long time correlation in the clustered
state but not in the random state. Thus the structure change from cluster to uniform
chaos is understood as the transition from sticky motion to random motion without
any spatiotemporal order.

6. Discussion

In this paper we have shown the existence of an ordering process (which we call
a cluster) in Hamiltonian systems. This clustering is a remarkable novel feature
in Hamiltonian systems distinguishable from uniform thermalization. The clustered
states are chaotic and show crossover to uniform chaos, which is a chaos-chaos
crossover. The theoretical study of the dynamical crossover between different chaotic
seas for high-dimensional systems is an important area of future study, and is
related to the recent study on the strong stochasticity threshold in high-dimensional
Hamiltonian systems [27, 28].

Clustered states are long-lived and quasistationary especially in weak nonlinearity.
The origin of stability of clustered states can be found in the intricate structure of a
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high-dimensional phase space. Indeed, torus-rich regions form a fractal structure in
the phase space. For a regular orbit, this is the first discovery of such fractal structure,
although it may be related to the fuzzy fat fractal for a stochastic layer [7].

The fluctuation of short-time Lyapunov exponents has revealed the sticky motion
of a cluster. Preliminary data for the short-time diffusion coefficient [30] also
support the existence of long-time correlation in a clustered state [31]. Lyapunov
spectra and vectors have also demonstrated an internal mode for a clustered motion,
clarifying order formation in a Hamiltonian system. Detailed Lyapunov analysis will
be a powerful tool for exploring the high-dimensional phase space. An excellent
application of Lyapunov analysis for a Hamiltonian map lattice is seen in [32].
Asymptotic behaviour of Lyapunov spectra for a system with a macroscopic state
is also a subject for future study [17-20].

Ordered motion in high-dimensional chaos has been extensively investigated in
dissipative systems. Clustering is an important notion in dissipative globally coupled
maps [33]. Switching among ordered motions through high-dimensional chaos is
found, and termed as chaotic itinerancy [33,34]. Switching among our clustered
motions and random chaos gives a clear example of chaotic itinerancy in Hamiltonian
systems. We note that similar ordered motion is seen in molecular dynamics
simulations for glass [35] and water [36]. Our clustered state may give a minimal
basis for the theoretical understanding for the ordered motion in molecular dynamics.

Although the clustered state has a finite lifetime, the lifetime increases rapidly with
the decrease of nonlinearity, suggesting some dependence analogous t0 Nekhoroshev’s
estimate. Thus, in a weakly nonlinear system, the clustered state is easily observed,
and is stable over long time steps. This fact implies that our clustered state will be
much more frequently seen in a Hamiltonian system with continuous time, since a
proper limit with K — 0 for our model gives a flow system of a time-independent
Hamiltonian. Clustering processes will hopefully be found in other physical systems,
such as gravitational systems, microclusters of atoms, nuclei, and so on. Chaos will
give a new light on their study, in addition to traditional view based on barrier
structures of potential energy landscapes.
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