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Abstract

Convective instability in an open flow system with distributed time scales from upstream to downstream is studied. By exploiting
the convective instability, the upstream fluctuation with fast time scale is not only amplified along the flow but is also slowed down
along the flow to the downstream. Through the instability, statistical property of the downstream shows sensitive dependence
on the dynamics of the fast element in the upstream, and the fast dynamics is translated into slower dynamics. This convective
instability and sensitive dependence on the boundary are analyzed, by noting the time scale multiplication of fluctuation with
repetition of bifurcation through the transmission. Relevance of this process to biochemical reaction and memory is discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many problems in physical, chemical, biological, and geo-physical systems involve multiple time scales
[1-3]. In particular, in a cell system, fast change in the metabolic reactions can successively be embedded into
the change of genetic level. Hierarchical organization of time scales ranging from subcellular to multicellular level
is also experimentally studigd]. Study of such dynamical systems with multiple time scales is also important
to understand biological memory, where fast change in some degrees of freedom induced by the external input is
successively embedded into downstream degrees of freedom and stored into the final internal states, which have a
much longer time scale.
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In these problems, modes with highly different time scales interact with each other, which may introduce com-
plex dynamics having a wide range of time scales. In general, study of dynamical organization of a system with
many degrees of freedom and multiple time scales may provide a novel viewpoint to understand the hierarchical
organization in naturfb]. As a step to these studies, we have taken dynamical systems with many degree of freedom
[6] here.

In our previous studj10], we introduced a chain of nonlinear oscillators whose typical time scales are distributed
as a power series. To be specific, we have chosen a nonlinear differential equation as the single oscillator, anc
introduced the difference in the time scale as

T— =F(A), T=nd" (1)
dt

The index of the elements is denoted agthi = 1, 2. .., L = system sizeT; is the characteristic time scale for
each element and(>1) is the time scale difference. By using a power series distribution for the characteristic time
scales, the relationship between any neighboring elements is identical, as is easily checked by scaling ibye time
T; in each equation for the element. Hence, this form is useful to study the relevance of time scale variation, since
the dynamics of each element, after rescaling of the time, is identical. In the previous model, we adopted symmetric
coupling between the nearest neighboring elements, and investigated how statistical (topological) properties of the
slow dynamics are affected by those of the fast dynamics. In particular, bifurcation cascade between chaotic anc
regular dynamics is shown to lead to the propagation of correlation from fast to slow elements, with successive
change of synchronization.

On the other hand, asymmetric coupling from upper flow to downflow is often important. In an intra-cellular
signalling system, there is a cascade of the reaction that successively catalyzes the phospholyration of a specifi
molecule species, such as MAP kinase cascade. Also, there is a flow from the cell membrane to the inside of a
cell, reaching nucleufl1]. In brain, fast external changes are coupled to internal layers successively, leading to
long-term memory, for example, long-term potentiatip®]. In these examples, the coupling is not symmetric, but
highly asymmetric from the external signal to the most internal element. Often, with this directional coupling, fast
external changes are successively transferred to slow internal changes. In other words, the direction of coupling is
correlated with the change of the time scale in the dynamics. Hence, itis interesting to study a model with directional
coupling together with the flow form of dynamics from upstream to downflow.

Understanding the above process is important for signal transduction in a cell. More generally speaking, it is
relevant to study how a biological system embeds external information into its inside, a necessary condition for
biological memory in general.

In a system with a directional coupling, fluctuations of the upstream can be amplified as they are propagated into
the downflow. Such amplification along the flow is called convective instability, which is frequently observed in an
open fluid flow system, and is an essential concept to discuss the propagation and amplification of the fluctuation
[7-9]. The convective instability with time scale variation is observed in a surface flow of a sand-pile, as will be
discussed again iSection 7.3

In the present paper, we study the propagation of the correlation to slower elements, in connection with the
convective instability, instead of the chaotic instability in the previous study. By introducing and investigating an
open flow system whose time scale varies from the upstream to the downstream, we will report a new type of the
convective instability that allows for tHame-scale transformatioof fluctuation. Through repetition of bifurcations
from upstream to downstream, fast time scale motion is successively transformed to slower motions. This repetition
of bifurcation is analogous to the cascade of the bifurcation in coupled chaotic elements with power law time scale
variation as reviewed aboy&0].

The present paper is organized as followsSéttion 2 the concept of convective instability is briefly reviewed.

In Section 3we introduce an open-flow reaction chain model, with a unidirectional coupling. In addition, the time-
scale of oscillation of each element changes with a power-series from fast (upstream) to slow (downstream) element
as a result of the concentration change of catalyst or molecule species characterizing the activity of the reaction.
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In Section 4 we report the convective instability with the time scale translation. Here the transmitted fluctuation is
not only amplified from the upstream to the downstream but also the time scale of the dynamics is made slower. In
Section 5 we discuss the mechanism of the time scale multiplication. If the system is convectively unstable only
within a range of frequency, the fluctuation only within a range is amplified as in a band pass filter. Furthermore,
when the time scale multiplication of the fluctuation occurs repeatedly during the transmission from the upstream
to the downstream, the time scale is translated through the propagati®action § we will show thatsensitive
dependence of the slow dynamics on the fast elements is resulted from the above insSalotlibyr 7is devoted to
discussion and conclusion.

2. Convective instability

Convective instability causes amplification of a disturbance along a[ffe®]. If a system is convectively
unstable (CU), tiny disturbance at an upstream is amplified and transmitted as it goes to the downstream, as is
originally discussed for the open fluid flow.

As a model for the open flow systems, coupled nonlinear oscillators with asymmetric coli@ip] and
nonlinear partial differential equation with asymmetric diffusjeril7] or advectior18,19]have been studied.

2.1. Noise-sustained structure

For a system with the convective instability, noise plays an important role. When a system is convectively
unstable, applied noise at one point is spatially amplified to the downflow, until at some point, some spatiotemporal
structure with a finite amplitude is generated accordingly. This structure is not generated without noise, and is called
noise-sustained structure (Ng3Y].

The mechanism of the structure formation can be summarized as follows. Assume that noise is added to a fixed
point state with convective instability. Around the fixed point, the noise is spatially amplified and transmitted to the
downstream direction. The further the fluctuation is propagated to the downflow, the larger the oscillation becomes,
until some stationary dynamics (such as oscillation with a large amplitude) is generated for a certain downflow
region. As long as the noise is added to the most upstream element, this downstream dynamics are generated. Thi:
noise-induced structure in a convectively unstable system is general in an open-flow model. In contrast, if the fixed
point state is absolutely stable (AS) at all positions, noise is spatially damped, and no downstream structure can be
sustained.

2.2. Measure of convective instability

Convective instability is quantitatively characterized by a co-moving Lyapunov expapgrg., the Lyapunov
exponent observed in an inertial system moving with a velac{80,21]. If max, A, is positive for a given state,
the state is convectively unstable. This condition is compared with that for the linear instability, given-b§.
Absolute stability, which implies the stability along any fl¢W8], is guaranteed by the condition may, < 0.
Sincei, characterizes the amplification of a perturbation with the velagitiie amplification per one spatial unit
is given by, /v. Hence, the amplification rate per length is given by the spatial Lyapunov expong2t, 23]

A
25 = max— 2)
v

1Sis also calculated by spatial amplification rate of the amplitude of the fluctuation along the flow, as will be adopted
in Section 3.3

1 In intermittent systems, for example, with a large amplitude fluctuakign(2 is replaced by.S > max, 1, /v [23].
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In the present paper, since we discuss the time scale translation of the transmitted fluctuation from the upstrean
to the downstream, it is also necessary to characterize the convective instability with regards to the frequency of
perturbations. Here we adopt the degree of the convective instability to a periodic pertirbatiofrequencyf
[24,25]ask(f), as is introduced ilppendix A

3. Model
3.1. Reaction-flow equation as a model for open flow systems

To make an explicit example of the uni-directional coupling system, we first consider simple autocatalytic kinetics
given by

X—A, 2B+A—-3B, B—>Y 3)
The evolution equations for A, B are then written as
a =k, — ab?
: 2 4
b = ab® — kab

wherea, b are the concentration &f B andk1 andk, are rate constants of the reactions. Wekget 1.01,ko = 1.5,
so that &(r), b(r)) converges to a linearly stable fixed poiat (bs) = (k2?/k1, k1/k2). There is neither a stable limit
cycle nor another stable fixed point, besides the above fixed point for any initial conditions.
As a model for the open flow system with the convective instability, we choose a one-dimensional chain of the
above reaction system with flow and diffusion equation as,

oa

— = kg — ab?

ot )
D b —kab+ v, 2+ D b

— =ab” — Vg— —

ot 2 8 ox b x2

The model has been studied for oscillatory pattern induced by the convective ins{dBiity
In the present paper, we consider the open flow systems whose time scale spatially varies. Here we introduce the
exponential time scale variation f&q. (1] as

exp(kxx)a—a = k1 — ab?

ot 6)
¥b
Ax2
wherek, denotes the exponential time scale gradient in the reaction-diffusion system.

Since the flow terndb/dx is essential for the convective instability and the diffusion téffy x? is qualitatively

irrelevant to the results described below, the diffusion term is eliminated in the present paper for the simplicity of
the analysis. Also for the simplicity, the upwind differencing adopted. Accordingly, we study a system of

ob ob
equCxX)E = ab® — kob + vga + Dy

2 Dependence of the periodicity on the boundary condition has been studied numétiéhéind experimentall§26]. There, the generated
state and the degree of the convective instability at the downstream are dependent on the period.

3 The model is essentially same as Brusselator mi@ig) one of the most studied nonlinear dynamics. We adopt this particular model as a
typical example. The results to be shown generally hold for a coupled chain of the oscillators (with amplitude and phase), and the details of the
model are not important.

4 Spatial discretization using the upwind differencing is one of the simplest way to model the transport prig@irtieis also qualitatively
irrelevant to our results.
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unidirectionally coupled nonlinear oscillators as

Tia; = k1 — aibiz @

Tibj = a;b? — kob; + v(bi—1 — b;)
with

T, = T

_ )

7 = explky)
wherev = v, /8x with 5x as the length between the neighboring sifess characteristic time scale of each element,
T1 =1, andt (>1) is time scale difference per element. The indalenotes each elemerit=1,2,..., L =

systemsize. The power series distribution of the characteristic scales is comBE@n(Ih Again, the relationship
between the neighboring elements is identical. The boundary condifiisrfixed to the value as same as the fixed
pointbg = b, in Eq. (4.
The total time scale difference is given by
L 11

Tota = =7

T1 9)

Here we sefiota = 100, and adopt Runge—Kutta method using such time step size that the fastest dleatent
i = 1is computed precisely.

3.2. Construction of the open flow with time scale variation

In this subsection, we discuss origins of the time scale variation in the spatially extended system as assumed in
the modeEg. (6), (Eq. 7).

One source of such time scale variation is observed in soft materials, for example, in granular matter. In the
avalanche behavior of a sand pile, it is observed that the particle flow on the surface is faster, and the velocity gets
slower as the position of the particle goes farther away from the sui3agein strong contrast with the ordinary
fluid. The velocity variation of the granular particles is expressetbth)) = vo exp(—#i/ ho) as a function of depth
h from the pile’s surface, wherg andhg are constants angd) is temporal average. Similarly qgs. (6) and (),
the exponential time scale variation is formed from the surface to the inside of the sandpile.

Since our model mainly concerns with the reaction, we discuss such time scales variation, in the reaction-diffusion
systems. This is possible when the concentration of some chemical that plays the role of time scale factor such as
catalytic activity in the system, changes gradually in space in this reaction-diffusion process. For example, we assume
a chemical C catalyzes all the reaction process in the system, including the diffusion process of other molecules.
For simplicity, we assume that the reactiorig. (3, the flowdb/dx and the diffusiors?s/dx? in Eq. (5 are in the
previous section are catalyzed by the chemical C. Besides this catalytic process, the chemical by itselfis degradated as

C—2Z (10)

and diffuses in space. From one end of the boundary in the one-dimensional space, chemical C is supplied. Then
Eq. (5 and the these characteristics are integrated as

doa

i (k1 — ab®)c

ab ) b ¥b

i (ab” — kab)c + Cvg + cDbﬁ (12)
ac ¥2c

o = Rt Do
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wherecis the concentration of C. As the boundary conditio€pf = const > Oatx = 0andc = 0inx — oo are
adopted. The reaction diffusion equation éds calculated. Then, exponential concentration gradient is derived as

k.
c(x) = const x exp (— —‘x) (12)
D,
Here the degradatiolaqg. (10 plays as a similar role to the void creation in the velocity time scale variation in the
sand pile. The boundary condition.at= 0 is adopted as const 1, andEq. (1] is transformed as

ke '\ b 5 db &b
exp| .| x| = = ab® — kob + vy— + Dp—
p(V Dcx> o~ TR e T Py

The equations corresponda. (6) with \/k./D. = k,.

Another route for the introduction of the time scale variation is the gradient of temperature. Often the reaction rate
has exponential dependence on the temperdtreleed, if the dependence is of the form exponsy T'(x)) with
T(x) = To + 8T (x) for smallsT, the rate change as expfonstx §T(x)/ TOZ). Then, if the temperature has a gradient
from one side to another, the exponential dependence of the parameters on the space as in the model is derived.

(13)

3.3. Dynamics without time scale variation

As a basis for further studies of a system with time scale variation introducid.if8, we first survey the
convective instability in the system without time scale variation. Thafis; 1 in Eq. (7) as

idi =k1—aibl-2

_ ) (14)
b; = a;ib? — kob; + v(bi—1 — b;)

is briefly reported. Without noise, there is neither a stable limit cycle nor any other fixed point beside the above
fixed point, for any initial conditions. When Gaussian white nejsehich satisfies

n(On(t — 1)) = 8(z)0? (15)

is applied at the upstream, noise is spatially amplified and transmitted from the upstream to the downstream, and the
NSS with a large amplitude is generated at the downstream, as sh&ig itfa), whichFig. 1(b) displays spatial
development of the fluctuation measured by the root mean square (RMS®f

V(i) =/ (b?) — (bi)? (16)

where(-) denotes the temporal averad&i) gives a measure of the degree of temporal variation of the element,
or, in other words, the amplitude of the oscillatiaf{i) exponentially increases wiitbefore it saturated, and the
spatial amplification rate is calculated by

V(i)

S(iy —
A (l):logm

17)

Spatial instability exponenitS calculated fromEq. (2 (by AS = 0.32) shows good agreement with the rate of
amplificationAS for small perturbation along the space, obtained numerically, i.e.,

AS~ AS (18)

5 Wwithout the degradation termk.c, linear concentration gradient is derived.
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Fig. 1. (a) Spatiotemporal plot &f(r) without time scale variation under application of Gaussian npe = 1. NSS is generated at- 40.
(b) Corresponding RMS di(i), (i), is plotted as a function of || = 1075 k; = 1.01,k, = 1.5 andv = 4.

The sitei = i, defined as the site where the NSS is generated is givg2(h92]

ig ig .
V(@)
S| ~ S| = ~
o exp E,» A | ~oexp E,- A _GV(O) 1 (19)

because o/ (0) ~ o andV(ig) ~ O(1). This estimate agrees well with that obtained numerically.
When a periodic input is applied from one end in such system, the amplification rate of such input depends on

the frequency in general. This amplification rate is computed as that of the Fourier compgristcomponent

of Fourier transform of linearized each variable. The degree of the convective instability to periodic perturbation

with frequencyf, i.e.,x(f), is defined as the amplification rate of the component per Spates rate is computed

in Appendix A By insertingEq. (19 into Eq. (A.1), Eq. (A.5) is calculated as
(27jf + b2)Via + 2aibusiy =0 (20)
—b2Yi 0 + (2mjf — 2asbs + ko + V)Yip = V¥i-1p

where @, b,) satisfied Withf;\i =0, (a4, by) = (kzz/kl, k1/k2). FromEq. (20, the termy; , is eliminated, to get
the recursive equation. The degree of convective instability to periodic perturbation with fredugtiogn given
by

vis(f) | 1 v2 ((2f)? + (ka/k2)*)

V(| 2 29 (@ = (afka2lla + 0) + CrPA(Kka/k)? — ko + 02

Fig. 2showsk(f) calculated fromEq. (21 for v = 4. As showng(f) takes a positive value in some rangefof
e.0., fmin < f < fmax butis negative for < f < fmin and fmax < f < 0.8 In other words, each element works
as a band pass filt§2] in the frequency range so that the fluctuation only with the frequéhgy < f < fmaxiS
amplified and transmitted to the downflow. This propertyx©f) is necessary for the time scale translation of the
fluctuation as will be reported in the present paper.

(21)

ki(f) = log

6 This result is in a good agreement with the numerical estimate, measured as the spatial amplificatiof (§ie4¢ig— 1) whenA sin(2zfr)
(A « 1) is applied at the boundary condition, instead of the Gaussian noise.
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Fig. 2. The degree of the convective instability to periodic perturbation with frequedefined byk(f), is plotted as a function df fnaxand
fmin are defined as the frequency satisfied wigli) = 0. The dotted line denotes$ = 0.32.

4. Convective instability with time scale translation

In the section, convective instability and NSS in an open flow system with time scale variatidagi.€), are
presented.

In this system, without noise, all elements converge to the unique fixed paibf)(= (ax, b+), as in the model
without time scale variation=q. (14. Even under the time scale difference, the convective instability is still

Tot2.0vd.0a1.01b1.5aN5.0

19600 19800 20000 20200 20400 20600 20800 0 : £
time 10° 10

(a) (b)

Fig. 3. (a) Spatiotemporal plot &f(r) and (b) the power spectrum by gray scale. (a) Time series of elements are plotted, by putting them in the
order of the indexfrom the lower column to higher, i.e., lower column shawsf faster elements. (b) Abscissa axis denotes the frequeanyg

the ordinate axis denotes the characteristic time sGad¢ each element, while the gray scale shows the power spectrum of the corresponding
frequency and the corresponding elemieRtom the upstream (the lower side) to the downstream (the upper side), the shift of the peak frequency

of each element shift is detected from high to low frequency. The peak values increase as shown in the increase of darkness, showing the spatic
amplification of the fluctuation by the convective instability, ) = (100, 1.05), |5| = o = 10~°. The value ofv, k1 andk, are same as those

for Fig. L
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Tot2.0v4.0a1.01b1.5aN6.0N6.0-y Tot2.0v4.0a1.01b1.5aN6.0N6.0-y

TL=Total = 100 - 1+
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0.001 ¢
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1e-06
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(@) Ti (b) i

Fig. 4. The spatial development#i) is plotted as a function f; in (a) and in (b), where small Gaussian noig&ith the amplituder = 108

is applied at = 0. The marks correspond to different valuesbf £) as shown in the legend, while in (b) the datafoe 1 are also plotted as

A, for reference. For larger, the amplification rate o¥(i) by element or by time scale decays towards 0. Accordingly, the NSS, which appears
at V(i) ~ 1, is difficult to be generated at the downstream. The value bf andk, are same as those fBig. 1

maintained. Hence, when small Gaussian naiggvith the amplitudes « 1) is applied at = 1, the NSS is
generated at the downstream, as showhig 3for (L, ) = (100, 1.05). In the figure, the values of k1 andk;

are same as those adoptedFig. 1, and the degree of exponential time scale gradieht is log T = 2.0 x 1072,

where spatiotemporal plot & (¢) is given inFig. 3(a) and the corresponding power spectra for all elements are
given inFig. 3(b) by using the gray scale. In (b), abscissa axis denotes frequency and ordinate axis the characteristic
time scale of each elemeTit As shown, the peak of the spectra is sharper as the peak frequency is shifted to smaller
frequency, as the element goes to downstream. With this shift, the peak amplitude also increases, as is seen in the
increase of the darkness in the figure. Note that the peak at a lower frequency at downstream is produced, even
if we apply a high-pass filtered noise, instead of white noise, at the upstream element, so that the low frequency
component does not exist at all, at an upper stream element.

The result shows that the upstream disturbance is not only spatially amplified but is also transmitted, successively
translated into a slowertime scale, i.e., the convective instability allows for the time scale translation of the transmitted
fluctuation.

Fig. 4 shows the spatial development of the RM@). Recall that forr = 1, V(i) increases exponentially (as
is characterized by the spatial instability expong?i as already shown iffig. 1 As 7 is increased, the spatial
amplification rate oM(i), namely, AS(i), decreases. Accordingly a clear NSS is hardly generated. Indtéad,
shows an oscillatory change, as showiig. 4(b). Note also that the NSS is no longer generatedsftoo large.

Only for a range of values af (>1), the transmission of fluctuation with the time scale translation is possible.

5. Mechanisms for the convective instability

In this section, we analyze the process how the time scale of the fluctuation is made slower through the spatial
transmission to the downstream.

Since inherent time scale of the downflow dynamics is slower, the upstream fluctuation effectively has a higher
frequency viewed from the time scale of the downflow. For some motion to be propagated to the downflow, it is then
necessary that the time scale of fluctuation as well as some oscillatory motion should be translated into a slower time
scale. Inthe present section, we first show that the fluctuation cannot keep on being amplified, unless such translation
to longer time scale appears. Then, we will show that a bifurcation leading to time-scale multiplication provides a
mechanism of such translation here, in a similar way to period-doubling bifurcation. With this mechanism, some
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Tot2.0v4.0a1.01b1.5aN6.0N6.0
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Fig. 5. Spatial development ofS(i) = log(V(i)/ V(i — 1)) as a function of; is plotted under the application of Gaussian noisie=atl. k1, k>,
v, o and (L, ) = (100, 1.05) are same as those far in Fig. 4(a). It shows damped oscillation arour®(i) = 0 and smaller thaaS = 0.32

witht = 1.

property in the fast dynamics is translated to the dynamics of slower time scale. Accordingly, the slow dynamics can
show sensitive dependence on the fast fluctuation in the upstream fast dynamics, as will be discsstiahi®

To study the present issue, we first need to characterize the position (i.e., the time scale) dependence of the
spatial amplification rate of fluctuation. For it, we study the relation beti€emd AS in the system with the time
scale variation. As described in Section 34 shows good agreement witl? for = 1. Fig. 5showsAS(i) as
a function of7; whereV (i) < 1072 « 1 with (L, r) = (100, 1.05) corresponding t@l in Fig. 4 AS(i) decreases
from the valuerS(= 0.32), as the sitégoes down flow. This is expected, sindgf) decreases for largérand the
fluctuation at the upstream is in a high frequency regime for the downflow element. For the further down flow site,
however,45(i) increases again, until it decreases again. The oscillatiot?@) around 0 is observed when> 1.

In the following subsections, we will show the mechanism of the oscillatian%§f). First, this oscillation will
be shown to be induced by bifurcation that produces a motion of a longer period. With this bifurcation, time scale
is translated to a slower motion. This bifurcation with the time scale multiplication of the fluctuation is repeated. A
single cycle of the oscillatiom S(i) corresponds to each bifurcation.

The organization of later subsections is as followsSéttion 5.1we analyze the dependence of the convective
instability on the time scale of the fluctuation by measutitfi) and«( f). In Section 5.2we report the time scale
multiplication of the transmitted fluctuation that appears whé(r) changes from positive to negative. By the time
scale multiplication, the characteristic time scale of the fluctuation gets slow8edtion 5.3the length of the
multiplication cycle is analyzed in relation &g f) as shown irFig. 2 In Section 5.4through these analysis, we
derive the conditions for the NSS with the time scale multiplication of the transmitted fluctuation in the open flow

system with the time scale variation.

5.1. Measure of the convective instability

In this subsection, we introduce the measure of the convective instability in a system with time scale variation.
First, we extend the result on the degree of the convective instability to periodic perturbigt)an Section 3.1o
the case withr > 1. Second, under the application of the Gaussian noise at the upsttégin the degree of the
convective instability, is shown to agree well wighf = (A(i)/T;)~1), whereA(i) is the temporal average of the
time scale of the fluctuation introduced later.

We numerically check the spatial amplification rate of the oscillation amplitude under the periodic perturbation
A sin(2rt/Tp) (A <« 1), which corresponds te( f) in the case withr = 1 given inFig. 2 Here, because the noise
is not applied, the periodicity is maintained as a transmission of wave with the Jridtie amplification rate is
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in good agreement with the analytic results, if = (7;/To) 1), where {;/To)~! denotes the inverse of the time
scale of the perturbation period normalized by the intrinsic time scale of each el@ment
Here we study the relation betweety) and AS(i) under the application of Gaussian noisapplied at = 1.
First, as a measure of the inherent time scale of the fluctuation at each element, we introduce the average time scale
of the fluctuation ob;(r) asA(i). The method for the computation is describedppendix B Then, the normalized
average frequency; is expressed as

(3

It corresponds to the peak frequency at each elemérigir3(b).

Second,AS(i) is measured by the convective instability of the fluctuation aroundi). To compare this
guantity withk( f;), we define the frequency corresponding to eachi sitdich is given byf; defined above. Then
the rate of amplification for each sitds estimated by the rate of amplification of the frequency giver ().
Indeed,

4%G) ~ () (&

holds rather well up to some sites. fig. 6, AS(i) and«(f;) are shown as a function @. This degree of spatial
amplification of fluctuationAS(;), agrees rather well witk( f). In other words, the decrease of the spatial instability
along the site is well characterized by the change of effective frequency of fluctuation, due to the change of the time
scale of each element.

As shown inFig. 5, this decrease stops at some site. Indeed, there, the effective frequency of fluctuation starts to
decrease as is also showrHig. 6. Here the time scale multiplication of the fluctuation occurs as will be discussed
in detail at the next subsection. By the multiplicatigi,is decreased, and the correspondiiig) is increased.
Accordingly AS(i) becomes positive again, and the convective instability is restored. Once the convective instability
sufficiently is restored, the fluctuation is amplified and transmitted without the multiplication. This amplification
rate is again estimated well ly f;), which decreases again with the increas¢;along the downflow, irig. 6.
This cycle of decrease ofS(i) and recovery to a positive value by period multiplication is repeated.

0.3

021

IS4
o

Al), «(F)

o
1
he
|
1
1

0.1+

100

Fig. 6. AS(i) andk(Jf;) are plotted as a function @. They are rather good agreement with each other. The valugs/ef, v, (L, r) ando are
same as those fdig. 5.
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representation of the time scale multiplication process.

5.2. Time scale multiplication of the transmitted fluctuation

In this subsection, we show that the origin of the oscillatiok(@f in Fig. 5is the time scale multiplication of the
transmitted fluctuation. As schematically showkig. 3(b), the time scale multiplication is a bifurcation to eliminate
amotion with a higher frequency of motion. This multiplication is observed as the site goes downflow. We study the
process through the analysis of the average time god)e= (A,(i)); and the RMSA() = /(A (0)2)s — (A(i))2
of b;(r). SeeAppendix Bfor the specific method for the computation of these quantities.

Fig. 7(a) showsA(i)/T; andSA(i)/ A(i) as a function of’;. Around7; ~ 12 and 60A(i)/T; takes local minima,
and then for largef;, it shows a steep increase, and at slightly larger valuds, 6fA (i) / A(i) takes local maxima.

This rapid increase ok(i)/T; corresponds to the time scale multiplication. The time scale multiplication process is
also shown irFig. 3(a@), where some pulses disappear at some element. Accordingly, the time scale of the transmitted
dynamics is made slower. This multiplication of time scale appears repeatedly from the upstream to the downstream
as also shown ifrig. 6.

Fig. 7(b) shows the schematic representation of the time scale multiplication process described above. As it goes
to the downstreant; increases and the normalized time scale of the fluctuati@)y 7; decreases, as shown, for
example, foff; < 10in Figs. 6 and 7(a). Accordingly( f;) changes from positive to negative value at some element

~

with 7; ~ 6. _ _
For an element witlx(f;) < O, the distribution ofA (i) gets broader, i.eA(i)/A(i) gets larger as shown in

Fig. 7(a). Within the broad distribution oA (i), some pulses are spatially damped and disappear, gffige< O.

This occurs forA / T; < fina, = 1.8, whereA denotes the time interval of each pulse in the fluctuation as shown in
Fig. 7(b). Accordingly the time scale of survived pulses gets slower. Then, for the transmitted wave, the convective
instability is regained, the condition for the instability is satisfied for the normalized time acAl®,> fi, = 1.8

again.
Here we define the multiplication ratio as the ratioZp§ for successive local minima. In this example, the

multiplication ratio per asingle cycleis 02 ~ 5 here, as shown ifig. 7(b). Thisroughly gives the rate of frequency

reduction by each multiplication process (recall &i$g. 6). By the repetition of the time scale multiplication, the

fluctuation of fast elements can be translated into slower time scale, and transmitted to the downstream slow element:
The noise) is essential for the time scale multiplication process. When only periodic perturbasionrz /Ty

is applied at the upstream, periodicity is just maintained and transmitted. Accordingly, at somgergitenalized

time scale of the dynamicg, = To/T;, becomes smaller thafi,2,, satisfyingc(f;) < 0. Then variance of the

elementV (i) = o exp(_; AS()) ~ o expQ_; «(f) (cf., Egs. (17) and (23 decreases towards 0, ids larger. On

the other hand, aperiodicity of the transmitted fluctuation leads to the broader distribution as skayvi(a), and
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Fig. 8. (a)«(f) for a different set of values/(k2) = (2, 1.167) (bold line), (3, 1.317) (dotted line), (4, 1.5) (broken line). Althouglis set so

that max «(f) is independent of, fmax, fmin @and the ratiofmax/ fmin depend onv. (b) A(i) under the application of Gaussian white noise at

i = 1 as a function off; for v = 2, 3, 4. Each mark corresponds to each line in (a) as shown in the legend of the both figures. The period of
oscillation, i.e., the rate of the frequencies by multiplication changeswvitt) The multiplication ratio, plotted as a function fifax/ fmin. It

is measured by ratio among the time scales whAr(e‘)/&(i) shows local maxima as shownhig. 7(b), for various strength of the noise. The
marks are same as (b). (r) andk; are same with the marks.

allows for disappearance of some pulses through the transmission of the wave. Then, the time scale multiplication
is possible to make the time scale longer.

5.3. Cycle of the multiplication

Here we study the relationship of multiplication ratio withy). Fig. 8a) shows¢(f) as a function of, as in
Fig. 2 for variousv. fmax fmin @nd the ratiofmax/ fmin depend on. Correspondingly we have computed the model
Eq. (7 by applying Gaussian white noiseiat 1, to obtain spatial development 4{i), as is plotted as a function
of T; in Fig. 8b). The period of oscillation along the space, i.e., the multiplication ratio, changes.with

As already mentioned, this multiplication ratio is highly correlated with the reduction of the frequency of the
transmitted fluctuation by the multiplication. RecalliRgg. 6, we can say that the multiplication process occurs
when the corresponding f;) becomes negative, while by the multiplication, the corresponcfifg again takes
a large positive value. Then, it is expected that the multiplication ratio is correlatedfyitit fmin for «(f). In
Fig. §(c), the multiplication ratio is plotted as a functionffax/ fmin- AS expected, the ratio increases monotonically

With fmax/ fmin.
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As fmax/fmin ge€ts larger, the multiplication ratio, i.e., the period for successive multiplication events increases.
The event of multiplication is less frequent. Accordingly, the multiplication influences less on the fluctuation in the
downstream.

Furthermore, wherfmin dose not exist, i.e., i(0) > 0, any lower frequency fluctuation thgax is amplified
and transmitted without the time scale multiplication, though the time scale multiplication can still appear for higher
frequency. The time scale translation to slower scale by the multiplication is then blurred by the amplification without
the multiplication. Accordingly regular structure is no longer produced at the downflow.

To sum up, existence gf,in > 0 and not too large ratigmax/ fmin iS necessary for successive appearance of the
multiplication, to produce NSS at the downflow. Meaning of this condition will be discussed adgsgctain 6.4

5.4. Conditions for the noise-sustained structure with time scale multiplication

In the previous three subsections, we have shown that the time scale multiplication leads to the propagation of
the noise sustained structure, to a slower time scale. Summarizing the result of the above three subsections, we sta
the conditions for it. B

As described irBection 5.1the convective instability with time scale variation is well characterized(l}).
Adopting«( f;) instead of.S from Eq. (23, we extendEq. (19 for the open flow with time scale variation . (7)
given by

o exp zg:;c(fi) ~1 (24)

i=1

In our modelEqg. (7), the condition for the NSS through the time scale multiplication, nankgly(24), is satisfied
under the following three properties.

e As shown inFig. 2, the degree of convective instability depends on the frequency of the transmitted fluctuation
with the frequency as

m}gx;c(f) >0, flim k(f) <0 (25)

The former is necessary for the convective instability and the latter for damping of faster fluctuation than the
scaleT; (i.e.,k(f) < 0 for f = (A/T;)"1 > fmax as shown irFig. 2). In the present model, these conditions
hold for a given range of the parametersk; andk,.
The latter condition is not satisfied, for example, in a unidirectionally coupled complex Ginzburg—Landau os-
cillator model, instead dEq. (4. For the model within some range of parameters, the conditiorym@® > 0
is satisfied, but lim_, «(f) = 0. In this case, for a system with time scale variation sudBqg?), the time
scale multiplication of the transmitted fluctuation cannot appear.

e The existence ofnin > 0, namely,

k(0) <0 (26)

and the ratiofmax/fmin iS not too large as discussed $ection 5.3 These conditions are necessary for the
appearance of the multiplication effect in the downstream fluctuation.

e The motion of the transmitted fluctuation is not periodic, describe8dation 5.2 This is necessary to have
broad power spectrum so that faster motions are only eliminated, leading to a bifurcation with a slower time scale
dynamics. This condition is necessary for the time-scale multiplication.
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6. Sensitive dependence of slow dynamics on fast elements

In this section, we report how fast elements in the upstream affect the slow dynamics in the downstream, by the
time scale multiplication of the transmitted fluctuation, as described in the above sections.

6.1. Numerical results

First we will show how statistical property of the slowest dynamics depends on that of fastest one by making the
following operation to the fastest element, as introduced in the refergh@esn order to check the influence of
the change of the fastest element, we apply some input to the upstream, and see how it affects the dynamics of the
downstream. We set up the following external operation, and study the response.

6.1.1. External operation and response

After the initial transients have died out, at an arbitrarily chosen pointin the temporal evolution, we apply periodic
inputA sin(2tr/To) (A <« 1,To ~ T1) and Gaussian noigsgwith the strengtlr « 1) atthe most upstream element,

i = 1, where the time scalf, is the order of that of the upstrearfy(~ 7;). Then we examine if this addition of an
external input to the upstream influences the downstream with a slower time scale.

Fig. 9 shows the spatiotemporal plot whé&h is changed from 6 to 12 at time 20,000. At the downstream,

NSS is generated following this change B, through the repeated time scale multiplication of the transmitted
pulses. Recall again that the time scale of the downstream dynamics is of the ordér tfat@s much slower
thanTg.

The plot in Fig. 9 shows that the time scale of the NSS generated at the downstream is of the order of
the time scale of each element, and is much larger than the input time®gcas inFig. 3a). To study the
amplitude of generated oscillation, we again adbgL), the RMS ofb; of the slowest elemenkig. 1(0a)
shows the spatial development ®fi) by changing the frequency of the periodic inputs and noise applied

Tot2.0L80v4.0a1.01b1.5aN6.0aP3.0per6.0-12.0
To=12

To= 4

80

70 =

site: i

10

19000 20000 21000 22000 23000
time

Fig. 9. Spatiotemporal plot df;, whenTj is changed fronTp = 6 to 7o = 12 at time= 20,000, wherdy is the input period applied at= 1
given by A sin(2rt/Tp) with Gaussian noisg. The plotting methods and the axes are identical With 3(a). The NSS that does not exists for
To = 6, is generated at the downstream with the chan@g te 12.|5| = 1076, A = 1073, Tiotas = 100, (L, 7) = (80, 1.06). The value ob, k1
andk, are same as those fBig. 1
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Fig. 10. RMS ofb;(r) in (a) and the corresponding®(i) in (b) are plotted as a function @, where Gaussian noisgand A sin(2tt/To) is
applied at = 1. Each symbol in the plot corresponds to a different valugy@fs shown in the legend. (a) They show oscillation corresponding
to the time scale multiplication of the transmitted fluctuation. (b) The phase of the oscillation and avenad if plotted for the same set of
input periodsTp, using the same symbol. The same valuedoft), A ando are chosen as those féig. 9.

ati = 1.” The difference ol(i) by the input period at = 1 is amplified (exponentially) in space. Then a larger
difference is generated at the downstream. In other words, the amplitude of the element of the slow scale measure
by V(L) sensitively depends on the period of the input at the fastest element.

As shown irFig. 10(b) the pattern ofAS(i) = log V(i)/V (i — 1) depends on the peridg of the upstream. There,
asTypis larger, the amplitude of the oscillation.af(i) is larger. The oscillation is maintained even at the downstream.
The summatiord_; AS(i) at the downstream changes accordingly. Since the amplitude of the osciM4t)de
expected to increase :.asexp(zi1 AS(i)), it is sensitively dependent dfy, as shown irFig. 10@a). Hence, the
downstream slow dynamics shogesnsitivedependence on the upstream fast dynamics characterizggd by

6.2. The boundary condition sensitivity in an open flow system

In this subsection, we briefly review the condition for the boundary condition sensif28t29], discussed
generally for an open flow system.

In general, we consider a unidirectionally coupled oscillator system givenﬁbyddz 77(2},-, Zx,-_l), where
A; = (a;, b;) and system size is. Assume that each element, without adding noise, is attracted to a unique fixed
point for any initial conditions. Generally, the value of this fixed point depends on the ¥ithen viewed from
upstream to downstream, this spatial sequence of the fixed points is represented by a relaxation process from a fixe
boundary conditiom to a fixed pointA,, at the downstream, that is independentigf On the other hand, by the
application of Gaussian noisg(|n| < 1), the property of the downstream dynamics, for example, the amplitude or
frequency of the NSS, characterized by the RM8) of A, can depend on the value of the boundary condition.
This phenomenon is called noise-induced boundary condition dependence. This boundary dependence is maintaine
even if a small noise is applied at all the elements. In other words, this sensitive dependence is both noise-inducec
and tolerant to noise.

According to the spatial relaxation pattern of the fixed points, the degree of the convective instability of the fixed
points, quantitatively characterized by(i) in Eq. (2 of the upstream depends on the boundary conditigrOn
the other hand, the degree of convective instability is independent of the boundary where the fixed point approaches

7 In the upstreamy(i) mainly shows the amplitude with peridg rather than noise, because of > o. In T; < 2, V(i) is spatially amplified
because of the convective instability satisfied Wigh7; > 1/fmax in as described iSection 5.20n the other hand, ifi; 2 2, V(i) is spatially
damped because of the absolute stability satisfied Wit; < 1/ fmax-
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Table 1
Correspondence of the boundary condition dependence in the open flow without time scale variation to initial condition dependende in a 1
chaotic mapr,+1 = f(x,)

Each step Spacé)( Time step ¢)
Initial state Upstream properr@{o, o X1
Final state Downstream property RMS 4f XN
Instability Convective instability.S(i) Temporal instability logdx,,1/dx, |
Difference on initial state Value of the boundayg Valuedxy
i=ig n=N
Initial state sensitivity Z{)‘S(mﬁoﬁﬁo - )‘S(")\AO} sx1exp() _ log|dx,11/dx, )
i=1 n=1
n=N
Condition ig <y sx1exp()_ log|dx,1/dx,|) > 1
n=1

A, in the downstream. I£S(/) relaxes spatially to the value for the downstream fixed point before NSS is generated,
then there is no boundary condition dependence. Hence, only if theigcélfined inEq. (19 as the formation
length for the NSS, is smaller than the scale for the above length for the spatial relaxation, the generated downstream
dynamics is expected to depend A

As a simple measure of the spatial relaxation lengtbf the fixed points, we have introduced a ‘half-decay’
length for the spatial relaxation ofS() [28]. Roughly speaking).S(i) is sensitively dependent on the boundary
Ag for i < i,, while fori > i,, it weakly depends ordo. Now let us focus on the relationship betwegrandi,.
If the convergence scali¢ is much smaller than,, the summation of the amplification rate of the noise, given

by Z'f 15(i), depends little on the input. On the other hand, i larger thani,, the downstream dynamics can
strongly depend on the input. Hence, the conditions for the dependence on the input is repf8¢hbted

ig Sy (27)

It may be interesting to compare the present boundary condition dependence with the initial condition dependence
common to chaotic system, for example in a one-dimensional map. This comparison is summaraed in

6.3. Boundary condition dependence in the presence of time scale variation

In the present system with the time scale variation, it is also interesting to discuss the boundary condition
dependence. Here, each sites its own time scal& and spatial relaxation in the last section is discussed in terms
of the time scale. The conditioR < i, is then discussed in terms of the time scale.

Here we numerically check the conditi&u. (27). For largerr, i, is larger as shown ifrig. 4(b), because the
convective instability exponent per element, characterized $y), is smaller. On the other hand, for largeri,

Table 2
Boundary condition dependence in the open flow with the time scale variation

Open flow with time scale variation

Each step Time scalé&;
Initial state Fast scale properTy, A, o
Final state Slow scale propefiL), A(L) > T
Instability Convective instability (f;) ~ AS@) = log V(i)/V(i — 1)
Dependence on initial state Time scale of the bound@gy
l:lg
Initial state sensitivity D k() lroromo — k(fi)lp}

i=1
Condition ig Sir
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Fig. 11. The RMS of the slowest elemaf{L) is plotted as a function of the peridy applied at the fastest elementAsin(2zt/Tp) with noise
n (with the strengthy = 10-3A4). The marks correspond to a different set bf ¢) as inFig. 4 The dependence is sharper, and approaches
threshold-type dependence,is smaller.

is smaller (data are not shown). This is because the time scale multiplication is more difficult to occur due to larger
time scale difference and the oscillation ofA(i) along the flow disappears only at the upper flow. From these
tendencies angq. (27, it is expected that the boundary condition dependence in the slow dynamics is stronger as
7 is smaller. This is demonstratedfiig. 11where the RMS of the slowest element is plotted as a function of the
periodTyp, when the inputA sin(2rt/Tp) with noisen is applied on the fastest element. There the boundary condition
dependence is more strongly sensitiveras smaller. It also supports the validity of the conditigg. (27. The
boundary condition dependence for a system with the time scale variation is summariabdei2

As described irBection 5.2noise is necessary for the time scale multiplication. In the present simulation, noise
is applied only at the fastest elemént 1. On the other hand, even if the Gaussian noise with a small amplitude
is applied at the all elements, the above result is invariant. Hence, the present sensitive dependence on the input |
both noise-induced and noise-tolerant.

6.4. Effect of the multiplication ratio

In Section 5.3we have shown that the ratio of the single multiplication cycle is highly correlatedfity fmin-
The multiplication is less frequent &sax/ fmin is larger. Then, according to the discussion in the last subsection, the
relaxation lengthi, is smaller, and the dependence on boundary condition is expected to be weaker. Here we discuss
about such relationship of multiplication ratio with the sensitive dependence of slow dynamics on fast elements.

In Fig. 12the RMSV(L) of the slowest elemertt is plotted as a function of the perickh applied at the
fastest element a8 sin(2rz/Tp), together with the noisg, with the amplituder = 101A. As v is smaller, the
multiplication ratio, i.e.,fmax/fmin, iS sSmaller, the boundary condition dependence is more sensitive. Rather sharp
threshold-type dependence is observed, then.

In conclusion, the dependence of slow dynamics on fast elements shows more sensitive as the multiplication
ratio, correlated withfmax/ fmin, is smaller.

7. Summary and discussion
7.1. Summary of the mechanism

In the present paper, we have reported translation of fast dynamics to slower dynamics by taking advantage of
convective instability. The mechanism is explained by introducing the spatial instability exponent in the frequency
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Fig. 12. The RMS of the slowest elemeWL) is plotted as a function of the perid® applied at the fastest element asin(2rz/Tp) with
noisen (with the strengthy = 10-1A). Here, the marks correspond to a different set of values.df,f that is adopted irFig. 8b)—(c).
The ratio fmax/fmin IS smaller as shown ifrig. 8b)—(c). With the decrease gtax/fmin, dependence of the downflow dynamics Gnis
stronger.

space, given by(f;), wheref; = (A(i)/T;)~ 1, instead of the spatial Lyapunov expongft The phenomena and
the mechanism we found are summarized as follows.

Time scale translation of the transmitted fluctuation with the use of convective instability is repdBiection 4
There the transmitted fluctuation is not only spatially amplified but also is made slower from the upstream to the
downstream. This translation is realized by the time scale multiplication of the transmitted fluctuation, where the
bifurcation to the motion with larger periods occurs successively. This mechanism is quantitatively expressed by the
oscillation of A(i) >~ «(f;) in Fig. 6and the broader distribution of the fluctuation at the onset of the multiplication
in Fig. 7(a). This time scale multiplication is found to occur when the following conditions are satisfied. First, the
spatial instability exponent is positive only within a range of frequefigy < f < fmaxas given byegs. (25) and
(26). Second, non-periodicity of the transmitted fluctuation allows for a broad spectrum in the frequency. These
conditions are satisfied at smallerr < 1.05, i.e. .k, < 2 x 102 because of = expk,, in the present model as
shown inFig. 4(a).

Next, due to the convective instability with the time scale translation, the slow dynamics in the downstream are
shown to sensitively depend on the fastest element in the upstream, as descHbetidn 6.11t is realized by the
modulation of the time scale multiplication process that depends on the dynamics of faster elements. By extending
the boundary condition sensitivity introduced[#8,29]to include the change of time scale, the conditiprt i,
for the sensitivity is rewritten iffable 2 Accordingly the dependence is shown to be more sensitivésasmaller
as shown irFig. 11

These mechanisms are maintained evelidfy is larger by fixingr and making the system sizelarger. It
should also be noted that these mechanisms work even in an asymmetric reaction diffusion equation with time
scale variatiorq. (6. The phenomena and the mechanisms are rather universal in a class of systems with spatially
asymmetric coupling with the time scale change. As long as the conditions mentioned above are satisfied, the present
phenomena are observed. These mechanisms and conditions are experimentally verifiable, because the measure «
the convective instability, i.ek(f) and A(i) can be calculated from experimental time series data, as described in
Eq. (17 andAppendix A
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7.2. Asymmetric diffusion from slow to fast element

In the subsection, we discuss about an open flow system where the time scale becomes faster as it goes to th
downstream, in contrast to the system studied in the present paper. To be specific, we adoptecEq. (7).

Fora NSSto propagate to the downstream with a faster time scale, the fluctuationis not only spatially amplified and
transmitted, but also translated into a faster time scale, in contrast to the convective instability refaetgim4
Then, instead of the time scale multiplication of the transmitted fluctuation arfiuadfmaxin Section 4the time
scale division around; = fmin is necessary. Then, from the analogyEsfs. (25) and (26in Section 5.4it is
necessary for

mjgx;c(f) > 0, flim k(f) <0, «(0)<O (28)

We have studied several examples udtitg (7) with T < 1. For some cases that satisfy wily. (29, the NSS is
propagated with the time scale division of the transmitted fluctuationsansitivedependence of the downstream
fast dynamics on the upstream slow dynamics is observed, similarl\Bgittion 6 For some other cases, however,
the NSS is not generated to downflow. For example, during the spatial amplification with the period division,
refractory period of slower upstream elements is too long for the downstream faster elements, which may hinder
the propagation of the NSS, evertif). (29 is satisfied.

If the time scale division works, the statistical properties of the fast elements can affect the slow dynamics
in the open flow withr > 1. This is in contrast to the results gfymmetricallycoupledchaotic oscillators with
power law time scale variation, where statistical properties of fast elements can affect the slow dynamics but
that of the slow elements cannot affect the fast dynarfiié$. In this sense, the role of convective instability
in the present case may be different from that of the chaotic instability in the previous study, though the ap-
pearance of the bifurcation cascade is common whenever the fast elements affect the slow dynamics. Furthe
analysis is necessary for the case with 1, to discuss the condition for the transmission from slow to fast
elements.

7.3. Relevance to a physical system

We discuss possible relevance of the present result to a physical systems, in particular, to memory effect in glassy
systems, gel, granular materials and so f¢88].

As already mentioned iSection 3.2in the avalanche behavior of a sand pile, it is observed that the particle
flow on the surface is fast but the velocity gets much slower as the position is deeper from the[Sdifdndeed,
existence of such time scale variation distinguishes the granular flow from ordinary fluid flow. The flow at the
horizontal direction along the surface, i.e., that of the granular flow in avalanche, is an open flow, while the system
has a unidirectional coupling also along the vertical direction to the surface because granular particles are piled ug
on the vertical direction, and a flow at a deeper side is triggered to a faster flow at the surface. Since the time scale
for the velocity increases along the vertical direction, the convective instability in this direction may lead to the
time scale translation of the transmitted fluctuation reported in the present paper. It is then interesting to measure
the development of the fluctuation and the void creation in the sand pile that may correspond to the time scale
multiplication in the present paper. Then, through the convective instability, the slow creep motion in the inside of
the sand pile can be sensitively dependent on the fast surface flow. This cascade transfer of flow could be studied ir
comparison with energy or inverse cascade in fluid turbulence.

History dependence of stress pattern in the sandpile on the way how granular particles are piled up is recently
discovered34]. The mechanism of the history dependence is discussed in terms of convective instability and the
time scale variation from the surface to the ingi@8]. Further study of the history dependence based on the time
scale translation in the present paper may be relevant to understand the memory effect in such systems.
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7.4. Relevance to biological system

Finally we give some remarks on the relevance of the present study to biological systems, which often involve
multiple time scales. There, changes at a faster time scale sometimes affect the dynamics on slower time scales. In
a biological system, this leads to various forms of ‘memory’. For example, cells can adapt to fast external changes,
with some changes in their internal statgg]. In an intra-cellular signalling system, through cascade of reactions,
environmental change is successively transferred to other chemicals, and then to the change of gene expression
Here each reaction has a different time scale, and the change of chemical concentrations at a downflow in the
cascade may be slow@rl]. Then, the mechanism presented in the paper provides a way how a fast external change
is translated into a slower change of intra-cellular chemical states. Here, sensitive dependence on the external
(boundary) condition is important for biological response.

In the above discussion, the suffief a; in the present paper is regarded to correspond to a different chemical
species (say kinase), and the unidirectional coupling is taken along the reaction network. It is also possible to
consider more directly reaction-diffusion dynamics in a single cell, so that the sdénotes the real space. Due to
the concentration gradient of some catalyzing chemicals, some parameters in the reaction equation vary accordingly
(se€[36], for a model for the embryonic development). When there is concentration gradient of the chemical C that
has a property introduced Bection 3.2it is possible that the concentration change near the membrane, i.e., the
boundary condition of the upstream, can be fast, and the time scale is slower at the inside of the cell, i.e., at the
downstream. With an external flow expressed&s/ dx in Eq. (5, this intra-cellular dynamics has an open-flow
type coupling with the time scale variation. Then, a fast change near the membrane may crucially influence on the
chemical state of the inside of the cell, and history dependence of the cell on the external environment may arise.

Another possible application of the results of the present paper will be a neural system, where fast changes in the
input can be kept as memory over much longer time scales. The memory is believed to have different time scales, as
often discussed in the regulation among short-term memories, long-term memories and [8&;8®igLong-term
potentiation of a single neuron involves cascade reactions, similarly to the MAP kinase cascade in the intra-cellular
signalling system. The long-term potentiation appears as a response with a slower scale at the downstream of the
cascade, depending on the environmental stimuli with a faster scale at the upstream of the[tackde also
interesting to note that the firing rate of neurons depends on area of the brain, and thus the time scale is changed ac
the external information is transferred. Thus, the mechanism in the present paper may shed new light on memory
in brain.
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Appendix A. The degree of the convective instability to periodic perturbation
We consider unidirectionally coupled ordinary differential equations as
Ai = G(A, Ai_1) (A1)

Here the stability analysis is calculated & + 8A; = (a. + 8a;, by + 8b;) as

s 3G ;5 3G 5
SA; = — SA; + — §A;_1 (A2)
aAi 1;4,'=0 Ai71 2,-:0
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where A* = (a,, b,) is a fixed point satisfied withA; = 0 and4; = (;, 5b;). The Fourier transformation is
introduced as

Fi(f) = / SA; (1) 1 dt (A.3)
wherelf/i(f) = (Va.i(f), ¥p.i(f))- ThenEg. (A.2 is transformed as
2njf¥; = G Y 96 7 (A.4)
il 4;=0 dAi-1] 3 o

The spatial recursive equation for the frequency Fourier component is derived as

3G
dA;

Accordingly, the degree of the convective instability to periodic perturbation with frequigreyx( 1), is calculated
from Eq. (A.5 by introducing the spatial recursive equation for the frequency Fourier compf@4e®5b] «( f) is
given by logarithm of the transfer function from the spectra at the upstream to that at the downstream as

-

G
dA;_1

-

Y (A.5)
A;=0

+ 2njf> Vi =

A;i=0

%]
= = A.6
«k(f) =log ] (A.6)

Hence, we can experimentally calculatg’) from power spectra of the fluctuation at the upstream and the down-
stream, when the strength of each fluctuation is not so large.

Appendix B. Calculation of the distribution of the fluctuation

The distance of each local maximum in the time evolution;dé defined as\;(/) and measured as shown in
Fig. B.1,s denotes the sample index. We construct the distribution from the collection of the samfilefor a
long time.

The average and the root mean square of the distribution are calculated as

A®) = (AG))s
SAG) = v(A530)2)s — A0

(-}s means sample average br&(i) denotes the average time scale of the fluctuationsat(@ denotes the root
mean square of the distribution.

(B.1)

time

o
A1) Agifi)

s : sample index

Fig. B.1. Schematic representation of the measurement of the distribitj¢i).is measured as the time interval of each local maximum of
xi(#). sdenotes sample index. By sampling(i) for a long time, the distribution is constructed.
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