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Replication and differentiation of spots in a class of reaction–diffusion equations are studied
by extending the Gray–Scott model with self-replicating spots so that it includes many chem-
ical species. By examining many possible reaction networks, the behavior of this model is
categorized into three types: replication of homogeneous fixed spots, replication of oscillatory
spots, and differentiation from “multipotent spots”. These multipotent spots either replicate
or differentiate into other types of spots with different fixed-point dynamics, and as a result,
an inhomogeneous pattern of spots is formed. This differentiation process of spots is analyzed
in terms of the loss of chemical diversity and decrease of the local Kolmogorov–Sinai entropy.
Initial condition dependence and robustness of a pattern against macroscopic perturbation are
also analyzed. Relevance of the results to developmental cell biology is also discussed.
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1. Introduction

In biological pattern formation, compartment struc-
tures for a cell are spontaneously organized, which,
not only reproduce themselves stably but also have
the potentiality to be differentiated from other
types of cells. Furthermore a higher level spatial
structure is arranged by these differentiated cells,
so that several types of tissues are formed as pat-
terns by differentiated cells.

In physics and chemistry, reaction–diffusion
systems are adopted as a basic and standard tool
for pattern formation. In spite of the success of
this approach, it is not yet sure if such an approach
can explain cell differentiation and development, in-
cluding differentiation from a stem cell. Then it is
important to elucidate whether a reaction–diffusion
system is enough to discuss a basic level of these
biological problems, or some other additional dy-
namics have to be included. For a first step to an-

swer this question we study here if there exists a
reaction–diffusion system that satisfies the follow-
ing two properties.

• Compartment is formed spontaneously through
chemical reactions, and can reproduce itself
stably.

• Simultaneously, chemical state of the compart-
ment spontaneously differentiates into a few other
types, through interaction among the compart-
ments. These differentiated compartments form
a spatial pattern.

As for the first point, spot structure can be
regarded as a kind of compartment. For self-
replicating spot patterns, there is a prototypical
model, that is, the Gray–Scott (GS) model [Gray
& Scott, 1984]. It is a simple chemical reaction–
diffusion system with two chemical species, which
can exhibit self-replicating spots [Pearson, 1993;
Petrov et al., 1994; Rasmussen et al., 1996]. Indeed,
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such replicating spots have also been found in ex-
periments [Lee et al., 1994; De Kepper et al., 1994].
An analytical solution for such spots and asymp-
totic analysis for the splitting phenomenon have
been developed [Reynolds et al., 1994, 1997; Doel-
man et al., 1997, 1998], while self-replicating spot
dynamics has been mathematically studied by us-
ing global bifurcation analysis [Nishiura & Ueyama,
1999, 2001]. In the model systems studied so far,
however, only a single type of spot appears, and
there is no differentiation to create different types
of spots [Wackerbauer et al., 2000].1

On the other hand, as for the second require-
ment, dynamical systems studies for cell differen-
tiation have recently been developed by assuming
the existence of cell compartment itself [Kaneko
& Yomo, 1994, 1997, 1999; Furusawa & Kaneko,
1998a, 1998b, 2000]. There, each cell has com-
plex internal chemical reaction dynamics, which
interacts with each other through diffusion (or
transport) of chemicals. These cells are assumed
to divide as the total amount of chemicals within is
increased. Under these general assumptions, cell
differentiation is found to be generally observed
with the increase of the number of cells. The dif-
ferentiated types as well as the number distribution
of such cell types are shown to be robust against
perturbations. Furthermore, hierarchical differen-
tiation from a stem-type cell is found to occur
spontaneously. This stem-type cell has totipotency,
i.e. potentiality to produce all other cell types, while
the types that appear later maintain ability to pro-
duce only a limited type of cells. As the differentia-
tion progresses, this multipotency is lost, and each
cell produces its own type, as is called determina-
tion in cell biology. This cell differentiation process
is consistent with the real biological phenomena.

Then it is natural to ask if these two ap-
proaches can be combined to make possible both
the spontaneous formation of compartments and
differentiation of the compartments. For this pur-
pose, we extend the Gray–Scott model to include
many chemical species, that form complex reac-
tion network. Here, in order for spots to continue
replication and differentiation, their division pro-
cess and their internal complex chemical dynamics
must somehow organize a proper relationship. By
taking a rather complex reaction network, we study
how such a relationship is organized.2

After introducing our model in the next sec-
tion, we investigate the model by choosing a variety
of random reaction networks in Sec. 3. There the
dynamical behaviors of our model are classified into
three types, that is the formation of homogeneous
fixed point spots, oscillatory dynamics of spots, and
differentiation of spot types. Two quantities are in-
troduced to characterize dynamical and statistical
aspects of the spot differentiation.

Since we are interested in the differentiation
type, we analyze the differentiation process in more
detail in Sec. 4, where we examine initial condition
dependence and robustness of the differentiation
process against macroscopic perturbation. While
the classification to the three types is carried out for
the one-dimensional case, we also confirm that this
classification is valid for the two-dimensional case,
by giving some examples of differentiation dynam-
ics. Finally, in Sec. 5, we discuss relevance of our
results to the problem mentioned in the beginning.

2. The Model

The Gray–Scott (GS) equation.

∂u(t)

dt
= Du∇2u(t)− u(t)v(t)2 +A(1.0 − u(t))

∂v(t)

dt
= Dv∇2v(t) + u(t)v(t)2 −Bv(t)

(1)

is thoroughly studied as a reaction–differentiation
system that allows for replicating spots. To study a
system that both allows for replication and differen-
tiation of spots, we need to extend the GS equation
to include more degrees of freedom. Although there
can be many possibilities for this extension, we use
the following model here [Takagi & Kaneko, 2001];

∂ui(x, t)

∂t
= Du∇2ui(x, t) +A(1− ui(x, t))

−ui(x, t)
Q∑
j=1

Q∑
k=1

W
(j,k)
i vj(x, t)vk(x, t)

∂vi(x, t)

∂t
= Dv∇2vi(x, t)−Bvi(x, t)

+ vi(x, t)
P∑
j=1

Q∑
k=1

W
(i,k)
j uj(x, t)vk(x, t)

(2)

1They also studied a 3-degrees-of-freedom version of GS model and found phase separation of domains by chaos. Differentiation
of spots from a multipotent chaotic spot has not been observed there.
2Of course, present organisms adopt more sophisticated mechanisms. Here, we are interested in a minimal condition for
differentiation process.
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Fig. 1. Schematic representation of our model.

Here P kind of resource chemicals and Q kind of
product chemicals exist. ui(x, t) denotes the con-
centration of the ith resource chemical and vi(x, t)
that of the ith product chemical, while the term

with the connection matrix W
(j,k)
i represents com-

plex catalytic reaction network by these chemicals,
which takes 1 if there is a reaction path, and 0
otherwise. Each resource chemical ui(x, t) is pro-
duced at a constant rate, A, while both the re-
source and product chemicals decay at some rates.
The diffusion constants of the resource and prod-
uct chemicals are denoted by Du and Dv, respec-
tively. We assume that resource chemicals have
larger diffusion constant than product ones, which
is the necessary condition for spot replication in
GS equation. For simplicity, we assume that these
constants are independent of chemical species.

This model is a variant of that proposed by
Cronhjort and Blomberg [1997], and is reduced to

the GS model by setting P = 1, Q = 1, W
(1,1)
1 =

1. Although we have studied several networks by
changing P and Q, we mainly present the case with
P = 3 and Q = 20, here. Schematic representation
of our model is shown in Fig. 1.

The reaction matrix W is chosen randomly
under the constraint that the reaction for repli-
cation of each product is catalyzed by k (0 ≤
k ≤ K) randomly chosen products. If there are
catalytic reactions the path number K is chosen to
be K = 4, 5, 6. Within this choice of K values,
however, the qualitative behavior does not depend
on specific K values. Hence we show mainly the
results from the simulation of the case with K = 4.

The behavior of our model depends on the
choice of the reaction network W , which repre-
sents a prototype of complex intracellular reaction
network. We studied a huge number of equations
from different reaction matrices. The behavior of
these equations will be classified into a few types of
dynamics of the system.

Here, specific numbers of chemicals P and Q
are not important for the qualitative behavior. It
should be noted, however, that the differentiation
case we study is hardly observed, when these num-
bers are small (as long as the reaction network is
chosen randomly). As for the spatial dimension, we
mostly study the one-dimensional case and briefly
discuss the two-dimensional case later.

3. Simulation Results

In this section we classify the behavior of the model
(2), by carrying out numerical computations for
a variety of randomly chosen reaction networks
W . Although we have studied several thousand
randomly chosen reaction networks, the observed
behaviors can be classified into the following three
types that will be shown.

3.1. Initial conditions and methods

For each set of simulations, a reaction network
was fixed, and also the parameter values were set
throughout as Du = 2.0, Dv = 0.020, A = 0.020
and B = 0.060 or 0.070, while later we discuss bi-
furcation against the change of the parameters A
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Examples of snapshot patterns of ui(x, t) and vj(x, t) for each case. The states of spots are as follows: (a and
b) homogeneous fixed point case, (c and d) nonchaotic oscillation case, (e) spatio-temporal intermittency, (f) spatio-temporal
chaos, (g) case I differentiation, (h) case II differentiation. Here we use a different color for each chemical species. Each
example uses a different reaction network. The parameter values are Du = 2.0, Dv = 0.020, A = 0.020, and B = 0.060.
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and B. These parameters were set at typical val-
ues where the spot structure itself is maintained.
Indeed, the parameter values are close to those val-
ues at which spot structure exists in the original
GS model. We used ∆t = 0.010 and ∆x = 1.0
for the numerical integration, while we have con-
firmed that the numerical results are qualitatively
unchanged by using smaller values for ∆t.

In general we choose an initial condition, so
that v 6= 0 only at a localized spatial domain, where
two simple spots are formed. These spots then pro-
duce additional spots, and the process continues un-
til eventually spots are distributed throughout the
entire system. Here, we first classify the (transient)
dynamics of our model starting from such initial
conditions, while in the next section we study the
evolution from random initial conditions also.

Examples of the behavior of dynamics with spot
division are given in Fig. 2 as (successive) snap-
shots. In Fig. 2(a), spots are replicated homoge-
neously, as in GS equation. In Figs. 2(g) and 2(h),
spots differentiate into two types as they replicate.
Some other examples of nonchaotic oscillation are
also shown in Figs. 2(c) and 2(d), spatio-temporal
intermittency is shown in Fig. 2(e), and spatio-
temporal chaos is shown in Fig. 2(f).

To characterize these spot dynamics quantita-
tively, we introduce two quantities measuring the
diversity of these dynamics. One is the chemical
diversity Si(nT ), which is defined by

Si(nT ) = −
Q∑
j=1

P ji (nT ) log(P ji (nT )) ,

with

P ji (nT ) =
v
j
i (nT )

Q∑
j=1

vji (nT )

and

v
j
i (nT ) =

(
1

T

) nT∑
t=(n−1)T

v
j
i (t), (n = 1, 2, . . .) ,

where vji is the jth product concentration at the
center of the ith spot. The interval T used for the
average is chosen to be on the order of a time scale
for spot division. Here, the interval T was set to
1000, but the results are insensitive to this value
as long as it is set at the order mentioned above.
This measure shows the effective chemical diversity
of spots between successive divisions.

The second quantity is the “local KS-entropy”
hi of the ith spot. This quantity is defined as the
sum of positive local Lyapunov exponents [Kaneko,
1989], obtained by using the tangent vectors for
chemical dynamics restricted only to the region
around a spot. Here it is computed from the prod-
uct of the Jacobi matrices at each spot over time
T = 1000, by neglecting the diffusion term to the
outside of the spot. The spatial size of pixel is fixed
at 7. This measure shows the variety of intra-spot
chemical dynamics between successive divisions.

3.2. Classification of the dynamics

With these quantities, the spot dynamics are clas-
sified into the following three types. Among three
thousand reaction networks we have studied, the
fraction of each case is as follows: (i) 87.8% (ii) 10%
(iii) 2.2% (case I 2%, case II 0.2%).

(i) Fixed-point type

In this type, the set of concentrations within each
spot converges either to the same fixed point or
to a couple of fixed points. In the former case,
each spot has identical fixed chemical concentra-
tions. The spots are separated by equal distance
(see Fig. 2(a)). In the latter case, different spots
are formed, which use different sets of v for a given
resource ui (i = 1 ∼ P ), and the interaction be-
tween the different spots through chemicals are not
important for the dynamics. Here, again, spots are
separated by equal distance (see Fig. 2(b)).

(ii) Oscillatory type

This type is further classified into nonchaotic, in-
termittent, and highly chaotic cases, depending
on the choice of reaction networks and parameter
values.

• Non-chaotic oscillation

The spatial pattern of spots is fixed in time, while
within each spot, chemical concentrations oscil-
late periodically or quasiperiodically in time. In
some reaction networks, there appears propagating
waves, following the difference of the phase of oscil-
lations by spots (see Fig. 3).

• Spatio-temporal intermittency (STI)

The spatial pattern of spots is clearly separated
into laminar and burst regions to form some char-
acteristic patterns (see Fig. 4). Each spot continues
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(a) (b)

(c) (d)

Fig. 3. Examples of spatio-temporal pattern of chemical diversity Si(nT ) and local KS entropy hi for propagating wave
pattern cases ((a) and (c); (b) and (d)). Two examples from different reaction networks are plotted. (Since the average of
local KS entropy requires some time steps, h is plotted only for time > 3000). These quantities of the half-space (from the
center to the right edge) pattern are plotted using a gray scale. All the examples here and Figs. 4, 6 and 7 adopt the same
initial conditions, i.e. at t = 0 only a single spot is put with ui = 0.50 and vj = 0.250 for all i and j. The system size is
N = 1000. Spot structures are preserved through the simulations. Throughout the paper, the diversity S and local KS entropy
h are computed by taking a spacetime pixel with space = 7 and time = 1000.

(a) (b)

Fig. 4. An example of the spatio-temporal pattern of chemical diversity Si(nT ) and local KS entropy hi for STI case. Only
half of the pattern from the center to the right edge is also plotted using a gray scale as in Fig. 3.
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Fig. 5. The distribution of the size of spatial laminar region for STI case, shown in Fig. 4. The size is computed as that
of spatial domain that is laminar, at every T = 1000 step, while the region with smaller chemical diversity Si(nT ) < 1.75 is
regarded as laminar. It obeys the power law form.

to exhibit regular dynamics over some time, and
then switch to chaotic dynamics, and this alterna-
tion is repeated. During this switching dynamics,
the spot structure itself is maintained. The inter-
mittent alternation between regular dynamics and
chaotic bursts is known as spatio-temporal intermit-
tency (STI), which has been studied extensively in
coupled map lattices (CML) [Kaneko, 1985, 1989;
Chaté & Manneville, 1988]. In STI, the distribu-
tion of the size of laminar region obeys the power
law form, with power around 1.67 (see Fig. 5). We
have also computed the laminar size distribution in
our case, and the power law behavior is again ob-
served with the exponent around the above value,
although we have not determined its precise value
yet. The pattern here will be regarded to belong to
the same universality class as STI in CML.

For a given reaction network, by changing the
parameter values A or B, we have observed the
phase transition from fixed point pattern of spots to
spatio-temporal intermittency, and then to spatio-
temporal chaos (see Fig. 6).

• Spatio-temporal chaos (STC)

The chemical concentrations in each spot change
chaotically in time, around a heteroclinic orbit (see
Fig. 7), but the spot structure itself is not damaged
for most of the time. At any instance, the chemi-
cal concentrations vary from spot to spot, but their
long-term average is almost identical for all spots.
In this case, spots not only replicate themselves

but also annihilate sometimes [Nishiura & Ueyama,
2001].

(iii) Differentiation type

Spots differentiate into a few types. This case is fur-
ther classified into case I and case II differentiations,
depending on the choice of reaction networks.

• Case I differentiation

In this case, with time, spots differentiate into dif-
ferent types, namely, inner and outer types (see
Figs. 8(a) and 8(c)). For the inner type, the set of
chemical concentrations converges to a fixed point,
which contains less resource chemicals. Outer type
spots exhibit either fixed-point, periodic, or chaotic
oscillations, depending on the reaction matrix and
the parameter values.

Here, the diversity of chemicals is larger for the
outer type. The inner type has a smaller chemical
diversity, and the local KS entropy is zero, as the
dynamics fall onto fixed points. For the parameter
values we used, the local KS entropy of the outer
part can be either positive or zero, depending on
the network. (The sign also changes depending on
the parameter values.)

• Case II differentiation

Here, spots differentiate into two types, as in case I.
Spots of the initial type exhibit chaotic oscillations.
After a split of a spot, it produces either the same
type of spot (with chaotic oscillations) or a different
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(a) (b)

(c)

Fig. 6. Examples of the spatio-temporal pattern of chemical diversity Si(nT ) for (a) stationary fixed point pattern, (b) spatio-
temporal intermittency and (c) spatio-temporal chaos. Here the reaction network is fixed, and the parameter valueB is changed
as (a) 0.06, (b) 0.057 and (c) 0.045, while the parameter A is fixed at 0.02.

(a) (b)

Fig. 7. An example of the spatio-temporal pattern of chemical diversity Si(nT ) and local KS entropy hi for STC case. Only
half of the pattern from the center to the right edge is also plotted using a gray scale as in Fig. 3.
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(a) (b)

(c) (d)

Fig. 8. Chemical diversity Si(nT ) and local KS entropy hi for case I and case II differentiation, where each figure adopts
different reaction networks. (a) and (c) are examples of case I differentiation while (b) and (d) are examples of case II
differentiation. A part of snapshot patterns of ui(x, t) and vj(x, t) is also plotted for each case of (a) and (b). Here we use a
different color for each chemical species. Only half of the pattern from the center to the right edge is also plotted as in Fig. 3.
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(a) (b)

Fig. 9. An example of the temporal course of differentiation, where change from weakly chaotic dynamics state to a fixed
point progresses. (a) Gives an example for the case I differentiation while (b) gives that for the case II differentiation. Time
series of all v at a given spatial position (around the peak position of a spot) are overlaid. Here we use a different color for
each chemical species.

type with fixed-point dynamics. Here, differentia-
tion is not governed by its inner/outer location, but,
rather, spots with chaotic oscillations appear peri-
odically in space with some interval (see Figs. 8(b)
and 8(d)). Thus in this case there is pattern forma-
tion on two distinct spatial scales, that of the spot
size and that of the average distance between two
chaotic spots. In this case, the chaotic spots have a
larger chemical diversity, while the other type has
much smaller chemical diversity. In the first type,
chaotic dynamics are maintained, as is confirmed by
positive local KS entropy, while for the other types,
the local KS entropy vanishes.

Both for cases I and II differentiations, dy-
namics of chemical concentration in a spot exhibit
a change from weakly chaotic oscillation to fixed
point. This differentiation process occurs within a
short time span. Hence, each spot type is clearly
classified into two types, except for a very short
transient process for the differentiation (see Fig. 9).

3.3. Classification by statistical
measures

Distributions of the two quantities introduced in
Sec. 3.1 provide a useful measure on statistical prop-
erty of spot pattern dynamics for each case. The
distribution of the chemical diversity S has a sin-
gle peak in the fixed point type, while it has two
peaks in the oscillatory case with propagating wave,
STI, case I and case II differentiations. In the lat-
ter three cases, the sharper peak at a lower S value

corresponds to the spot dynamics with fixed point.
The broader peak at a higher S value corresponds
to the chaotic spot dynamics. For the STI case, the
tails of two peaks merge. In STC, the distribution
is broad to form a continuous spectrum, without
any sharp peaks (see Fig. 10).

From the distribution of h, two peaks in the
negative range are observed for the fixed point type,
some peaks in the negative range for the oscillation
type. The distribution is broad, ranging from neg-
ative to positive values, for the oscillatory motion
with propagating wave. Two distinct peaks are ob-
served in STI and case I differentiation. For STI,
there is a sharp peak around h = 0, and the two
peaks partially merge. In the case II differentia-
tion, the distribution is broader than that for the
case I differentiation. In STC case, the distribution
has a larger portion at positive values, and has a
smooth one-humped shape (see Fig. 11).

To sum up, each case of spot dynamics can
be classified by statistical distributions of the two
quantities.

4. Further Analysis of the
Differentiation Case

The difference between the two cases I and II lies
in the ability for spontaneous differentiation. In
case I, spots located in the outer region are main-
tained only through the flow of chemicals from the
outside of the region where spots exist. The differ-
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Fig. 10. The distribution of chemical diversity Si(nT ) for each case. (a) Homogeneous fixed point, (b) nonchaotic oscillation,
(c) spatio-temporal intermittency, (d) spatio-temporal chaos, (e) case I differentiation and (f) case II differentiation. The
distribution is obtained by sampling Si(nT ) for each example over all simulation time (from t = 0 to t = 30000 or t = 40000),
where each Si is computed using a spacetime pixel with space = 7 and time = 1000.
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Fig. 11. The distribution of local KS entropy hi for each case. (a) Homogeneous fixed point, (b) nonchaotic oscillation,
(c) spatio-temporal intermittency, (d) spatio-temporal chaos, (e) case I differentiation and (f) case II differentiation. The
distribution is obtained by sampling hi for each example over all simulation time (from t = 0 to t = 30000 or t = 40000),
where each hi is computed using a spacetime pixel with space = 7 and time = 1000.
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entiation from the outer region into the inner region
continues if the dynamics in the outer region remain
to be chaotic. However, if the dynamics of the outer
spots converge to a fixed point, the differentiation
is terminated, and as a result, growth of the inner
part ceases.

On the other hand, for the case II, the num-
ber ratio of the two types of spots remains almost
constant (with small fluctuations). In this case,
differentiation from chaotic spots continues with
some rate, and the spot is distributed in space at
some rate. The pattern formed by the different
types of spots is also independent of the boundary
conditions.

Since we are interested in this differentiation
process, we study this type in more detail, with
regards to the phase diagram, initial condition de-
pendence, and robustness of pattern against macro-
scopic perturbation. Although we use a few specific
reaction networks showing spot differentiation, the
qualitatively same results are obtained for a variety
of reaction networks.

4.1. Phase diagram

Now we study the parameter dependence of each
type of dynamics, in particular, the bifurcation di-
agram against the change of the parameters A and
B, while keeping the other parameter values and
initial conditions fixed.

First, for the homogeneous type, the bifurca-
tion diagram is qualitatively same with that for the
original GS equation. Typical phase diagrams for
differentiation type are shown in Fig. 12. Note that
for the case II differentiation, there appears a transi-
tion to case I, as the parameters are changed, while
there are some cases in which only case I differenti-
ation exists in the phase diagram. Generally, as the
decay rate for vi is decreased, there are bifurcations
from a uniform system to a system with a single
type of spots and then finally to turbulent spatial
structure without any clear spots. This sequence
of bifurcations is observed generally for a variety of
reaction networks W .

Now, we investigate the transition from the
case II differentiation to case I in more detail. In
the example of Fig. 12(b), as the parameter A is
changed from 0.026 to 0.028 with fixing the pa-
rameter B = 0.06, there appears a transition from
case II to case I differentiation. This transition pro-
cess is represented by the increase of the distance
of the neighboring chaotic spots as A is varied. At
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Fig. 12. Rough phase diagrams for the network adopted in
Fig. 8(a) (case I, (a)), and Fig. 8(b) (case II, (b)). For a given
network, the temporal evolution is computed for a fixed ini-
tial condition with two spots with ui = 0.50 and vi = 0.250
for all i. The diagram is obtained by changing A and B by
0.0025. The phases are denoted as follows: N : spatially uni-
form state with ui = 1 and vj = 0 (without any spots). F :
fixed point spots. C: chaotic spots. D1: case I differenti-
ation. D2: case II differentiation. T : chemical turbulence,
without clear spots.

A = 0.026, the maximal distance between neigh-
boring chaotic spots (Lmax) is almost equal to the
total system size and all the spots except for those
at the two edges are fixed point type. Hence the
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Fig. 13. (a) The ratio of the maximal distance of the neighboring chaotic spots (Lmax) to the system size (N), plotted as a
function of the parameter A for case II differentiation (by fixing the parameter at B = 0.06). The transition from the case II
differentiation to case I is seen as the increase Lmax to N . Results from the system size N = 2000, 3000 and 4000 are overlaid,
which suggests that the transition is independent of the system size. (b) The number ratio of chaotic spots to the total number
of spots, plotted as a function of the parameter A for the case II differentiation (by fixing the parameter B = 0.06). Again
the results from the system size N = 2000, 3000 and 4000 are overlaid.

separation from outer to inner type is resulted,
which means the case I differentiation. At A =
0.028, Lmax is small and there are many chaotic
spots within the domain where spots exist.

The decrease of Lmax with the increase of A is
shown in Fig. 13(a), and this form is independent
of the total size of the system. The transition from
case II to I differentiations is now represented as
the increase of Lmax up to the system size. In the
case II differentiation, the number ratio of the two
types of spots remains nearly fixed, and is indepen-
dent of the system size, although there remain some
small fluctuations [See Fig. 13(b)]. In this case, dif-
ferentiation from chaotic spots continues with some
rate, and the spot is distributed in space at some
rate. The pattern thus formed by these two types
of spots is independent of the boundary conditions.

4.2. Initial condition dependence

In the differentiation type, spots with fixed point
dynamics no longer differentiate to the other type
with chaotic dynamics, but only replicate. The dif-
ferentiation from the chaotic type is irreversible.
Hence, if there are only spots with fixed point dy-
namics in the beginning, no differentiation occurs
and the pattern with homogeneous spots is ob-
tained. On the other hand, the pattern with chaotic

spots is recovered from a single chaotic spot. For
example, when a single chaotic spot is selected from
a final pattern, and is used as an initial condition,
then almost the same differentiation pattern is re-
covered from this single chaotic spot (see Fig. 14).

Accordingly, the differentiation of spots de-
pends on the choice of initial conditions. We now
study this initial condition dependence of patterns
in more detail, for the case II differentiation.

First we adopt initial conditions with vi 6= 0
only within a restricted interval so that two spots
are formed. Chemical concentrations of vi are set
to be at random, from which the initial chemical
diversity S is computed. For initial conditions with
sufficiently large chemical diversity, a chaotic spot
will appear, while the ratio to have such chaotic
spots decreases as the initial chemical diversity
is decreased (see Fig. 15). Once a chaotic spot
does appear, the differentiation process we have
discussed always follows in the parameter regime
for the case II differentiation. The resulting pat-
tern has almost the same fraction of chaotic spots.

As a next choice of initial conditions, we put
many spots all of which have the same initial con-
dition so that there exists high chemical diversity
enough to produce chaotic spots. In this case, all
the spot dynamics switch to the type of fixed point
dynamics. In other words, the state with all chaotic
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Fig. 14. An example of snapshot pattern of ui(x, t) and vj(x, t) after “transplant experiment” of (a) single fixed point spot
or (b) chaotic spot of the top figure to the new medium. The top pattern is obtained after the evolution from a single spot,
for the case II differentiation. For each of the lower figures, a spot from the top figure is used as an initial condition. If there
is only a spot with fixed point dynamics in the beginning, no differentiation progresses (a). On the other hand, the pattern
with differentiation is recovered from single chaotic spot (b).
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Fig. 15. The relation between initial chemical diversity and the frequency of occurrence of differentiation events for the case
II differentiation. As initial conditions, chemical concentrations of v are chosen randomly only in a small interval supporting
two spots (in the other region they are set at 0). Then chemical diversity S(0) at the center of space is computed by this initial
condition. Each histogram is constructed from 50 samples whose initial conditions fall in each bin of the chemical diversity.
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Fig. 16. Initial condition dependence of the case II differentiation. Starting from initial conditions with random distribution
throughout the whole system, the temporal evolution is computed, to compute the final fraction of chaotic spots. In each
sample, the initial variance of v is varied by setting the initial concentration as vi(x, 0) = 0.25+0.05×randh(x) where randh(x)
is a uniform random variable over [−h, h]. By changing the integer value h, the initial variance of v is changed. For each value
of h, 50 samples of initial conditions are chosen to get the histogram of the final number of chaotic spots. The distributions
for (a) h = 1, (b) h = 2, (c) h = 3, (d) h = 4 and (e) h = 5 are plotted.

spots is unstable, and due to the symmetry of ini-
tial condition, all the spots fall into a fixed point
through the interaction of spots.

Note that the fraction of chaotic spots is not
identical, if we do not start from a few chaotic spot
initial conditions. For example, we study the case
that product chemicals v are randomly distributed
throughout the whole system initially. When the
variance of the initial concentrations of v is large,
the fraction of chaotic spots changes by initial con-
ditions. Thus, the final pattern (i.e. the fraction
of chaotic spots) has strong initial condition depen-
dence. On the other hand, if we start from ini-
tial conditions with just two chaotic spots, the final
fraction of chaotic spots is almost the same (see
Fig. 16).

4.3. Spot differentiation in
two-dimensional case

So far, we studied the reaction–diffusion Eq. (2) in
one-dimensional space. It is interesting to check

if the spot differentiation also occurs in a higher
dimensional case. Here we take the same reac-
tion network for the previous example, and com-
pute the partial differential equation (2) for a
two-dimensional case. Again we find both case I
and II differentiations by changing the parameters
A and B (see Figs. 17 and 18). In the case II, the
location of chaotic spots form a complex pattern as
in Fig. 2(h).

5. Discussion

In the present paper, we have shown differentiation
of spots in a class of reaction–diffusion equations.
Here one type of spots replicates or differentiates
into another type of spot that has fixed point
dynamics. Since the first type can have multipo-
tency, i.e. the ability to produce the other type
of spots, it can be regarded as a “stem-cell-type”
spot. This differentiation from a stem-cell-type to
fixed point spots is generally observed for a class of
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(a) (b)
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(e)

Fig. 17. An example of case I differentiation in a two-dimensional space. A series of snapshot patterns is plotted ((a) t = 600,
(b) t = 900, (c) t = 1500 and (d) t = 1800). Chemical diversity Si(nT ) at the time for the snapshot pattern (d) is represented
in (e). The parameter values are A = 0.02, B = 0.15, Du = 3.0 and Dv = 0.03.
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Fig. 18. An example of case II differentiation in a two-dimensional case. A series of snapshot patterns is plotted ((a) t = 600,
(b) t = 1200, (c) t = 1800 and (d) t = 3600). Chemical diversity Si(nT ) at the time for the snapshot pattern (d) is represented
in (e). The parameter values are A = 0.02, B = 0.08, Du = 5.0 and Dv = 0.05.
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reaction–diffusion equations. Since the pioneering
study of Turing [1952], there has been a great deal
of efforts dedicated to relating reaction–diffusion
systems to morphogenesis in biological systems.
However, the systems studied so far are not enough
to describe the complexity observed in biological
pattern formation, which includes cell differentia-
tion from stem cells, determination of fixed types,
irreversibility and robustness in development. Our
reaction–diffusion equations studied here give a first
example towards this direction.

In both cases of differentiation, spot types
with smaller diversity and fixed-point dynamics
are differentiated from the initial type with high
chemical diversity and chaotic dynamics. The dif-
ferentiation process here reminds us of that from
stem cells to determine differentiated cells in biolog-
ical development. In a biological stem cell system,
initial cell types can either replicate or differenti-
ate into different types. Through the differentia-
tion, multipotency comes to be lost, and eventually
cell types that can only replicate are produced. In
[Furusawa & Kaneko, 2000], appearance of stem cell
is discussed as a natural consequence of dynami-
cal systems with intracellular biochemical reactions
and cell-to-cell interaction, by assuming a cellular
structure itself. In the present paper, it is shown
that such “stem cell” systems naturally appear in
a reaction–diffusion system, without assuming the
cellular structure in advance. When differentiation
is observed in our model, the diversity and local
KS entropy always decrease as the differentiation
progresses [Furusawa & Kaneko, 2000]. Differen-
tiation into a spot with fixed-point type dynamics
is irreversible. This is consistent with the loss of
multipotency observed in real cellular systems.

With regard to a broader context of the study
of reaction–diffusion equations, it is interesting to
note that a pattern with two distinct spatial scales
is formed in case II differentiation, i.e. the size of
spot and the mean distance between two chaotic
spots. In a variety of pattern formation in na-
ture and society, hierarchical structure with sev-
eral spatial scales is observed. Our example gives a
demonstration that such structure is formed from a
reaction–diffusion equation.

Also it is interesting to note that the behaviors
from a variety of reaction networks are classified
just into the three types, although we have studied
more than a thousand reaction networks. It will
be important to classify possible types of spatio-
temporal patterns that appear when the complex-

ity of the internal reaction dynamics is increased.
On the other hand, to find the minimal number of
chemicals for differentiation process in this model,
and to elucidate the mechanism of the differentia-
tion remain to be a future problem.

Since our model includes only reaction and
diffusion, without any other type of mechanism,
the present study is also relevant to the study of
prebiotic evolution leading to proliferation and di-
versification of cells. Indeed, the importance of au-
tocatalytic nature of the reaction networks studied
here is already stressed in the hypercycle proposed
by Eigen and Shuster [1979]. On the other hand,
possible relevance of the spatial structure in hy-
percycles to resist parasites [Bresch et al., 1980] or
short cuts of network structure [Niesert et al., 1980]
has been discussed from various contexts [Cron-
hjort & Blomberg, 1997; Boerljist & Hogeweg, 1991;
McCaskill, 1997; Chac̀on & Nuño, 1995]. In con-
trast to the previous studies, the present study ex-
plains not only the robust replication process but
also the diversification to different cell types.

Since Turing’s pioneering study, the reaction–
diffusion system has been studied in depth and the
analytic tools have already been developed for those
with few degrees of chemical species. Reaction–
diffusion equations with many degrees of freedom
can produce a variety of novel spatio-temporal
patterns. In the present paper, we have shown re-
production and differentiation of spots, irreversible
differentiation process with the loss of diversity of
dynamics, initial condition dependence of pattern
formation, and robust pattern formation against
macroscopic perturbation. In future, it will be im-
portant to explore further possibility in reaction–
diffusion equations, in connection with development
of biological organisms.

References
Boerljist, M. C. & Hogeweg, P. [1991] “Spiral wave

structure in pre-biotic evolution: Hypercycles stable
against parasites,” Physica D48, 17–28.

Bresch, C., Niesert, V. & Harnasch, D. [1980] “Hyper-
cycles, parasites and packages,” J. Theor. Biol. 85,
399–405.

Chac̀on, P. & Nuño, J. C. [1995] “Spatial dynamics of a
model for prebiotic evolution,” Physica D81, 398–410.
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