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ATTRACTORS, BASIN STRUCTURES AND
INFORMATION PROCESSING IN CELLULAR AUTOMATA

Kunihiko KANEKO

Institute of Physics, College of Arts and Sciences
University of Tokyo, Komaba, Meguro, Tokyo 153, JAPAN

One-dimensional cellular automata (CA) arc investigated. An information theory for multi-
attractor systems is constructed, and quantities are introduced to characterize the complexity
of basin volumes, stability of attractors against noise, information storage in attractors, and
connectivity among attractors by noisc. These quantities and basin structures are calculated
numerically for one-dimensional CA of various classes. The patterns of the main attractors
are shown, focusing on the holographic memory of class-3 CA, successive changes of main
attractors with size in class-4 CA, and soliton-like attractors in some CA.

1. Introduction

Spatially extended dynamical systems are important tools to understand the
complex behavior in nature. The simplest model in such systems is a cellular
automaton (CA), where the system is composed of a discrete time »n and space
i (lattice) and discrete variables x,, (i)'s on the lattice. It was introduced for the
computer architecture and will also be useful to understand the qualitative nature
in turbulence (in a wide sense) or neural networks or some other biological
systems'~3. In this paper, the complexity in CA with a finite size is investigated.

Computer systems or artificial intelligence has recently been investigated from
the viewpoint of a dynamical system theory. When we consider some kind of
artificial intelligence on the basis of a dynamical system, informational aspects
are important. As was pointed out by Rob Shaw?, a dynamical system with
chaos can be thought of as an information source.

Another aspect of a dynamical system is a storage of information. If a dynamical
system has a large number of attractors as is commonly seen in the spatially extended
systems, information can be stored in each attractor. Examples can be seen in
the neural network models (see eg., Hopfield®). In the following sections, an
information theory for a multi-attractor system is constructed, mainly in connection
with the CA with a finite lattice size. From the quantities introduced in the foliow -
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Stability of the storage is also important which is related to the problem of self-
repair or retrieval®. We will consider the stability of each attractor against a noise
and define the mutual information between attractors.

In this paper a one-dimensional cellular automaton with a lattice size NV is
investigated. If a state of each cell can take k values, the total number of states
is k™. Thus, the system finally settles down into a cycle.

From the viewpoint of the creation and storage of information, a cellular auto-
maton can be classified into the following four types. The classification is essen-
tially the same as the one by S. Wolfram":?, though the precise definition for the
classification is not available at present. In the following, ““a large number” means
a quantity exponential to the system size, (O(e”)), while *“a small number” means
a quantity less than some power of the system size (0(N?)). The period of an
attractor is said to be long if the period is O (), while it is short if it is bounded
by O(1).

(1) Small number of attractors with short periods: (No creation and small storage
of information): class 1

(2) A large number of attractors with short periods: (No creation but large
storage of information ): class 2

(3) A small number of attractors with long periods: (Positive creation with small
storage of information): class 3 :

(4) A large number of attractors with possible long periods: (Possible positive
creation with large storage of information ): class 4

In Sections 2 and 3, a framework to study the complexity of multi-attractor
systems is introduced, where the complexity in the volume of basins and the
dynamical aspects by the jumping process among attractors by a small noise (ie.,
single site flip-flop) are investigated.

In Sections 4-7, the structure of attractors and basins are investigated for
various classes of CA, mainly focusing on the number of attractors, the distribution
of the volume of basins of attraction, the probability distribution at each attractor
by the noise, and jumping process among attractors by the noise. The quantities
introduced in Sections 2 and 3 are calculated.

2. Information Theory for Multi-attractor Systems

Here we study the number of attractors and the structure of the basin for each
attractor in a CA with a finite size’. A quantity to characterize the complexity
of the basin of attraction is introduced.

(a) Complexity of basins
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(i=1,2,...,M). First, we examine how many initial configurations are attracted
into each attractor ¢;. The number of configurations divided by kN gives the ratio
of the basin volume for the attractor 4;, which is denoted by b; (£b; = 1). Let us
define the complexity for basins by

CB = —Zb,lnbl s

which characterizes the information for the initial state necessary to predict the
final state. If each attractor has an equal volume of basins, C = In M (maximum).
In many cases studied here, the complexity is much less than In M, since the volume
of basin of most attractors is very small. The distribution of the basin volume b;
itself is also important.

(b} Period of attractors and contraction ratio

Let us denote the period of each attractor by 7;. The summation ¢ = X T; gives
the volume of phase space utilized by CA after the transients have decayed out.
If we start from all possible initial configurations, only a limited number of states
remain after some iterations. The ratio of contraction for the process is given by
¢/2% . For a discussion about the contraction of CA from a different point of

view, see Hogg and Huberman®.

3. Dynamical Process Among Attractors

(a) Jumping among attractors by noise'®

Since most CA have more than one attractor, a unique invariant measure cannot
be attained. In a real physical situation, existence of a small noise is expected. By
the noise, a unique (or a small number of) measure is selected out. Here we
consider the case with a very low noise. The noise takes only an integer value in
CA, and the “low” noise here means that the rate of the application of noise is
very low. In the low noise case, the dynamics of the system may be decomposed
into the following two processes; (i) the state stays at the original attractors
(for most of the time) and (ii) the state jumps out to some other attractors by
the effect of a noise. The state of a CA stays at the original attractors { ai’s} most
of the time and the transition among attractors by a noise occurs in a short time
interval. Here, we neglect the time for the latter process as small compared with
the time for the former. An example of a pattern for a stochastic CA is shown in
Fig. 1, where the transitions among the attractors can be seen.

Let us define the transition matrix between attractors. If a low noise is applied
on the attractor 4;, a jump from the attractor 4; to a; occurs with some probability.
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IFig. 1. Examples of the evolution of stochastic cellular automata. The flip-tlop 0 «— 1 or
I < 0 by a noise occurs with the ratio p.

(a) Rule 108: noise p =0.05:  size N=16

(b) Rule 146: noisc p =0.05: size N=13

process depends on the state of the CA when the noise is applied (i.e., the phase
of the oscillation with the period 7;; T; possibilities) and on the lattice site at
which the noise is applied (N (= system size) possibilities) and on the value of
noise 7((k— 1) possibilities). If the CA has only two states (k =2). there is
only one possibility for the noise (i.e., 1 >0 or 0—>1). In the following, we
treat the case k = 2 (see Fig. 2 schematically ).

i ii il iv

Fig. 2. Schematic representation of the transition by the noisc on an attractor. Rule 146
and & = 8. The attractor (i) has a period 6 and there arc 6 X 8 possibilitics on the application
of noisc. In the figurce three examples are shown, where the noise is applied on the position
marked x. Two ((ii) and (iii)) go to the attractor all-0, while the other (iv) goes to the saine
attractor as (i) with 2 shifts.
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Py i is defined as the ratio of the transition from g; to a;. That is, the number of
the events a; > 4; for all the possible flip-flops by the noise, divided by the number
of such possibilities 7;V.

The probability that a system is in the attractor ¢; for a low noise case is given
by

q; = the i-th component of the eigenvector for the matrix £;

corresponding to the eigenvalue 1.
(' £, qu 1] ql)

If the eigenvalue 1 is degenerate with the multiplicity m,, , the superposition of
each eigenvector can be an invariant measure within the above low-noise limit
approximation.

Some attractor ; can be so weak that Py; is zero for all k, (i.e., there is no
flow from other attractors by a low noise) as can be seen in the next section.
Such an attractor is repulsive against a noise and may be regarded as an extension
of the notion of garden of Eden to attractors. If g; is zero (which is a weaker
condition than the above P,; =0-condition), the residence probability at the
attractor g; is zero, and such an attractor is unimportant in the low-noise limit.

The diagonal part P;; is a measure for the strength of self-repair for the attractor
d; against a 0ne-posnt10n flip-flop.

{b) Complexity in the jumping process among attractors by noise

Once the probability measure g; is attained by a noise, we can define the com-
plexity for the probability distribution for attractors by

for a given invariant measure. The meaning of the quantity C,, is as follows:
After the transients have decayed out for a low noise system, we make a measure-
ment to determine at which attractor the system staysat that time. The information
gain by the above measurement is C;,. The difference between Cgz and C,, lies
in that the former quantity is concerned with the knowledge about the initial
state, while the latter is related to the observation for the aged system with a
noise.

Another important quantity is a dynamical information gain by noise. Let us
assume that we knew that a system had initially been at the attractor ¢; and have
observed that the system is now at the attractor a; after a noise was applied. How
much information has been obtained through this observation? We can get some
information about the noise, i.e., the phase of the oscillation of CA when the noise
is applied and the site where the noise is applied. The amount is given by In (P,-j'1 )
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Thus the dynamical information gain per noise is given by

Cp = - ,-?qipii Inp;
since the ratio for the event a; —> 4; is ¢;P;;.
As is easily seen,

is non-negative. The quantity C;. corresponds to the mutual information!’ between
attractors by noise.

If Cp, is large, the information creation by noise is large. That is, the uncertainty
about the attractor into which the system settles down after the addition of noise
is large. It can also be stated that if the mutual information is large (Cp, << C v
the structure of the network of the transition among attractors is well organized,
while the network of the transition is global and irregular if C. is small.

fc) Method of the calculation in one-dimensional CA

As a simple example of the theory for multi-attractor systems in this section,
one-dimensional cellular automata with two states (0 or 1) are investigated. The
periodic boundary condition is used throughout this paper. The models are

(i) legal cellular automata with range 1'
(ii) totalistic cellular automata with range 27
(iii) cellular automata with range 2 which have “soliton” -like excitations'®.

As a method for the coding for the rule, the rule number (for the model (i))
or the rule code (for the model (ii)) by Stephen Wolfram"” is used, while the
rule code by Aizawa, Nishikawa and the author'?-is used to characterize the rule
for the model (iii) (see Appendix). In the following sections, we use the notation
Rule *** for (i) and totalistic *** for (ii), where *** is a number which charac-
terizes the rule or code. For (iii). we use ({;1yl3l4l51617) (kykykskaks ), where
k;and /; take O or 1.

The method of calculations is as follows: (i) Take a one-dimensional cellular
automaton with a size N (7 < N < 23) and simulate it for all initial configurations
(ie., 2% possibilities). (ii) Enumerate all possible attractors (find M., a (i=
1.2,...,M)), and their periods 7;’s and list all the patterns. (iii) Calculate how
many initial configurations are attracted into the attractor ;. The number of such
initial configurations divided by 2% gives b;, from which the basin complexity
Cg is calculated. (iv) Take an attractor g; and change a value of one lattice site
for a; (0 <> 1). There are N x T; possibilities for this flip-flop. We simulate the
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check to which attractor 4; the state is attracted. The number of such configurations
divided by N x T; gives P;;. The left eigenvector for P;; corresponding to the
eigenvalue 1 gives g;. From P;; and ¢;, measure complexity C,, and dynamical
complexity Cp, are calculated.

Here, instead of obtaining all possible eigenvectors, we choose an initial vector
(by.by.b5,..., bM)T and multiply the matrix {Piv} many times till the set of
vectors is settled down into the fixed point, from which we obtain {q1 R P
q M}T. If the invariant measure is unique, this procedure gives the correct measure.
If the measure is not unique (i.e., nonergodic), this procedure selects out one
measure closest to the equipartition distribution for all the possible configurations.
For a finite one-dimensional CA, such a nonergodic case seems to be rare except
the following case; i.e., the all-0 attractor is sometimes disconnected from other
attractors and there are two eigenvectors for the eigenvalue 1; one is g;' = 1 for the
all-0 attractor and = 0 otherwise, and the other is ¢;> = 0 for all-0.

For the classification of attractors, the configurations which coincide by the
spatial translation are regarded as the same attractor. For example, the patterns
11000001, 11100000 and 00111000 are regarded as the same.

The results for the various classes of CA are shown in the following three sections.
See Ref. 13 for the preliminary report.

4. Class-1 and Class-2 CA

fa) Class-1 CA

As is expected, this case is trivial. The number of attractors M remains small
(about 1 ~ 3) even if N is increased. As N goes larger Cp, Cy;, and Cp rapidly
go to zero. For example, the possible attractor is all-0, and 0101010101 (which
is possible only for N = even) for Rule 32.

{b) Class-2 CA

The following rules were numerically investigated for 7 < N < 19: elementary
rules 132, 50, 108, and totalistic rules 24, and 104. Some examples for the number
of attractors and three complexities are shown in Figs. 3 and 4. Let us discuss
the common properties for these rules.

As is expected, the number of attractors increase as exp(a x N). The basin,
measure and dynamical complexities increase as¢g x NV + const.,a,, x N + const.,
and g, x N + const. where a’s are some constants. See Table I for a, the values
of the constants, and the types of basic oscillators.

In one type in class-2 CA such as the Rules 132, 108, and 50, a5 and a,, take
almost the same values, while «, takes a smaller value. In another type in CA,

+ta Call N nttvarctnr 10 ctntide amairmet o cirnale flim flam and thara ic o2 aate fram ~thar
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(a)

0
78 91011213141516171819 N

(b)

Fig. 4. Cg, Cyp and CD (a) as a function of size N for Rule 50. Examples of attractors
for N =12 (b) (i-vi). In the paper, O is for Cpg, Afor Cpy, and X for Cpy.

The volume of the basin bi is

(i) 15.6% (ii) 15.2% (iii) 12.3% (iv) 16.9% (max.) (v) 15.8%, and (Vi) 0.1%.
The attractors with the basin volume larger than 3% are restricted to (i)—(v). The basin
volume for all-0 is minimum (0.05%) and (vi) is thc minimum except the all-0 attractor.
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Table 1. Properties of attractors for class-2 CA. g =afIn2,ie, M~ 28N

Rule g8 ag ay  ap Basic Oscillator and pcriod
132 5 13 1.3 08 010 ———1
108 6 4 4 13 010, 0110, 1

101 «— 111 2
104 3 .05 0 0 0110 1 fallinto all-0 by noise
tot24 .3 .08 0 0 01110 1 fall into all-0 by noise
50 5 3.0 3.0 6 0110 «— 1001 in 010101 -structure

as kinks; period =2

attractors to the all-0 state. Thus, the measure and dynamical complexities vanish,
because all the other attractors fall into the attractor “all-0” by the effect of a noise.
Thus g; = 1 for the all-O attractor and O for other attractors. The Rule 104 and
totalistic 24 belong to this type.

The complexity of class-2 CA seems to be classified into the above two cases.

The class 2 behavior is understood by the superposition of local oscillators. If
a local oscillator has a period 1 and spatial range r, the number of attractor is roughly
given by (z+ 1)/ since there are (¢ + 1) possibilities in each r region (put the
oscillator or not and put it with which phase of oscillation). This argument is easily
extended to the case where there are more than one type of local oscillators. The
linear increase of complexity is explained in the same way.

The volume of each attractor changes as size in the following way. The ratio of
the volume of the basin for the attractor *“‘all-0” decreases as size and the basin
volumes for the attractors with more oscillators increase successively as the size.

In class-2 CA, the increase of dynamical complexity is much smaller, which
means that the transition among attractors is organized. Anexample of the transition
matrix Py is shown in Table II. In the example, the possible change of the number
of oscillators by asingle flipisonly * 1. In the class-2 CA studied here, the transition
is regular. Since an attractor in class-2 CA can be regarded as a superposition of
local oscillators, single flip-flop cannot affect the global behavior, and the transition
is rather limited.

Some attractors are “‘repulsive’” by the noise, as can be seen in Table 1I (for
such attractor a;, Py ; is zero for all k).

If a local oscillator exists as a kink in a zigzag structure (see Fig. 4b), there
appears a difference in the parity of the size NV (see Fig. 4a). As the system size
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Table IL. Transition matrix £y for Rule 132 with ¥ =9 with
all attractors @, — a,,. Here the number change by the tran-
sitionisonly +1.

1 2 3 4 5 6 7 8 9 10 11
10 1 0 0 06 0 6 0 0 0 0
22 0 2 2 2 45 9 0 0 0 o0

5 2z 1 1
3/0 5§ 0 0 0 2 12 1 0 o o
410 < o i1
: 0o 0 0 5 3 0 0 0
I3 111
5|10 ¢ 0 0 0 5 35 5 0 0 0
6|0 0o 5 2 5 000 0 % o
3 2 3 1
710 0 4+ 5 & 0 0 0 0 T o
3 2 3 1
80 0 5 5 + 0 0 0 0 5 0
910 0 0 1 0 0 0 0 0 0 0
100 0o 0 o o 3 2 2 1 4
11 0 0 0 0 0 0 0 0 0 0
attractors: @, = 000000000 a, = 000000001 a, = 000000101
a, = 000000001 a; = 000010001 4, = 000010101
a, = 000100101 g, = 000101001 a, = 001001001
a,, = 001010101 g, = 11111111

(all attractors are fixed points)

5. Class-3 CA

The class 3 behavior of CA is characterized by triangles with various sizes. Here
we have investigated Rules 22, 18, 54, 146, and totalistic 12 and 22. The number
of attractors and complexities as a function of system size are shown in Figs. 5-7,
with some patterns of typical attractors (see also Fig. 8). See Ref. 13 for the
Rule 54. Though the behavior is very complicated, the following points are common
in class-3 CA.
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Fig. 5. (c) Examples of typical attractors for ¥ = 21. The volume of the basin biis
all-0:35% (i) 17.3% (i) 11.0% (iii) 10.5%
The attractors with the basin volume larger than 10% are restricted to (i) — (iii).
In (d), the attractor with the largest basin volume (or second largest if the one with the largest
volume is all-0) is shown for 10 < ¥ < 23.
The basin volume b; for the depicted attractor is
0% (N=11), 35% (N=12), 170% (N=13), 30% (¥N=14),
% (N=16), 28% (N=17), 12% (N=18), 27% (N=19),
18% (N =20), 40% (N =21), 17% (N=22).
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Fig. 6. Numbers of attractors M (a), Cg, Cpy. and Cp, (b) asa function of size N for the
Rule 22.
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(7) 0.9%

12

(6) 9.6%
(N=11),
(N = 10)

%
104% (N =15),

35.9%
Q1 39,

.—.MJ-JL&.M& ) bA-

(5) 9.6
(12) 5% 1075%.

In (d). the attractor with the largest basin volume (or second largest if the one with the largest

volume is all-0) is shown for 7 < N < 24.

14),

(N =18}

(¥ =10),

v

(4) 6.5%
(11) 0.01%
3.7%

38.1%
51.6%

22. The volume of the basin b;is
9),

(3) 394%

(10) 0.01%

(N=13),
(N=17).

19
(N

Fig. 6. (¢) All attractors for ¥

(1) all-0: 0.4%

(8) 0.8%

(2) 30.3%
89.6%
32.4%
40.0%

(9) 2.3%

8),
16),

(N =12),

W
(N

The basin volume b; for the depicted attractor is

17
21.8%
65.6%
38.7%




382 Paper 3.11

(e)

Fig. 6 (e) shows the transition loop by P;; among attractors. Only the attractors with non-
vanishing q; are shown. The arrows indicate the possible transition between attractors by a
single flip-flop noise. See Table 11 for P,-j.

20

(a)

19 2
N
Fig. 7. (a) Cy,, Cpg. and Cp, as a function of size N for the Rule 18. The number of attractars
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Fig. 8. The attractor with the largest basin volume (or sccond laxgest if one with the largest
volume is all-0) is shown for 9 < N < 20 for the totalistic rule 12.
The basin volume &; for the depicted attractor is
19% (N=10), 63% (N=11), 39% (N=12), 67% (N=13),
38% (N=14), 76% (N=15), 36% (N=16), 23% (N=18),
47% (N=19).
The attractor for N = 17 is omitted since it has only 1% volume.

(i) Number of attractors changes irregularly as the system size N. The increase
in the size is at most bounded by some power of the system size NV.

(ii) The attractors which have a large region of basins are the ones with triangle
structures and the all-O attractor. Among the attractors with triangle structures,
the attractor with a larger size of triangles has a larger size of basin of attractions
(see Figs. 5(c) and 6(c)). In Fig. 9, the basin volume is shown as a function of
the size of the largest triangle in the attractor for the totalistic rule 22. In the
example the basin volume is roughly proportional to the (size of the largest triangle

wof* ‘
b *
A X °*
20.
X o
10
[ ]
— ., Size
5 710 20

Fig. 9. Basin volume as a size of the largest triangle in the attractor for the totalistic rule 22.
The size denotes the longest sequence of 0’s in the attractor. Only the typical attractors with
class-3-like triangle structures are chosen. e isfor N =16, a for N = 17, and x for N = 19.
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in the attractor).!® For other rules, the similar behavior is observed, but the
power fit is not so good (at least for small size V).

(iii) The attractors with the largest basin volume except the “all-0” are shown in
Figs. 5(d), 6(d), and 8. The characteristic feature of such attractors is that they
start from a simple seed. For example the attractors are formed from the seeds
101, 100001, or 11 for Rule 146, 11, 1111, or 11111 for totalistic rule 12, 1001,
10001, 100001, and 1000001 for Rule 22, and so on. The simplest seed which
has a recurrence gives the attractor with the largest basin volume. This kind of
choice is quite analogous to the choice of eigenfunction in the Schrodinger equation
where the interference of phase is important. In our problem, the possible configu-
ration of triangles is determined by a kind of interference effect.

The analogy with the wave mechanics also implies that the most probable
attractor is related to the ground state of wavefunction in the sense that the number
of nodes is smallest (in other words, it has only a small number of “seeds”, i.e., the
structure of 00000***0000). The attractor with smaller basin volume may be
related to the excited state in the sense that it has more nodes.

(iv) The irregular behavior as a size change seems to depend on some number
theoretic properties of the size and rules. For example, there occurs singular
behavior around at N =2F — (i=0, or 1, or —1 which depends on the rule).
The number of attractors decreases at some values near N = 2% and all-0 attractor
has a large measure. For Rule 146, the ratio for the attractor with all-O has
99% measure at N = 15 (= 2% — 1). The complexities Cy; and Cp, vanish at N = 15
and 16 (see Fig. 5(b)). For Rule 22, Cy, and Cp vanish at N = 14, 15, and 16
(see Fig. 6(b)), since all the attractors fall down into “‘all-0” attractor by the noise.

At these sizes, the measure for all-0 is close to 1, since the patterns from simple

seeds fall into all-O and the attractor with the large triangles cannot exist (see
N =14 and 15 of Fig. 6(d)).
(v) The complexities also change irregularly as the system size. They seem to
increase slowly as the system size. Generally speaking, Cp, is not so small compared
with C),. That is, the mutual information C;; — Cp is small compared with the
cases for the CA in other classes. Thus, the connectivity among attractors by
a low noise is random.

An example of P;; is shown in Table III, for Rule 22 with N =22. After the
transients, the measure for the attractor ag, @0, @13, and @y, goes to zero and
the transitions by small noise occur among attractors a;, @,, ..., a; and ag. The
transition diagram is shown in Table III. Here the most probable loop of the
transition is @, —> a5 —>a, , while the second most probable loop isa; >a;, > a3 ~>a,,
and the next is @3 a7 > a4 > a3, and so on. We note that various transition
loops are formed by the addition of a noise (Fig. 6(e)).
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Table 1II. Transition matrix Py for Rule 22 with N =22. The
attractors are shown in Fig. 6.

1 2 3 4 5 6 8 9 10 11 12
1 01 0 0 0 0 0 0 0 0 0 o
2 0o X £ 0 0 0 0 0 0 0o o o
3 Ta a0 s 2L o0 o o o
4 O & & w W 0 0 & 0 0 0
5 0§ H 0 0 0 0 0 0 o0 o
6 O 7 &£ 0 0 0 0 0 0 0 o0 o0
7 O i a om0 02 02 o o o
8 O om0 o= 0 X 0o o0 o o
9 O % % nio» m 00 % 0 0 o0
o[ 0 0 f T4 0 o 0 0 o0
] 0o 0 F 0o % 200 0 0 o o
12 2 % 0 0 0 0 0 0 0 0 0 o

(vi) Another interesting quantity is the period of an attractor. The period of the
main attractor increases slowly with an irregular change. The numerical observation
shows: The main attractor starts from a small seed and grows with a constant speed
till it comes back to the seed pattern after O(N) steps (the position of the seed
may be different from the original position). Thus, the increase of the period
seems to be bounded at most by some power of the size, which is consistent with
the numerical results. The longest period among all the attractors increases faster.
It seems to be bounded by some power, though it shows a rapid jump at some
values of V.

6. Class-4 CA

The class 4 behavior for CA characterized by Stephen Wolfram is long-time
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transients and the existence of local oscillators and local propagating patterns
and the sensitive dependence of patterns on the initial configurations. We have
investigated here the totalistic-52, totalistic 20 and models S1-S2 (see Appendix).
The results for other models with soliton-like excitations will be shown in the
next section. The characteristic features for the basin structure of the class 4
systems may be summarized as follows:

(i) The number of attractors increase exponentially, though the increase is rather
irregular. The pattern of attractor which has a large region of basins changes as
size, though “all-0” or “all-1” has a large basin of attractions in many rules. The
pattern of the attractor with the large basin of attraction except the all-0 or all-1
changes as the size (for some size, it is global and for other size it is local), which
is a main difference from the other classes. As NV is increased, attractors of essen-
tially new type appear successively.

(ii) The basin complexity Cp takes a comparatively large value, which changes
irregularly as size. The measure complexity C,, is much smaller than Cg, since
the probability measure (by a noise) for “all-0” (or “all-1”’) is much larger than
the ratio for the basin of attractions to such states. The dynarmical complexity
is much smaller, which means that the mutual information is rather large. In
other words, the transition between attractors by noise is regularly structurized.

In the following we show three typical examples for class-4 CA.

(1) totalistic rule 52: (see Fig. 10).

The rule is symmetric about the transformation 0(—)1. The main attractors
are all-0 and all-1 which have the same basin volume b; and probability g; by the
symmetry. The ratio of the basin volume for the all-O (or all-1) attractor is
shown in Fig. 10(d). Both global and local attractors coexist, some of which
are shown with the basin volume (Fig. 10(c)). The number of attractors increases
exponentially with a large increasing rate.

By the noise, the attractors fall into all-1 or all-0 attractor for almost all V.
Since the probability for each attractor is 50%, the measure complexity takes In2.
The dynamical complexity vanishes for almost all N, since the all-1 and all-O
attractors are disconnected by a single flip-flop (see Fig. 10(e) for the transition
loop by P )

(2) totalistic rule 20 (see Fig. 11):

The number of attractors increase rather irregularly around 10 < M < 20, while
it has a rapid jump at N =12 and 16 (M > 50). The all-O attractor has a large
basin volume which is shown in Fig. 11(c). For N > 14, the state falils down
into the all-O attractor and the measure and dynamical complexities vanish.

In Fig. 11 (b), the main attractors for N =21 are shown. A local irregular
propagating pattern is remarkable. In Fig. 11 (c), the attractor pattern with the
largest basin volume (or the second largest in the case that all-0 has the largest
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Fig. 10. Number of attractors M (a), Cg, Cypr, and Cp (b) as a function of size & for the
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Fig. 10(c) Examples of typical attractors arc shown for N = 20. The volume of the basin b;

is

all-0: 11.9%, all-1:11.9%, (i) 23.3% (thc attractor obtained by the 0(—)1 transfor-

mation has the same basin volume), (ii) 4.8% (iii) 7.3%.

The attractors with the basin volume larger than 3% are restricted to (i) —(v).

(d) shows the basin volume all all-0 (or all-1) as a function of V.

(e) shows the transition loop by Py for totalistic rule 52 with N = 13. The arrows indicate
the possible transition between attractors by a single flip-flop noise. Only the attractors
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Fig. 11(c) shows the basin volumc for all-0 as a function of N.

WA AR CNURURKNRROUVUNBASERE
= T DX LOT T XL

N

In (d), the attractor with the largest basin volume (or second largest if the one with the largest

volume is all-0) is shown for 7 < N < 22.

The basin volume b, for the depicted attractor is

18.8% (N =28), 492% (N=9), 27.5% (N=10),
32.5% (N=12), 569% (N=13), 5.5% (N=14),
17.7% (N=16), 46.0% (N=17), 71% (N =18),

6.9% (N=11),
47.8% (N=15),
33.1% (N=19),
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basin volume) is shown. We note that such attractors are global and irregular,
and the patterns change their structures as the size in an irregular way, which is
remarkably different from the class-3 case.

(3) model S1 {0001 101} - { 01011} (see Fig. 12):

The number of attractors increases exponentially. The all-0 and all-1 attractors
have large basin volumes. The measure entropy is much smaller than the basin
volume, since the measure of all-0 (or all-1) attractor increases by the flip-flop.
The dynamical entropy is much smaller and the transition by the flip-flop is regular.
(4) model S2 {0011101} - {01011} (figures omitted) (for N < 19)

The following features are observed: (a) exponential increase of the number of
attractors; (b) Cp takes about 1 ~ 1.5 for 12 <N < 19; (¢) Cy, is very small
(formost N); (d) Cp =0; (e) all-0 attractor has a large measure.

7. CA with Soliton-like Excitations

As is shown in the Appendix and Ref. 12, a class of CA with solitons shows an
interesting behavior such as the integrable-like behavior or soliton turbulence.
Here the following two typical examples will be investigated; one s for the integrable-
like behavior, and the other for the turbulent-like behavior:

(1) Integrable-like behavior; model $3; {0000011} — {11000}

For this class, the basins for the state of superpositions of ‘“solitons” go larger
as the system size is increased. The important difference between this type of
behavior and the usual integrable systems studied in the soliton theory is that
our system is integrable only after the transients have decayed out. Thus, our
system can be regarded as an “integrable system on an attractor”.

For small NV, however, the basin volume for the superposition of solitons is not
necessarily large. Some bound states of solitons have large basin volumes as can be
seen in Figs. 13, where the main attractors are shown for ¥ =19, 20, and 21.
As the size is increased, however, the ratio for the superposition of soliton-states
seems to increase. We have studied some attractors for N = 30 or 45 by choosing
some samples of initial configurations. More than 80% of such initial configurations
are attracted into the ensembles of solitons.

The number of attractors increase exponentially. The dynamical entropy is
much smaller than the measure entropy, which shows that the transition among
attractors is well-organized.

(2) Soliton turbulence; model S4; {000101 l} - {100]1‘

Some CA show the soliton turbulence?. A typical pattern is shown in Fig. 15 (d),
where the sensitivity on the phase of collisions of 1101-“solitons” make the
turbulent-like phenomena. For the attractors for a CA with a small size, however,

24 2 thhawd 44 0593 Al et TR Lt a2 2 £ AN . _eae. o~
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Fig. 12. Number of attractors M (a), Cg, Cp, and Cp (D) as a function of sizc N for the
model S1. Examples of typical attractors for N = 20 (c¢).

The volume of the basin b; is all-0: 39.5%; all-1: 30.3%; (i) 15.4% (i) 10.4% (iii)) 2.0%
(iv) 1.1% (v) 0.3% (and the samec volume for the attractor with the converse direction).
The attractors with the basin volume larger than 0.3% are shown.
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Fig- 13. Number of attractors M (a). Cg. Cyg- and Cp (b) as a function of size N for the
model S3. .

In (c), the main attractors are shown

N=19: (i) 52.2% (i) 11.0% (ii) 5.3% (iv) 3.4%

N=20: (i) 21.6% (ii) 19.4% (iii) 16.6% (iv) 3.5%
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of some soliton-states {B) global periodic patterns (see Fig. 14). The latter
patterns have the larger region of basins. Some collisions increase the number of
solitons till they reach the global patterns (the latter attractors) with small periods
and with more than 50% of 1°s.

We have performed some simulations for ¥ =30 and 40 by choosing some
initial configurations. Still, the attractor with the typical turbulent patterns have
small measures (about 10%). The turbulent pattern is seen as the transients before
the CA falls into the attractor in the type (B) above (see Fig. 14(d)). The transient
time increases rapidly as the size. This observation may imply that the turbulent-
like patterns in some CA may be characterized as the transients, the time for
which diverges as the system size.

Here, (1) exponential growth of number of attractors (2) large Cy and very
small C, are observed again, which are typical in class-4 CA.

8. Discussion and Future Problems

We have investigated here the storage of information in the attractors of CA and
the complexity of networks among attractors connected by a noise.

One important question is “what is the generic behavior for the CA with large
N7’ In class-1 CA, the attractor is trivial and shows no essential change as the size.
In class-2 CA, the attractors are local. Thus the attractors at large M is essentially
the superposition of the attractors of small size. In class-3 CA, the attractors are
global and the period of the main attractors increases. The generic behavior at
large N, however, is characterized by the attractors. The main attractors for a
large size can be characterized by those for a small size, since there is self-similarity
and the main attractor is generated by a simple seed.

In class-4 CA, however, it may be hard to predict the behavior of the CA with
a large size from the result for the attractors, since the transients before the state
falls into the attractors increase rapidly as size, as can be seen in the case for soliton-
turbulence, where the turbulent behavior (for large N) may be attributed not to
the attractors but to the transients.

The memory in the class-3 CA may be used as the holographic memory in the
following three points. First, the attractor includes a self-similar triangle structure .
Thus, we can construct a pattern similar to the original triangle structure even if
the information of some parts is lost. Secondly, the interference effect in the
triangle structures discussed in Section 5 is analogous with the interference in the
wave mechanics. Thirdly, the attractor’s network by the transition matrix Py
is global.

It will be of interest to extend our approach to basin structures in other systems. ,
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Fig. 14. Number of attractors M (a), Cg, Cpy, and Cp (b) as a function of size N for the

model S$4.
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N=20

(c)

(d)

Fig. 14 (¢), the main attractors are shown
N=20: (i) 52.6% (ii) 31.7% (iii) 3.6% (each)

N=21: (i) 73.8% (i) 6.2% (iii) 52%

N=22: (i) 35% (ii) 13% (iii) 17.6%
In {d) an exambnle of an evalntion far AV — 2T iec chawrmn Affor the Himo cton ~ I it Eallo terfm
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transition by a noise can occur'®. It is of interest to characterize the low-noise
ordered states from the basin structure for the ordered states.

Another important example is a spin glass system, especially Sherington-
Kirkpatrick model, where a lot of attractors (fixed points) are hierarchically
organized"’ .

Also, it is of importance to extend our approach to the dynamical system with
continuous variables: Most dissipative systems such as low-dimensional maps'®
with small dissipation or high-dimensional maps such as coupled map lattices'”"'®
can have a large number of attractors. The basin structure has recently been
investigated intensively. The statistical properties such as the basin volume entropy
and the jumping process among attractors by the noise can be investigated in the
present paper’s line.

Informational aspects in the dynamical system are important in the intelligent
network system'®'?® such as the neural or immune network and some artificial
intelligence systems.

In addition to the storage of information studied in this paper, the processing
of information should be studied in the high-dimensional chaos or CA. In the CA
with soliton-like excitations, the information can be transmitted by the “solitons”,
even if the state is turbulent. The information transmission is calculated by the
mutual information flow, in a similar way as the coupled map lattice case'®.

Also, selective propagation of information will be of use in the intelligent
system. In CA with soliton-like patterns, some specific patterns can easily pro-
pagate to other sites, while others decay out. The quantification of such selectivity
will be of importance.
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Appendix: CA with Soliton-like Excitations

In the class-4 cellular automata, the patterns which propagate with some speed
is commonly seen. In Ref. 12, a class of CA with specific type of “soliton”
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00101100 should move right at the next step (i.e., 00010110). There are 2'2
possible rules for the legal CA with 2-states and range = 2 which satisfies this
type of 1011-soliton conditions.

Simulations for all these rules have been performed. The rule for the two-
state. CA with range 2 is coded by the 32 numbers i = (0, 1); (00000) - iy,
(00001)—~i; ,...,(11111)=> i3 . The condition that the rule must be legal
as stated by Wolfram and the above condition of the existence of 1011-soliton
leaves only 12 parameters: (/y, I, 3. la, Is. lg, 17)—(ky, kq, k3, ka, ks) =
(ia, f1o, f1a, f17. g1, da7. i31) = (i, is, L1s, i19, i23). Interesting behavior which
does not belong to the usual class-4 type is soliton-like behavior. For some rules,
the dynamics of system is governed only by the soliton-like excitations (1011)
and their collisions. If the “solitons™ pass through each other by collisions, the
CA can be regarded as a kind of integrable system. In some other rules, the collision
of solitons show the sensitive dependence on the phase of the collisions, which
induces the turbulence as an ensemble of 1011-solitons. Some of course, show
the usual class-4 behavior, while some show class-3 or class-2 behavior for most
of the initial conditions. Here, the evolution of the following four rules are shown.
See Ref. 12 for more details:

(1) S1:(0001101-01011): class-4 like (see Fig. 15.1)

(2) S2:(0011101-01011): class-4 like (see Fig. 15.2)

(3) S3:(0000011-11000): integrable-like (see Fig. 15.3)

(4) S4:(0001011-10011): soliton-turbulence (see Fig. 15.4)
v?‘yw-"

e

'i";.

(b) (c) (d)
Fig. 15. Examples of the evolution of CA with “solitons”. ¥ =100. Random initial con-
figurations.
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Approaches to Complexity Engineering*

Stephen Wolfram
The Institute for Advanced Siudy, Princeton NJ 08540.

(December 1985; modified February 1986)

Principles for designing complex systems with specified forms of behaviour are dis-
cussed. Multiple scale cellular automata are suggested as dissipative dynamical sys-
tems suitable for tasks such as pattern recognition. Fundamental aspects of the
engineering of such systems are characterized using computation theory, and some
practical procedures are discussed.

The capabilities of the brain and many other biological systems go far beyond those of any
artificial systems so far constructed by conventional engineering means. There is however extensive evi-
dence that at a functional level, the basic components of such complex natural systems are quite simple,
and could for example be emulated with a variety of technologies. But how a large number of these
components can act together to perform complex tasks is not yet known. There are probably some
rather general principles which govern such overall behaviour, and allow it © be moulded to achieve
particular goals. If these principles could be found and applied, they would make new forms of
engincering possible. This paper discusses some approaches to such forms of enginecring with complex
systems. The emphasis is on general concepts and analogies. But some of the specific systems discussed
should nevertheless be amenable (o implementation and detailed analysis.

In conventional engineering or computer programming, systems arc built to achieve their goals by
following strict plans, which specify the detailed behaviour of each of their component parts. Their
overall behaviour must always be simple enough that complete prediction and often also analysis is pos-
‘sible. Thus for example motion in conventional mechanical engineering devices is usvally constrained
simply to be periodic. And in conventional computer programming, each step consists of a single opera-
tion on a small number of data elements. In both of these cases, much more complex behaviour could
be obtained from the basic components, whether mechanical or logical, but the principles necessary to
make use of such behaviour are not yet known.

Nature provides many examples of systems whose basic components are simple, but whose
overall behaviour is extremely complex. Mathematical models such as cellular automata (e.g. (1)) seem

* Looscly based on an invited talk entitled *‘Cellular automaton engineering’” given at the conference on **Evolution,
Games and Learning’’ held at Los Alamos in May 1985. To be published in Physica D. More details will appear in
due course.



