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Abstract

A chain of coupled chaotic elements with different time scales is studied. In contrast with the adiabatic approximation, we
find that correlations between elements are transferred from faster to slower elements when the differences in the time scales
of the elements lie within a certain range. For such correlations to occur, three features are essential: strong correlations among
the elements, a bifurcation in the dynamics of the fastest element by changing its control parameter, and cascade propagation
of the bifurcation. By studying coupled Rdssler equations, we demonstrate that fast elements can affect the dynamics of slow
elements when these conditions are satisfied. The relevance of our results to biological memory is briefly discussed.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many biological, geophysical and physical problems include a variety of modes with different time scales. In
biological rhythms, dynamics with time scales as long as a day can be organized through biochemical reactions
occurring on subsecond time scales. In the brain, fast sensory inputs are successively transferred to dynamics
with longer time scales, and are stored from short-term memory to long-term memory. Since memory should last
longer than the time scale of external stimuli, some mechanism to embed change at faster time scales into events
at much slower time scales is required. The study of dynamical systems with various time scales is important for
understanding the hierarchical organization of such systems by investigating the dynamic interactions among modes.

Adiabatic elimination[1] is often adopted for systems with different time scales. If the correlations between
modes with different scales are neglected, the fast variables are eliminated and the dynamics of the system is
expressed only by the slow variables. The fast variables are then replaced by their averages and noise. In this
adiabatic approximation, the characteristics of the dynamics of the fast time scales disappear, and influence of fast
variables on slow variables is only retained as memory terms in the Langevin equation.
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The adiabatic approximation is valid when the differences between the time scales are large. However, when the
differences are small, correlations between the modes appear, invalidating the approximation. In this case, the fas
scale dynamics can influence the dynamics of the slower variables. Here we investigate under what conditions the
faster variables can influence the dynamics of the slower variables. We will show that from change of fast dynamics
is propagated to slow dynamics, but not from slow to fast dynamics, when a certain condition is satisfied. Chaos is
relevant to this since chaos makes the amplification of microscopic perturbations to a macroscopic scale possible
On the other hand, the existence of chaos disturbs the correlations between the two variables of different time scales
In order for the propagation of statistical properties from fast to slow variables to occur, it turns out that two other
properties are required: strong correlation (with partial coherence) and a cascade of bifurcations.

In the present paper, we investigate the dynamical behavior of high dimensional systems where spatiotemporal
chaos with a cascade of bifurcations is found to be caused by interactions among different time scales and its
relevance to the flow of perturbation from fast to slow elementSdction 2 a model of coupled chaotic elements
with different time scales is introduced. Bection 3 the Rdssler equation is adopted as the basic unit chaotic
oscillator. Elements at slower time scales are found to exhibit bifurcations influenced by the bifurcations of the
faster elements. A cascade of bifurcations, transferred successively from fast to slow elements, is reported througt
the analysis of the power spectrum and the phase space struct@exctlon 4 the cascade is shown to appear in
some range of the time scale differenceSkction 5we study the conditions for the occurrence of the bifurcation
cascade and characterize the3action 6is devoted to the discussion and the conclusion.

2. Modd
2.1. Coupled oscillator with different time scales

In the present paper, we investigate how statistical (topological) properties of slow dynamics can depend on those
of the fast dynamics by studying a coupled dynamical system with different time scales. To be specific, we choose
a chain of nonlinear oscillators whose typical time scales are distributed as a power series. The dynamics of eact
oscillator is assumed to differ only in its time scale, and thus there are only three control parameters in our model:
one for the nonlinearity, one for the coupling strength among oscillators, and one for the difference in time scales.

The concrete form adopted here is as follows. We choose a nonlinear differential equation as the single oscillator.
The time scale differences are introduced as

dX; - - .
Ly =FX), Ti=nt (1)
The index of the elements is denotedilwithi = 1, 2, ..., L = system sizeT; is the characteristic time scale for

each element and(<1) is the time scale difference. By adopting a power series distribution for the characteristic

time scales, the relationship between any elemandi + 1 is identical, as is easily checked by scaling the tifog

T; in each equation. Hence this form is useful for studying the relevance of time scale change, since the dynamics of

each element, after rescaling the time, is identical. Note also that this is analogous to the shell model of turbulence

[2]. The total time scale difference is given by
Ii L1

Tiotal = —— =

i @

In the present paper, we adapas a control parameter by fixifota = 100 and changé accordingly following
Eq. (2)couple neighboring elements. The Runge—Kutta method was used with a time step size such that the fastes
elementX; is computed with a high precision.
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Next, we need some coupllng term among elements. Here we choose the nearest- nelghbor coupling, given from
the function ofAX; = X,+1 + X;_1 — 2X;. Often linear diffusion coupling given by just the ternX; is adopted
for couplings. As far as we have examined, the behavior to be reported is not observed in the linear diffusion
coupling term. Some mode couplings are necessary. Then, as a next step, nonlinear couplmg up to the quadratic
term is considered, including the terrﬁéAX’" andAXk AXT (with Xk as thekth component ofX; order). The
behavior to be reported is observed in a wide range of models (as Iong as this coupling term does not bring about the
divergence of orbits). Here we take an example of Rdssler equation, and study some models with such couplings.

In fact, nonlinear couplings among modes are not so usual. By expanding nonlinear partial differential equation
with the evolution of spatial Fourier modes, nonlinear couplings commonly appear. For example, coupled ordinary
differential equations with nonlinear couplings is derived from Navier—Stokes and heat equations, having a larger
number of modes than Lorenz equat[8¥].

As for the boundary condition we choose free boundary conditien=al andL, but this specific choice is not
important.

2.2. Specific model: coupled Rdssler equations

As a specific example, we choose the Rdssler equation as the single oscillator:
i=fX)=-y—z  y=fHX) =x+ay, = fuX)=bx—rz4+xz ®)

X = (X%, X2, X3) = (x, y, z) denotes the variables of each elemefihe parameters andb are fixed at 0.36 and
0.4, respectively, whereass a control parameter.
Here we choose the coupling with the neighboring elements as follows:

Tii; = fx(X>+de AX],  Tisi= fy(X>+Zdszxf

Tizi = f.(X:) + ngjAX{ +diziAx; +dyxi Az + d§ Ax;Az;. 4)
J
As anonlinear coupling here we choose only the terms relatedwyitr the change of, since the original equation
involves only such nonlinear coupling. This nonlinear coupling term introduces nonlinear interaction term between
the modes of the neighboring elements.

This choice of coupling is mainly adopted to avoid the divergence of orbits. (By including other nonlinear coupling
terms which the originaEq. (3)do not contain (for example;x;11, y;yi+1, andz;z;+1), variables of the resultant
coupled system easily diverge.) On the other hand, nonlinear coupling terms are necessary for the phenomena to
be reported here. Hence, as a simple choice of nonlinear coupling term, we take only the nonlinear coupling that
exists in the original equations.

Still, there remain arbitrary choices of coupling terms. We have studied several examples, and the results to be
reported are commonly observed by choosing the coupling parameter values suitably. As a specific example, we
report the results obtained using the following coupling:

d d d
ady ad, 0 -1 0

DY=|ad df dds|=di|1 a 0|, d3=dj=0. )
dg, di, diy b 0 0

1 Since the choice of the variablesy, z is usual for Rssler equation, we use this notation, but for the convenience of vector representation
we also usex/,
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There, the nonlinear coupling terms age; 1 andz;x;—1. (The phenomena reported below appears in the wide
range of the coupling strength, for examplé,> 0.25 underd; = 0.4, (7, L) = (1.93, 8) andr = 1.4 in Egs. (4)
and (5))
In this model, absence of divergence is expected from the following argumentdi\ithd, = (d/2), Egs. (5)
and (4)is transformed into

daX; - - - -
Tid—t’ = F((E-D)X; + 3D(X;_1 + Xi+1), (6)
de O 1 0 O
D=|0 d, ,E=]0 1 0],
0 O 0 0 1

Z

whered; = 0 andd, = d, = d = 0.45 in the following simulations? Since in the original equatio(df(i/dt) =

F(X;), the orbits do not diverge (for suitable initial conditions), the stability of the coupled system is also assured.
As mentioned, this specific choice is not important. 8ppendix Afor another example showing the phenomena

to be reported.

3. Transfer of correlation from fast to slow elementsin coupled Réssler equations
3.1. Frequency locking in the case with small difference in time scales

As a preparation for the later study, we briefly describe a property of a system with two elements, that are fast and
slow. With this, we discuss a basic condition for propagation of correlation from fast to slow elements. First, some
correlations between pairs of elements are required to be propagated. This correlation exists, when the difference
in the time scales between the two elements is not so large.

As a typical example with such correlation, we study the case with frequency locking between two elements (or,
pairs of nearest-neighbor elements since these have the closest time scales). Examnpjesrad series are shown
in Fig. 1(a), where we have takem, L) = (1.93, 8). The corresponding power spectrtiof each element is shown
in Fig. 1(b), where one can detect some common peaks among elements. These figures show that there are fixe
relations between peaks, in other words frequency locking between elements. The relationship of frequencies of
the two elements is not necessarily by 1:1 frequency relationship but generally with(with m > n), between
neighboring elements. In the example of the figure, the phase lockings between the two elements range from 1:1

2 By introducingW; as
W; = (E-D)X; + %D(}?i—l + Xit1).

Eqg. (6)is transformed into

dw; E(W,) DFW; D F(W;_
Wi g _pyFW)  DF(Wiy)  DFWiy)
dt T, 2 Ti+1 2 Ti—l

In the present moddtq. (4) we adopted the coupling parameters dlid= d; = (d/2), d; = 0 andd, = d,. Then all the coupling terms in
Eq. (4)are represented by linear termsiigf, because of, = 0. This is close to usual diffusion coupling, but the coupling strength is asymmetric
sinceTjy1 > Ti_1.

3 Since the range of frequency in the dynamics differ by the elemeve set the sampling time for the power spectrurk Bswith « a given
constant.
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Fig. 1. (a) Time series of;(¢). (b) The power spectrum af (). (z, L) = (1.93, 8) andr = 1.4. (a) shows correlated motion occurring among
the neighboring elements with various time scales. The colors correspond to the different elements, whereas (b) shows some common peaks
corresponding to the frequency locking. The arrows onvtlagis indicate the basic frequency of each element there is no cougliadd).

2:3, and to 1:2, approximately. As in the case of coupled phase oscillators with different frequér@liethe
frequency locking appears, as long as the time scale differeisa®t too large and coupling strength not too weak.
As long as the coupling between two elements is not too small, this frequency locking is observed at various time
scales.

The co-variance between two elements, givet(by — (x;)) (xi+1— (xi+1)) /v ((xi — (xi)2) ((xip1 — (xi11))2)),
takes a large valde The correlation between the elements, however, decays rather rapidly as the distance between
the elements (i.e., the difference between their time scales) increases. For example, the co-variance between the
fastest and slowest elements, given(¢c1 — (x1))(xz — (x.)) /\/ ((x1 — (x1)2)((xr, — (x1.))?)), takes almost
zero values. This is not surprising, since the motion here is chaotic and the correlation decays due to the chaotic
instability.

Note that in the present model with strong coupling strength and small time scale diffefeascexhibited in
Fig. 1, chaos appears at= 1.4 where the single Rossler equation still exhibits a limit cycle. (The bifurcation from
a limit cycle to chaos occurs at= rX ~ 3.45 for a single Rossler equation.)

3.2. The response of the slow dynamics to change in the fastest element

Now we will study how some change in one element can be transferred to others with different time scales. In
order to check this generally, we need to study how some input applied to a given element influences dynamics of
other elements. For it we set up the following external operation, and study the response.

External operation and responsAfter the initial transients have died out, at an arbitrarily chosen point in the
temporal evolution, we apply sin(z/ Tp) at a given element where the time scal, is the order of that of the
element {p ~ T;). Then we examine if this addition of an external input to a given element influences the dynamics
of other elements with different time scale.

Here, we will show that the slowest dynamics at L can be influenced by the fastest elemerit-atl. Hence,
we apply an input at the fastest made L and see if it influences the dynamics of the slowest mode-aL. As

4 (...) denotes the ensemble average.
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a measure for the dynamicsxf (r), we first adopt the power spectrar), and see if the spectra at the paiat L
are altered by the application of an external input=at1.

Fig. 2shows the power spectra of the slowest elementZ, where the external input described above applied at
the fastest elemeint= 1. Each figure shows the spectra for the slowest elemerfor a choice of differentr, L),
while the total differencéioa = 21 is fixed. Lines with different colors correspond to the spectra with an input
of different periods as well as those without input.

To be specific, we have plotted the power spectra for the slowest elemewith Tigiq = 100, for(r, L) =
(100, 2) (a), (4.64, 4) (b), (2.51, 6) (c), (1.93, 8) (d), (1.67, 10) (e), (1.27, 20) (f). The black line shows the power
spectrum without = 1 input periods, while the other colors give the spectra obtained for an input with different
periodsTp = 1.5 (red), 1.1 (blue), and 0.7 (green), applied at 1.

Now it is clear that the spectra of the slowest element are altered for the case (c) and (d), and weakly for (e),
while other data show little or almost no change in the spectra. The power spectrum of the slowest element depend:
on the input periody for the cases (c)—(e).

The propagation of influence to slower elements reported here is possible within a ramge)ofConsider the
transfer to an element with a given time scale differefigg). Then each time scale differeneand the number of
elements satisfieBoa = 721, Here the propagation to the slowest element is possible only within a given range
of . If ¢ is small, the propagation of influence decays at some element, kirsckarge. Ift is large, on the other
hand, the correlation of elements is too weak to support the propagation. (A detailed mechanism for the propagation
will be discussed irsection 5as bifurcation cascade, while a quantitative conditio{oi.) for the propagation
will be shown inSection 4)

3.3. Dynamics in the intermediate time scales

Now we study, how a change in the fastest element is transferred to the slowest element. To make such propagatio
possible, the change has to be transferred to the neighboring element step by step. Hence we study how the dynami
of all elements are correlated by plotting the power spectrum of all(iof In Fig. 3, the spectra af;(¢) are plotted
for input with periodTy = 1.1 (a) and 1.5 (b) witlh = 0.5. HereTiota) = 100 and(z, L) = (1.93, 8). As already
mentioned there are common peaks in the spectra. Comparedrigitii(b), the spectrum of the slow element
represented by the black line shows a shift in the peak frequency in (a) while a broad spectrum (as a signature
of bifurcation to chaos) is observed in (b). Here peaks after the input are shifted keeping the agreement betweer
elements. Hence, the dynamics of the slowest element are altered element by element, according the change of tr
fastest element.

To see more closely the change of the dynamics, direct observation of an orbit of each element in the phase spac
is relevant. Here we detect the change of dynamics by plotting the Poincaré map, correspoRridjagi@nd 3

Fig. 4shows thelp dependence of the Poincaré section sliced at 0. Different colors give the plots for without
external inputs, and with input sin(¢/ Tp) with To = 1.5 and 1.1, applied to the fastest element0. ForA = 0,
almost all the elements, ranging from the fast to the slow time scales, show weakly chaotic dynamics or multiple
tori near the onset of chaos, as shown by the black dotsAFer 0.5 and7p = 1.1, nonchaotic (limit cycle or
tori) dynamics are observed as shown by the blue dots, while strongly chaotic dynamics appear b and
To = 1.5 as shown by the red dots. Therefore the inpsin (¢/ To) applied to, and causing a bifurcation in the
fastest element induces a bifurcation of the slowest dynamics also. Hence the dynamics of the slowest element ar
altered by the application of an input to the fastest element. We call this bifurcation transfer a “bifurcation cascade”.

This bifurcation cascade can also be induced by changing the control paramgiet 1, instead of adding the
external input. Again, if the parameter of the fastest element is changed so that that element shows a bifurcation,
then the slowest elements also show the bifurcation. Therefore, in both cases, by inducing a bifurcation in the fastes
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Fig. 2. Power spectra for the slowest elemegntwith Tiota) = 100, for(z, L) = (100, 2) (a), (4.64, 4) (b), (2.51, 6) (c), (1.93, 8) (d), (1.67, 10)
(e), (1.27, 20) (). The black line gives the spectra without any input at element= 1 while the other colors give the spectra with various
input periodsTp = 1.5 (red), 1.1 (blue), and 0.7 (green), applied at 1 with A = 0.5. The dependence dfy appears only in (c)—(e), For the
other cases, the power spectra are not influenced by the application of the input to the fastest element. The arreaxiith@) indicates
the basic frequency of the slowest element there is no couplirg ).
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Fig. 3. Power spectrum fag (¢), when the inputd sin(¢/ Tp) is applied ai = 1 (Tp ~ T1), whereTpy = 1.1 (a), 1.5 (b), andi = 0.5. The spectra
for different elements are plotted in different colors. In both the spectra of the slowest element represented by the black line is shifted due to
the input, keeping the agreement of peaks of faster elements. The arrowsweaxisendicate the basic frequency of each element there is no

coupling @ = 0).

element, it is transferred to the slowest element successively through a bifurcation cascade. Actually, when the

change of parameters or addition of the inputs do not lead to the bifurcation of the fastest element but its continuous

change, this influence is not transferred to the slowest element.
Here we come back to the question why the change is not induced at the slowest elemenistéigre as given

in Fig. ). In this case, due to large time scale difference, the correlation of neighboring elements is so weak that

the bifurcation at one element is not propagated to the next. Thus the bifurcation cascade does not appeatr.

3.4. Asymmetry of the bifurcation cascade

So far we have shown that the slower elements are successively influenced by the faster elements. Now we stud
the opposite case, i.e., the influence of the faster elements by the change of slower elements. We will show that the
fastest dynamics dt= 1 cannot be influenced by the slowest elemerit-atL, in contrast to the influence of the
bifurcation of the fastest element on the slowest one discussed in the last subsection.
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Fig. 4. Poinca plots of {;, y;) sliced aty; = 0 are shown foi = 1, 3, 8. The inputA sin(z/ Tp) is applied to the fastest element 0 where
(r, L) = (1.93, 8) and Tiota) = 100. The black dots show the results for= 0, the same time series as usedFig. 1, while the red dots show
results forTp = 1.5, and the blue dots fdfy = 1.1, with A = 0.5, the same parameters as useBim 3.
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In order to check this, we have carried out the external operation givBedtion 3.2But instead of applying
the input to the fastest element, we apply the inpsin (¢/ Tp) at the slowest elemeit= L (Tp ~ 7). Then we
examine how this influences the fastest dynamids-atl.

Here we choose the same model parameters as in 3.2, and again study the change of the power spectra by tt
addition of the inputFig. 5shows the power spectra of the fastest elemgf depending on the input with different
period Ty, as plotted by a different color, far, L) = (1.93, 8). As shown, no input dependence appears for the
fastest element. This is true in general for- 3. (ForL = 2, there is direct, slight influence to the next element as
explained by adiabatic approximation.)

To sum up, the fast dynamics are not affected by the slowest element for any randg&yafomparingrigs. 2
and 5 one can see that the bifurcation cascade can be transmitted from the fast to slow elements but not from the
slow to fast elements. To further confirm this asymmetry, we have carried out the following numerical experiment.

Instead of the input at the fastest or slowest element so far, we apply thedisputr/ 7p) at the middle element
i = (L + 1/2), after the initial transients have died out. (Recall that the time scale diffefenee I(; +1/2) =
/Tiotal.) Then we examine how this input to the middle element influences both the fast dynainied and the
slow dynamics at = L.

Here we show an example by adopting the same parameter values, and thevahradi.e., 1.93) as fdfigs. 2(d)
and 5 The system size is set At= 15, i.e., Tiotal = v~ ~1 = 10 000.

Fig. 6shows how the corresponding power spectra-efl (a) and = L (b) depend on the input when the input
is applied at the intermediate element. Now, the dependence appears only in the slow dyinanii¢cut not at
i =1asinFig. 7.

Fig. 7 shows the Poincaré plot sliced ga{(r) = 0, where the inputd sin(z/ Tp) is applied at the intermediate
element withT; = /Tiota. The meaning of the colors is explained in the figure. As can be seen, the input dependence
is blurred in the faster elements but is clearly discernible in the slower elements.

These results clearly demonstrate that the influence of an input to an element (to cause bifurcation) is transferrec
not to faster but to slower elements.

4. Range of the time scale difference for the propagation
So far we have shown that for a rangergthe change of one element is propagated not to faster but to slower

elements. Here we quantitatively characterize the propagation, to see the range) @xplicitly.
In order to quantitatively estimate the change in the power spectra, we measure

1 logw? 1/2
Aia(To) = ﬁ/ (log P;(@)|1, — 10g P;(e)]0)2 d loge
logw; —logw;* Jiogw?
1 12
O\ (1og Pl | doo
= |log—3 log——==2) —| . 7
(ngf‘) /w <OgPi(w)|o) v ™)

whereP;(w)|o denotes the power spectrumsgfwithout input ati = 1 andP;(w)|r,, with A sin((2rt/ Tp)) applied

ati = 1. This specific definition is not important. Any quantity characterizing the difference between two power
spectra can be adopted. The region of the integrabizénf w < a)iB is near the time scale of each elemént

A; 1(To) expresses the difference of the dynamical property @f, induced by the inpud sin ((2t/ Tp)) ati = 1,

by a measure on the frequency space near the time $gai®r example, it takes a large value in the shift of
peak frequency or the bifurcation from limit cycle with sharp peak to chaos with broad peak, induced by the input
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Fig. 8. The change in the power spectra at the slowest elemeni(7p), are plotted as a function of/2. The marks correspond to the input
periods. The change of the spectra is observed arodhg T < 3.0.

application.Fig. 8 showsA, 1(Tp) are plotted as a function of/t. As shown inSection 3.2the change of the
spectra is observed aroundt i< t < 3.0.

4.1. LargerTiota With T = constant

Next we will show that the bifurcation cascade is maintained even if the total time scale difféfgRce
much larger. Here we keepconstant and increase the system diz thatTiora(= v271) is larger.Fig. 9shows
the power spectrum of;(r) with T = 1.93, i.e., under the same conditions ag-igs. 1(b) and 3(kh)while L is
chosen to be 20, and nofyta = 2.7 x 10°. Fig. 9a) shows the spectra without any input while (b) shows the
spectra at elements= 1, 10, 20 without any input again (black line) and with the inpusin ((z/ Tp)) applied at
i = 1 (red line) (o = 1.5). The common peaks among neighboring elements appear from high to low frequency
region. These peaks are shifted dependent on the input. The difference between the spectra with and without input
is maintained (or even amplified) down to the slowest element. As showigirg(b), the spectra of the slowest
element (the left figure) are changed after the input to the fastest element (the right one). (Compare the red line with
the block line.) The input dependence appears even when the slowest elemé&niriesGlower than the fastest as
shown in (b).

5. Bifurcation cascade

In Section 3we have shown how fast elements affect slow dynamics. Successive transfer of bifurcation to slower
elements gives a basis of the propagation of influence to slower elements, which we call the bifurcation cascade.
The direction of the cascade was shown to be the opposite to that expected from the adiabatic approximation.
Indeed, in the cascade process, coherence between the different time scales, is important, whereas such coherenc
is neglected in the adiabatic approximation. In this section, we study the conditions and the characteristic properties
of the bifurcation cascade, as is commonly observed in the above examples as well as in some other models.

5.1. Conditions

We now study under what conditions the slower dynamics depends on the faster dynamics. Based on simulations
of the present models for various parameters, the following three requirements are suggested.
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no input, (t,L)= (1.93,20)
103 T T T T | T T T

100

10

0.1

0.01

1 1 .l‘ I 1 1 1 1
107 1076 10°° 0.0001 0.001 0.01 0.1
(a) frequency @

(T,L)= (1.93,20),i=1, 10, 20

3 T T T
10 no input

To=1:

100 ¢

10 F

0.1F
0.01 F
1073

104 Fi=20
105 slowest element

106 T ' ' T ' T

107 106 1075 0.0001 0.001 0.01 0.1
(b) frequency

fastest element

Fig. 9. Power spectrum for; (r) with (z, L) = (1.93,20), i.e., Tiotal = 771 = 2.7 x 10°, whereA sin(t/ To) is applied at = 1 (Tp ~ T1).

(a) Spectra for each; (1) where each elemenis plotted with a different color and no input is applied. (b) The spectra with and without input

(A = 0.5 andTp = 1.5) are shown by black and red lines, respectively. In (a) frequency locking are observed in the various scales as shown in
Fig. 1(b). As can be seen, the difference between the black and red lines is apparent even for the slowest element. The arreasi®imthe

(b) indicate the basic frequency of each element there is no coupliagQ).
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Strong correlation First, strong correlation, due to frequency locking between nearest neighbors in the chain is
required, as can be seen, for exampldsion 1(b). When there is no such correlation, the adiabatic approximation
for the faster dynamics is valid. For example, for large valuesiofFigs. 2 and 8such coherence is not found,
and the slower element is not influenced by the fastest element. For small valtieasos shown irFig. X(f),
the degrees of freedom exhibiting chaotic instability per time scale is large due to the small time scale difference.
Accordingly, the chaotic instability is so large that the bifurcation cascade is disturbed by the mixing property.
Hence the cascade of bifurcations stops at some element with an intermediate time scale and cannot be propagate
to the slowest element.

Existence of bifurcatiorSecond, the fastest dynamics is required to exhibit a bifurcation as the control parameter
of the fastest element is changed. In our coupled Roéssler equation, a bifurcation from a limit cycle to chaos is
induced by the application of sin(z/ Tp) ati = 1. Such bifurcation is required to make switching to a different
mode of dynamics possible.

However, this second condition by itself is not sufficient for the propagation of the bifurcated dynamics to slower
elements since the control parameters of the slower element itself is not directly altered. Then, the transmission
must occur through strong correlation described at the first condition. Furthermore, the change of dynamics must
not damp through the propagation to much smaller elements, under the presence of the mixing property due to
chaos. Now the next condition is required.

Marginal stability. To maintain correlation to distant elements, existence of a critical state is useful, since the
correlation does not decay exponentially there. In the coupled Réssler equation, the marginally stable dynamics is
required to guarantee the bifurcation cascade. For exampler with.93 andd = 0.45 andr = 1.4, the dynamics
are only weakly chaotic, as shown by the black dotSiin 4. There, some structure with collapsed tori or doubling
of torus is discernible irFig. 4 (see the black dots). The dynamics are near the onset of chaos, and marginally
stability is sustained to all elememdhis is true whenever the propagation to the slowest element oécurs.

So far, in the present model we have chosen the same oscillators for each element with identical parameters
d, andt. However the bifurcation cascade is also expected to appear when this homogeneity is relaxed so that
heterogeneous elements are employed which satisfy the above three conditions. For example, in a model with
heterogeneous time scale variation, i€/T;_1 = t;, the bifurcation cascade appears if gllare set within
the range where the bifurcation cascade appears in the homogeneous time scale variation model described in
Section 3.2

Furthermore, to check the universality of the bifurcation cascade, we have also studied coupled Lorenz equations
with different time scales, as will be reportgid.]. There we have confirmed that the slowest element is influenced
by the change of the fastest element, when the above three conditions are satisfied. In the case, again the bifurcatior
cascade is observed.

5.2. Origin of asymmetry

Here we discuss why the asymmetry in the propagation of the bifurcation cascade appears, with regard to the
difference in time scales of the elements.

As shown inSection 3.4there is an asymmetry in the propagation of the bifurcation cascade. One possible origin
of this asymmetry lies in the chaotic dynamics itself.

5 The marginal stability often allows for the coexistence of the (locally) chaotic dynamics and regular dynamics, similarly as chaotic itinerancy
[7-10]

6 A direct criterion for marginal stability is existence of null value(s) exponents characterizing instability, such as Lyapunov exponents. Here,
however, the Lyapunov spectra are numerically difficult to measure, due to the huge difference in the time scales of the elements imposed by
the power law time scale variation in our model.



14 K. Fujimoto, K. Kaneko/Physica D 180 (2003) 1-16

For comparison, we have studied a coupled phase oscillator model without chaos, given by

Ti% =1-Ksin(x; — x;41) — Ksin(x; — x;1), (8)

whereT; = Tyt'~1. We setk, t such that the first condition describedSection 5.1is satisfied. First we choose
parameter values where chaos does not appear. In this case, we change éhlyafaeneters of the fastest and

the slowest elements. With this change, the dynamics of the next neighbor element can exhibit bifurcation. De-
pending on the magnitude of the parameter change, a bifurcation cascade may appear. In this case, however, tf
cascade propagates both from the slow to fast elements, and from the fast to slow elements. On the other hanc
when theK, T parameter values are chosen so that chaos appears while still preserving strong correlations be-
tween neighboring elements, the bifurcation cascade appears only in the one direction, from fast to slow elements
[11].

Now, we propose the following conjecture as a possible origin of the asymmetry. Typically longer and longer time
scales are involved in bifurcations from limit cycles to chaos. (Recall simply that chaos has “infinite period”.) In
most routes to chaos, for example, via the period doubling cascade or thraligtensional torus, low frequency
components appear along with the bifurcation to chaos. Higher frequency parts do not appear in general.

Therefore bifurcations change dynamics mostly in the low frequency region rather than in the high frequency
region Now we revisit experiment shownkig. 7. Due to the application of the input at the intermediate element with
T; = /Tiotal, @ bifurcation from chaos (black dots) to tori (blue dots) appears. According to the above discussion the
frequency region with frequencies below invexg&ota should be influenced, while frequencies above that should
not be strongly influenced. Therefore, the influence of the bifurcation on the neighboring elements will be felt more
on the slower element than the faster element. This is the origin of the asymmetry.

Note that the bifurcation cascade can propagate up to very large time scale diffefefgess described in
Section 4.1If this type of cascade exists, biochemical reactions on subsecond time scales, for example, can affect
dynamics on time scales as long as a day. This will be important when considering the generation of circadian
rhythms and long term memory dynamics from intra-cellular reaction dynamics.

6. Discussion and conclusion

In conclusion, we have shown that in a system of coupled chaotic elements with time scales which are distributed
according to a power law, the statistical properties of slower elements can be successively influenced by faster
elements. This propagation of information is realized when there is: (i) strong correlation between neighboring
elements such as frequency locking or anti-phase oscillation, (ii) a bifurcation in the dynamics of the fastest element
as its control parameter is changed, and (iii) a cascade propagation of this bifurcation guaranteed by marginal
stability. The mutual dependence of the elements in the chain is asymmetric in the sense that changes in the faste:
elements can influence the slowest elements, but that changes in the slowest elements hardly ever influence th
fastest elements. We note however that this asymmetry is in the opposite direction to the slaving piiheipdze
the fast dynamics is irrelevant to the slow dynamics. The three requirements described here are found to be valic
for the coupled Roéssler equation and Lorenz equation.

We conjecture that these requirements generally give conditions for the transfer of correlation in the presence of
chaos which amplifies the perturbation and can destroy the coherence. Although numerical calculations have beel
performed mainly for coupled Réssler equations, it is reasonable to expect that the propagation from faster to slower
elements as described in this paper is a universal property of systems of coupled chaotic dynamical elements witt
distributed time scales, since the explanations given throughout the paper seem to be quite general. In fact, also i
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the coupled Lorenz equations and coupled phase oscillators, such propagation can be observed and the above thre
requirements are found to be va]iL].

In chaotic dynamics, infinitely many modes are generated by nonlinearity, as shown in broad power spectra. Such
modes are transferred to modes of the next element with a different time scale, though nonlinear coupling. In the
present paper, we adopted 1z; andx;_1z; (Eq. (4)), with the same form of the nonlinearity in the Réssler equation,
namelyxzin Eqg. (3) On the other hand, if we adopt the nonlinear coupling suolpas; or y;+1y; which a single
Rossler equation does not contain, the bifurcation cascade cannot be observed. It seems that the mode coupling tc
the next element (with a different time scale) works better when the coupling has the same form as given in the
(uncoupled) single element. Clarification of this point remains to be an important future problems.

Biological systems often incorporate multi time scale dynamics with changes on faster time scales sometimes
influencing the dynamics on slower time scales leading to various forms of ‘memory’. Cells can adapt to external
conditions and maintain memory over long time spans through changes in their intra-cellular chemical dynamics.
In neural systems, fast changes in the input can be kept as memory over much longer time scales when short-term
memories are fixed to long-term memories (for a viewpoint on dynamic memorf9 468). In a similar way, a
recently proposed dynamical systems theory of evolution proposes the fixation of phenotypic change (by bifurcation)
to slower genetic chandé3].

This mechanism for the propagation of bifurcations from faster to slower elements will be relevant for the study
of such kinds of biological system, and it will be interesting to find out whether the three conditions on the dynamics
that we proposed are satisfied as well. In physics, the possibility of influencing the slower dynamics by controlling
the faster elements through a cascade process will be important for the control of turbulence in general.
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Appendix A. Another example for coupled Rossler equations

We have studied some models with nonlinear coupling terms without divergence. An example for a coupled
Rdssler equation, introduced By. (4) is given by
0 -04 -03
DY=| 03 04a O |, di=di,  di=(d)> (A1)
03 O 0.3r
There are nonlinear coupling terms;1, ziXi—1, XiZi+1, XiZi—1, Zi+1Xi+1, Zi+1Xi—1, Zi—1%i+1, andz;_1x;_1.” The
phenomena reported in the present paper are again observed in a wide range of the coupling strength, namely,
d] > 0.38 under(r, L) = (1.93,8) andr = 1.4 in Egs. (4) and (A.1)

Of course, the behavior of the models in the present paper is observed over some range of the coupling parameters
d g gn n
DY, d7, d5 andds.

7 Such types of the coupling as. 1z;—1 are also adopted in the shell mog2].
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