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Collective Oscillation in a Hamiltonian System
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Oscillation of macroscopic variables is discovered in a metastable state of the Hamiltonian system of
the mean-field XY model. The duration of the oscillation is divergent with the system size. This long-
lasting periodic or quasiperiodic collective motion appears through Hopf bifurcation, which is a typical
route in low-dimensional dissipative dynamical systems. The origin of the oscillation is explained, with a
self-consistent analysis of the distribution function, as the self-organization of a self-excited swing state
through the mean field. The universality of the phenomena is discussed.

DOI: 10.1103/PhysRevLett.96.050602

Dissipative systems often show periodic, quasiperiodic,
and chaotic motion at a macroscopic level, when they are
far away from equilibrium. The motion is described as low-
dimensional dynamics, and its discovery has marked an
epoch of nonlinear dynamics studies in physics. Recalling
that the microscopic degrees of freedom involved are large,
such macroscopic behavior is a result of collective motion
that emerges out of high-dimensional microscopic dynam-
ics. The collective motion, indeed, has been intensively and
extensively studied for systems consisting of a large num-
ber of chaotic elements, as an important issue in high-
dimensional dynamical systems [1-4]. The underlying
microscopic dynamics in such studies, however, have
been restricted to dissipative chaos.

Does such collective motion exist even in isolated ther-
modynamic systems, or Hamiltonian systems with many
degrees of freedom? According to thermodynamics, any
isolated macroscopic system finally relaxes to an equilib-
rium state, where any macroscopic variable remains con-
stant with thermal fluctuation. Thus the only possibility for
such macroscopic oscillation to exist in isolated systems
lies in transient relaxation processes. In addition, for such
collective motion to continue in a macroscopic time scale,
long-term persistence of a nonequilibrium state is required.
Indeed, long-term metastable states are found to exist,
when some Hamiltonian systems are given certain initial
conditions [5—7]. Yet, to our knowledge, no such collective
low-dimensional motion has been reported in such meta-
stable states.

Here we report the discovery of such collective oscilla-
tion of macroscopic (thermodynamic) variables in several
Hamiltonian systems with many degrees of freedom. The
oscillation is sustained over a long time, and indeed the
duration increases with the system size, suggesting the
divergence in the thermodynamic limit. Furthermore, the
oscillation appears in a similar way to the bifurcation in
low-dimensional dissipative dynamical systems, indicating
the low dimensionality of the collective motion. In this
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Letter, the essence of this discovery is briefly reported,
especially in the mean-field XY model [8].

We adopt the Hamiltonian system of the mean-field XY
model, or globally coupled pendula [5,9,10],

H = Zp’ +—ZZ[1—cos(0 —0)l ()

i=1j=

All the N pendula interact with each other through phase
differences. Each pendulum has two types of motion:
rotation at a higher energy and libration at a lower energy.
In the thermodynamic limit (N — o0), the equilibrium state
is determined only with the total energy density U =
JH /N, showing a continuous phase transition.

We focus on the dynamics of the variance of momentum,
T(r), and the modulus of the mean field, M(z):
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These are macroscopic variables; indeed, they are nothing
but the temperature and the magnetization of the system in
equilibrium. Because (1) yields the constraint,

2U=T@1) +1—M@1)? 3)

we mainly discuss the dynamics of M(¢) in the following.
Using (2), the equations of motion are described as single
pendula interacting with the mean field:

p; = —M(t)sin[6; — ¢(1)]. 4)

We give the initial conditions of {6,} and {p,}, assigned
with only two macroscopic parameters: the total energy
density, U, and the initial magnetization, M, = M(0).
First, the initial distribution of {6,} is set as a
Boltzmannian for the equilibrium state determined inde-
pendently of U, with the magnetization M, and the tem-
perature T,(M,), where T.,(M) is the equation of state in
equilibrium:

0;=rp
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where Zy(M,) is the normalization. Next, the distribution
of {p,} is set as a Maxwellian determined with the tem-
perature To(U, My) = 2U — 1 + M3 to fulfill (3):

2

| _p
Z,(U, My) exp|: 2Ty(U, MO)} ©

o5(p; U, My) =

where Z,(U, M) is the normalization. Here 6; and p; are
given independently of each other. Then the initial distri-
bution is fo(6, p; U, Mo) = f9(8; Mo)fy(p; U, Mp). In
general, Ty # Ty, leading to initial states far from equi-
librium, whereas if M, is the equilibrium value for the
given U, then T, = T, yielding exactly the equilibrium
distribution. Thus these initial conditions are smoothly
connected to equilibrium on the (U, M) plane.

Now we study relaxation phenomena far from equilib-
rium [11]. A typical time series of M(¢) is shown in Fig. 1.
Initially, M(¢) decays almost exponentially. Then, however,
M(1) does not simply reach the equilibrium value but stays
near a larger value for quite a long time. After this long
interval, M(r) departs from the plateau toward equilibrium.
Finally, M() reaches the equilibrium value and fluctuates
about it. The duration of the plateau increases linearly with
N (see the inset of Fig. 1), suggesting that the metastable
state lasts in a macroscopic time scale in the thermody-
namic limit.

Here we note that another metastable state in this model
has been intensively investigated for a decade, especially
by taking a rectangular (water bag) initial momentum
distribution [5,6]. This metastable state exists only in the
region just below the critical energy of the phase transition,
and there M(z) and T(¢) take smaller values than those in
equilibrium, leading to a branch of negative specific heat.
This state is regarded as a reflection of a stable stationary
solution of the corresponding Vlasov equation. On the
other hand, the metastable state that we have discovered
takes larger values of M(¢) and T'(¢) than those in equilib-
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FIG. 1 (color). A time series of M(r). The abscissa axis is a log
scale. The dotted line is the equilibrium value. Inset: The
duration of the plateau Tpjyeq, against N. U = 0.69 [6] and M, =
1.

rium and exists over a much broader region than the
negative specific heat branch. Thus the present metastable
state is not explained by the above stationary solution of
the Vlasov equation and is a novel one.

We now study the metastable state in more detail. The
close-up time series of M(¢) in the metastable state shows a
periodic oscillation [Fig. 2(a)]. The oscillation is not
caused by the finiteness of N. Indeed, the oscillation be-
comes more apparent with increasing N, in strong contrast
with fluctuation around equilibrium that reduces to zero. Its
power spectrum [Fig. 3(a)] shows a large peak (f =
0.166), with its harmonic components, which remains
sharp with increasing N. These indicate that the periodic
motion survives even in the thermodynamic limit. In a
longer run, the amplitude of the oscillation is not kept con-
stant but decreases gradually (logarithmically in time). Its
decay rate, however, reduces as N~!/2 [Fig. 2(b)], which
also confirms that the periodic motion lasts permanently in
the thermodynamic limit.

As well as the periodic motion, M(r) takes various
temporal patterns depending on the parameter (U, M,). In
the region farther from equilibrium, the oscillation is not
simply periodic; its power spectrum [Fig. 3(b)] indicates
quasiperiodicity on a T2 torus. In the region nearer to
equilibrium, on the other hand, its behavior is almost sta-
tionary, the value being either the equilibrium value or
some others.

The phase diagram of the collective motion on the
(U, My) plane is depicted in Fig. 4. As shown, with in-
creasing total energy, the temporal pattern of the macro-
scopic variable changes as stationary — periodic —
quasiperiodic. This is regarded as a “bifurcation” of the
collective motion. Here we note the similarity to the typical
bifurcation route in low-dimensional dissipative dynamical
systems, fixed point — limit cycle — torus, through Hopf
bifurcations. Hence it is suggested that the present bifur-
cation of the collective motion is described as that of low-
dimensional dynamical systems, in particular, by Hopf
bifurcations.

We next investigate the bifurcation in more detail. The
mean amplitude of M(¢) against U in the vicinity of the
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FIG. 2 (color). (a) A time series of M(t) in the metastable state.
(b) The decay rate y of the amplitude of the oscillation, where
My (1) = My (t9) — ylog(t/15). U = 0.5 and M, = 0.9.
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FIG. 3 (color). The power spectrum of M(r) for (a) U = 0.5
[Fig. 2(a)] and (b) 0.75. My = 0.9.

bifurcation point is shown in Fig. 5. The amplitude in-
creases above some critical energy U, with the approxi-
mate dependence of (U — U,)"/2. This verifies that the
bifurcation from the stationary to the periodic motion is a
Hopf type. We have also studied the change of the ampli-
tude against M, which is another parameter, and again
confirmed the Hopf-type bifurcation from the stationary to
the periodic motion [8].

Strictly speaking, however, there remains fluctuation of
finite magnitude around each of the stationary, periodic,
and quasiperiodic motions, even in the thermodynamic
limit. The bifurcation is not completely one-dimensional
but blurred. The fluctuation around the mean stationary
value or around the periodic orbit remains finite with
increasing N. In the inset of Fig. 5, the variance of M(r)
at U< U, and that around the Poincaré section of the
mean periodic motion at U > U,, are plotted for various
system sizes. As shown, the variance of the fluctuations
first decreases as ~N !, but for larger N the decrease stops
at a finite value, leading to a plateau. This behavior is quite
similar to that studied in (dissipative) globally coupled
maps [1]. This residual fluctuation is not represented by
low-dimensional chaos, and may result from high-
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FIG. 4. The phase diagram. S1, S2, and S3 denote stationary
states. In S1 the value of M(¢) is almost equal to the equilibrium
value, in S2 it is larger, and in S3 it is smaller. P and QP denote
the periodic and quasiperiodic motion. The dashed line indicates
the equilibrium equation of state. The region 2U — 1 + M2 <0
is forbidden, so that 7, = 0. S3 may correspond to the negative
specific heat branch [5,6].
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FIG. 5. The mean amplitude of M(t) against U, in the vicinity
of the bifurcation point U, = 0.35. N = 10°. The dashed line
indicates ~(U — U,)"/2. Inset: The system size dependence of
the variance of the fluctuation §M around the mean stationary
point (U = 0.3) or the Poincaré section of the mean periodic
orbit (U = 0.4). Each datum is obtained as the average over
25 samples. M, = 0.9.

dimensional collective motion, as is observed in dissipative
systems [1].

Next, we study the origin of the collective motion,
especially the periodic motion, from the microscopic point
of view. Because it is almost impossible to investigate the
trajectories of such large degrees of freedom, we study the
one-body distribution function, f(6, p,#). A snapshot of
f(6, p, 1) for the collective periodic motion when the phase
of oscillation of M(r) is zero (Fig. 6) shows a pair of high
density regions at (68 — ¢)/2, p) = (¥0.3, £1), besides
that at the center. The pair of peaks rotates clockwise along
the separatrix keeping the localization, without diffusing
out. Since this localized rotation actually results in macro-
scopic oscillation, it is important to ask its origin.

To answer the question, we consider an ensemble of N
pendula independent of each other, parametrically driven
with the periodic external force, M.,,(t) = g + hsinQz:
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FIG. 6. A snapshot of the contour of the one-body distribution
function, f(6, p, 1), at t = 1001.2 of Fig. 2(a). N = 10°. The
dash-dotted line indicates the separatrix.
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These are almost equal to (4) except that M (f) is exter-
nally applied, while M(¢) is self-consistently determined in
(4). Indeed, let M;,(¢) be the internal mean field given by
(2), and if M;, () = M,,,(?), then the system is exactly the
original Hamiltonian system. The Poincaré section of (7)
on 1t = 0 (mod 27), an equivalent of the standard map
[12], yields the islands of 1:1 resonance at (6/2r, p) =
(¥0.3, =1), which are at just the same positions as the
concentrated densities in Fig. 6. In addition, even though
we first distribute the elements homogeneously, the axi-
symmetry is eventually broken down, while the point
symmetry is preserved because of the requirement of the
dynamics. For example, in a snapshot, the first and third
(second and fourth) quadrants are dense (sparse).

On the basis of the above analysis, we give a self-
consistent explanation on the collective periodic motion.
Once a considerable number of elements gather in the
islands of 1:1 resonance, they make a finite contribution
to the periodicity of M(r). The periodic M(¢) thus generated
in turn drives the elements to stay in the island stably. The
periodic drive also localizes other elements, breaking the
axisymmetry, which can further stabilize the periodicity.
Hence the collective periodic motion is the state of self-
excitation through the mean field, or self-excited *“swing,”
which is self-organized in the transient to equilibrium.

The above picture also accounts for the bifurcation from
the stationary to the periodic state. An element requires
some energy to stay in the island of 1:1 resonance. When
the total energy is small, only a small number of elements
can have such energy, which is too short to make the
oscillation of M(z) stable. When the total energy is large,
on the other hand, many elements can have enough energy,
which leads to stable periodic motion of M(z). The bifur-
cation to periodic motion thereby appears with increasing
U. The bifurcation along the M, axis follows the same
scenario.

In summary, we have discovered the collective periodic
and quasiperiodic motion in the metastable state of the
Hamiltonian system of the mean-field XY model. In the
thermodynamic limit, these oscillation states continue for-
ever, as their lifetime seems to diverge. Similarly to the
collective motion in dissipative systems, we have observed
macroscopic low-dimensional motion arising from micro-
scopic high-dimensional conservative chaotic dynamics.
The collective oscillation appears through Hopf bifurca-
tion, except for the residual fluctuation. The mechanism of
the macroscopic periodicity is explained as the self-
organization of the self-excited swing state.

The mechanism of the collective motion discussed
above works in Hamiltonian systems if (i) the system has
global, i.e., mean-field, coupling, and (ii) the resulting one-
body dynamics has a separatrix of motion. We have also
studied the mean-field ¢* model, H = ¥ {p?/2 + (¢? —

1)2/4} + (J/2N)Y; i(g; — q;)*/2, which fulfills both of
these conditions, and found the periodic oscillation of the
macroscopic variable Q = 3 ;q;/N, through the Hopf bi-
furcation [8], as studied here. Moreover, the first condition
is relaxed to a simple long-range interaction. Indeed, we
have confirmed the collective oscillation both in the XY
and the ¢* model on d-dimensional lattices with the
coupling strength decreasing as r~ ¢, r being the distance
on the lattice, for @ <d [8]. On the other hand, the
existence of a separatrix in the one-body approximation
implies a phase transition in terms of statistical physics. In
nature, there are many systems with long-range interac-
tions and phase transitions. Hence it will be an issue of
interest to search for the collective motion that we have
discussed in such real systems. Similar phenomena have
been reported in a model of beam-plasma and free-electron
laser systems [13]. Other possible examples may include
molecular clusters and (bio)polymers.
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