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Abstract

Convective instability in an open flow system with distributed time scales from upstream to downstream is studied. By exploiting
the convective instability, the upstream fluctuation with fast time scale is not only amplified along the flow but is also slowed down
along the flow to the downstream. Through the instability, statistical property of the downstream shows sensitive dependence
on the dynamics of the fast element in the upstream, and the fast dynamics is translated into slower dynamics. This convective
instability and sensitive dependence on the boundary are analyzed, by noting the time scale multiplication of fluctuation with
repetition of bifurcation through the transmission. Relevance of this process to biochemical reaction and memory is discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many problems in physical, chemical, biological, and geo-physical systems involve multiple time scales
[1–3]. In particular, in a cell system, fast change in the metabolic reactions can successively be embedded into
the change of genetic level. Hierarchical organization of time scales ranging from subcellular to multicellular level
is also experimentally studied[4]. Study of such dynamical systems with multiple time scales is also important
to understand biological memory, where fast change in some degrees of freedom induced by the external input is
successively embedded into downstream degrees of freedom and stored into the final internal states, which have a
much longer time scale.
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In these problems, modes with highly different time scales interact with each other, which may introduce com-
plex dynamics having a wide range of time scales. In general, study of dynamical organization of a system with
many degrees of freedom and multiple time scales may provide a novel viewpoint to understand the hierarchical
organization in nature[5]. As a step to these studies, we have taken dynamical systems with many degree of freedom
[6] here.

In our previous study[10], we introduced a chain of nonlinear oscillators whose typical time scales are distributed
as a power series. To be specific, we have chosen a nonlinear differential equation as the single oscillator, and
introduced the difference in the time scale as

Ti
d�Ai

dt
= �F ( �Ai), Ti ≡ T1τ

i−1 (1)

The index of the elements is denoted asi with i = 1,2 . . . , L = system size.Ti is the characteristic time scale for
each element andτ (>1) is the time scale difference. By using a power series distribution for the characteristic time
scales, the relationship between any neighboring elements is identical, as is easily checked by scaling the timet by
Ti in each equation for the element. Hence, this form is useful to study the relevance of time scale variation, since
the dynamics of each element, after rescaling of the time, is identical. In the previous model, we adopted symmetric
coupling between the nearest neighboring elements, and investigated how statistical (topological) properties of the
slow dynamics are affected by those of the fast dynamics. In particular, bifurcation cascade between chaotic and
regular dynamics is shown to lead to the propagation of correlation from fast to slow elements, with successive
change of synchronization.

On the other hand, asymmetric coupling from upper flow to downflow is often important. In an intra-cellular
signalling system, there is a cascade of the reaction that successively catalyzes the phospholyration of a specific
molecule species, such as MAP kinase cascade. Also, there is a flow from the cell membrane to the inside of a
cell, reaching nucleus[11]. In brain, fast external changes are coupled to internal layers successively, leading to
long-term memory, for example, long-term potentiation[12]. In these examples, the coupling is not symmetric, but
highly asymmetric from the external signal to the most internal element. Often, with this directional coupling, fast
external changes are successively transferred to slow internal changes. In other words, the direction of coupling is
correlated with the change of the time scale in the dynamics. Hence, it is interesting to study a model with directional
coupling together with the flow form of dynamics from upstream to downflow.

Understanding the above process is important for signal transduction in a cell. More generally speaking, it is
relevant to study how a biological system embeds external information into its inside, a necessary condition for
biological memory in general.

In a system with a directional coupling, fluctuations of the upstream can be amplified as they are propagated into
the downflow. Such amplification along the flow is called convective instability, which is frequently observed in an
open fluid flow system, and is an essential concept to discuss the propagation and amplification of the fluctuation
[7–9]. The convective instability with time scale variation is observed in a surface flow of a sand-pile, as will be
discussed again inSection 7.3.

In the present paper, we study the propagation of the correlation to slower elements, in connection with the
convective instability, instead of the chaotic instability in the previous study. By introducing and investigating an
open flow system whose time scale varies from the upstream to the downstream, we will report a new type of the
convective instability that allows for thetime-scale transformationof fluctuation. Through repetition of bifurcations
from upstream to downstream, fast time scale motion is successively transformed to slower motions. This repetition
of bifurcation is analogous to the cascade of the bifurcation in coupled chaotic elements with power law time scale
variation as reviewed above[10].

The present paper is organized as follows. InSection 2, the concept of convective instability is briefly reviewed.
In Section 3, we introduce an open-flow reaction chain model, with a unidirectional coupling. In addition, the time-
scale of oscillation of each element changes with a power-series from fast (upstream) to slow (downstream) element,
as a result of the concentration change of catalyst or molecule species characterizing the activity of the reaction.
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In Section 4, we report the convective instability with the time scale translation. Here the transmitted fluctuation is
not only amplified from the upstream to the downstream but also the time scale of the dynamics is made slower. In
Section 5, we discuss the mechanism of the time scale multiplication. If the system is convectively unstable only
within a range of frequency, the fluctuation only within a range is amplified as in a band pass filter. Furthermore,
when the time scale multiplication of the fluctuation occurs repeatedly during the transmission from the upstream
to the downstream, the time scale is translated through the propagation. InSection 6, we will show thatsensitive
dependence of the slow dynamics on the fast elements is resulted from the above instability.Section 7is devoted to
discussion and conclusion.

2. Convective instability

Convective instability causes amplification of a disturbance along a flow[7–9]. If a system is convectively
unstable (CU), tiny disturbance at an upstream is amplified and transmitted as it goes to the downstream, as is
originally discussed for the open fluid flow.

As a model for the open flow systems, coupled nonlinear oscillators with asymmetric coupling[13–16] and
nonlinear partial differential equation with asymmetric diffusion[9,17] or advection[18,19]have been studied.

2.1. Noise-sustained structure

For a system with the convective instability, noise plays an important role. When a system is convectively
unstable, applied noise at one point is spatially amplified to the downflow, until at some point, some spatiotemporal
structure with a finite amplitude is generated accordingly. This structure is not generated without noise, and is called
noise-sustained structure (NSS)[17].

The mechanism of the structure formation can be summarized as follows. Assume that noise is added to a fixed
point state with convective instability. Around the fixed point, the noise is spatially amplified and transmitted to the
downstream direction. The further the fluctuation is propagated to the downflow, the larger the oscillation becomes,
until some stationary dynamics (such as oscillation with a large amplitude) is generated for a certain downflow
region. As long as the noise is added to the most upstream element, this downstream dynamics are generated. This
noise-induced structure in a convectively unstable system is general in an open-flow model. In contrast, if the fixed
point state is absolutely stable (AS) at all positions, noise is spatially damped, and no downstream structure can be
sustained.

2.2. Measure of convective instability

Convective instability is quantitatively characterized by a co-moving Lyapunov exponentλv, i.e., the Lyapunov
exponent observed in an inertial system moving with a velocityv [20,21]. If maxv λv is positive for a given state,
the state is convectively unstable. This condition is compared with that for the linear instability, given byλ0 > 0.
Absolute stability, which implies the stability along any flow[7,8], is guaranteed by the condition maxv λv < 0.
Sinceλv characterizes the amplification of a perturbation with the velocityv, the amplification per one spatial unit
is given byλv/v. Hence, the amplification rate per length is given by the spatial Lyapunov exponentλS [22,23];1

λS = max
v

λv

v
(2)

λS is also calculated by spatial amplification rate of the amplitude of the fluctuation along the flow, as will be adopted
in Section 3.3.

1 In intermittent systems, for example, with a large amplitude fluctuation,Eq. (2) is replaced byλS ≥ maxv λv/v [23].
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In the present paper, since we discuss the time scale translation of the transmitted fluctuation from the upstream
to the downstream, it is also necessary to characterize the convective instability with regards to the frequency of
perturbations. Here we adopt the degree of the convective instability to a periodic perturbation2 with frequencyf
[24,25]asκ(f ), as is introduced inAppendix A.

3. Model

3.1. Reaction-flow equation as a model for open flow systems

To make an explicit example of the uni-directional coupling system, we first consider simple autocatalytic kinetics
given by

X → A, 2B + A → 3B, B → Y (3)

The evolution equations for A, B are then written as{
ȧ = k1 − ab2

ḃ = ab2 − k2b
(4)

wherea,bare the concentration ofA,Bandk1 andk2 are rate constants of the reactions. We setk1 = 1.01,k2 = 1.5,
so that (a(t), b(t)) converges to a linearly stable fixed point (a∗, b∗) = (k2

2/k1, k1/k2). There is neither a stable limit
cycle nor another stable fixed point, besides the above fixed point for any initial conditions.3

As a model for the open flow system with the convective instability, we choose a one-dimensional chain of the
above reaction system with flow and diffusion equation as,


∂a

∂t
= k1 − ab2

∂b

∂t
= ab2 − k2b+ vg

∂b

∂x
+Db

∂2b

∂x2

(5)

The model has been studied for oscillatory pattern induced by the convective instability[19].
In the present paper, we consider the open flow systems whose time scale spatially varies. Here we introduce the

exponential time scale variation forEq. (11) as


exp(kxx)
∂a

∂t
= k1 − ab2

exp(kxx)
∂b

∂t
= ab2 − k2b+ vg

∂b

∂x
+Db

∂2b

∂x2

(6)

wherekx denotes the exponential time scale gradient in the reaction-diffusion system.
Since the flow term∂b/∂x is essential for the convective instability and the diffusion term∂2b/∂x2 is qualitatively

irrelevant to the results described below, the diffusion term is eliminated in the present paper for the simplicity of
the analysis. Also for the simplicity, the upwind differencing4 is adopted. Accordingly, we study a system of

2 Dependence of the periodicity on the boundary condition has been studied numerically[16] and experimentally[26]. There, the generated
state and the degree of the convective instability at the downstream are dependent on the period.

3 The model is essentially same as Brusselator model[27], one of the most studied nonlinear dynamics. We adopt this particular model as a
typical example. The results to be shown generally hold for a coupled chain of the oscillators (with amplitude and phase), and the details of the
model are not important.

4 Spatial discretization using the upwind differencing is one of the simplest way to model the transport properties[30]. It is also qualitatively
irrelevant to our results.
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unidirectionally coupled nonlinear oscillators as{
Tiȧi = k1 − aib

2
i

Tiḃi = aib
2
i − k2bi + v(bi−1 − bi)

(7)

with {
Ti ≡ τi

τ ≡ exp(kx)
(8)

wherev = vg/δxwith δx as the length between the neighboring sites,Ti is characteristic time scale of each element,
T1 = 1, andτ (>1) is time scale difference per element. The indexi denotes each element,i = 1,2, . . . , L =
systemsize. The power series distribution of the characteristic scales is common toEq. (1). Again, the relationship
between the neighboring elements is identical. The boundary conditionb0 is fixed to the value as same as the fixed
pointb0 = b∗ in Eq. (4).

The total time scale difference is given by

Ttotal ≡ TL

T1
= τL−1 (9)

Here we setTtotal = 100, and adopt Runge–Kutta method using such time step size that the fastest element�Ai at
i = 1 is computed precisely.

3.2. Construction of the open flow with time scale variation

In this subsection, we discuss origins of the time scale variation in the spatially extended system as assumed in
the modelEq. (6), (Eq. 7)).

One source of such time scale variation is observed in soft materials, for example, in granular matter. In the
avalanche behavior of a sand pile, it is observed that the particle flow on the surface is faster, and the velocity gets
slower as the position of the particle goes farther away from the surface[31], in strong contrast with the ordinary
fluid. The velocity variation of the granular particles is expressed by〈v(h)〉 = v0 exp(−h/h0) as a function of depth
h from the pile’s surface, wherev0 andh0 are constants and〈·〉 is temporal average. Similarly toEqs. (6) and (7),
the exponential time scale variation is formed from the surface to the inside of the sandpile.

Since our model mainly concerns with the reaction, we discuss such time scales variation, in the reaction-diffusion
systems. This is possible when the concentration of some chemical that plays the role of time scale factor such as
catalytic activity in the system, changes gradually in space in this reaction-diffusion process. For example, we assume
a chemical C catalyzes all the reaction process in the system, including the diffusion process of other molecules.
For simplicity, we assume that the reaction inEq. (3), the flow∂b/∂x and the diffusion∂2b/∂x2 in Eq. (5) are in the
previous section are catalyzed by the chemical C. Besides this catalytic process, the chemical by itself is degradated as

C → Z (10)

and diffuses in space. From one end of the boundary in the one-dimensional space, chemical C is supplied. Then
Eq. (5) and the these characteristics are integrated as



∂a

∂t
= (k1 − ab2)c

∂b

∂t
= (ab2 − k2b)c + cvg

∂b

∂x
+ cDb

∂2b

∂x2

∂c

∂t
= −kcc +Dc

∂2c

∂x2

(11)
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wherec is the concentration of C. As the boundary condition ofC, c = const. > 0 atx = 0 andc = 0 inx → ∞ are
adopted. The reaction diffusion equation forc is calculated.5 Then, exponential concentration gradient is derived as

c(x) = const.× exp

(
−
√
kc

Dc

x

)
(12)

Here the degradationEq. (10) plays as a similar role to the void creation in the velocity time scale variation in the
sand pile. The boundary condition atx = 0 is adopted as const= 1, andEq. (11) is transformed as



exp

(√
kc

Dc

x

)
∂a

∂t
= k1 − ab2

exp

(√
kc

Dc

x

)
∂b

∂t
= ab2 − k2b+ vg

∂b

∂x
+Db

∂2b

∂x2

(13)

The equations correspond toEq. (6) with
√
kc/Dc = kx.

Another route for the introduction of the time scale variation is the gradient of temperature. Often the reaction rate
has exponential dependence on the temperatureT. Indeed, if the dependence is of the form exp(−const/T (x)) with
T (x) = T0 + δT (x) for smallδT , the rate change as exp(−const× δT (x)/T 2

0 ). Then, if the temperature has a gradient
from one side to another, the exponential dependence of the parameters on the space as in the model is derived.

3.3. Dynamics without time scale variation

As a basis for further studies of a system with time scale variation introduced inEq. (8), we first survey the
convective instability in the system without time scale variation. That is,Ti = 1 in Eq. (7) as{

ȧi = k1 − aib
2
i

ḃi = aib
2
i − k2bi + v(bi−1 − bi)

(14)

is briefly reported. Without noise, there is neither a stable limit cycle nor any other fixed point beside the above
fixed point, for any initial conditions. When Gaussian white noiseη which satisfies

〈η(t)η(t − τ)〉t = δ(τ)σ2 (15)

is applied at the upstream, noise is spatially amplified and transmitted from the upstream to the downstream, and the
NSS with a large amplitude is generated at the downstream, as shown inFig. 1(a), whichFig. 1(b) displays spatial
development of the fluctuation measured by the root mean square (RMS) ofbi as

V (i) ≡
√

〈b2
i 〉 − 〈bi〉2 (16)

where〈·〉 denotes the temporal average.V(i) gives a measure of the degree of temporal variation of the element,
or, in other words, the amplitude of the oscillation.V(i) exponentially increases withi before it saturated, and the
spatial amplification rate is calculated by

ΛS(i) ≡ log
V (i)

V (i− 1)
(17)

Spatial instability exponentλS calculated fromEq. (2) (by λS = 0.32) shows good agreement with the rate of
amplificationΛS for small perturbation along the space, obtained numerically, i.e.,

λS � ΛS (18)

5 Without the degradation term−kcc, linear concentration gradient is derived.
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Fig. 1. (a) Spatiotemporal plot ofbi(t) without time scale variation under application of Gaussian noiseη at i = 1. NSS is generated ati ∼ 40.
(b) Corresponding RMS ofb(i), V(i), is plotted as a function ofi. |η| = 10−6. k1 = 1.01,k2 = 1.5 andv = 4.

The sitei = ig defined as the site where the NSS is generated is given by[20,22]

σ exp


 ig∑

i

λS


 � σ exp


 ig∑

i

ΛS


 = σ

V (i)

V (0)
∼ 1 (19)

because ofV (0) ∼ σ andV (ig) ∼ O(1). This estimate agrees well with that obtained numerically.
When a periodic input is applied from one end in such system, the amplification rate of such input depends on

the frequency in general. This amplification rate is computed as that of the Fourier componentψi, the component
of Fourier transform of linearized each variable. The degree of the convective instability to periodic perturbation
with frequencyf, i.e.,κ(f ), is defined as the amplification rate of the component per spacei. This rate is computed
in Appendix A. By insertingEq. (14) into Eq. (A.1), Eq. (A.5) is calculated as{

(2πjf + b2∗)ψi,a + 2a∗b∗ψi,b = 0

−b2∗ψi,a + (2πjf − 2a∗b∗ + k2 + v)ψi,b = vψi−1,b
(20)

where (a∗, b∗) satisfied with�̇Ai = 0, (a∗, b∗) = (k2
2/k1, k1/k2). FromEq. (20), the termψi,a is eliminated, to get

the recursive equation. The degree of convective instability to periodic perturbation with frequencyf is then given
by

κi(f ) ≡ log

∣∣∣∣ ψi,b(f )

ψi−1,b(f )

∣∣∣∣ = 1

2
log

v2
(
(2πf )2 + (k1/k2)4

)
((2πf )2 − (k1/k2)2(k2 + v))2 + (2πf )2((k1/k2)2 − k2 + v)2

(21)

Fig. 2 showsκ(f ) calculated fromEq. (21) for v = 4. As shown,κ(f ) takes a positive value in some range off,
e.g.,fmin < f < fmax, but is negative for 0≤ f < fmin andfmax < f < ∞.6 In other words, each element works
as a band pass filter[32] in the frequency range so that the fluctuation only with the frequencyfmin < f < fmax is
amplified and transmitted to the downflow. This property ofκ(f ) is necessary for the time scale translation of the
fluctuation as will be reported in the present paper.

6 This result is in a good agreement with the numerical estimate, measured as the spatial amplification rate logV (i)/V (i− 1) whenA sin(2πft)
(A � 1) is applied at the boundary condition, instead of the Gaussian noise.
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Fig. 2. The degree of the convective instability to periodic perturbation with frequencyf, defined byκ(f ), is plotted as a function off. fmax and
fmin are defined as the frequency satisfied withκ(f ) = 0. The dotted line denotesλS = 0.32.

4. Convective instability with time scale translation

In the section, convective instability and NSS in an open flow system with time scale variation, i.e.,Eq. (7), are
presented.

In this system, without noise, all elements converge to the unique fixed point (ai, bi) = (a∗, b∗), as in the model
without time scale variation,Eq. (14). Even under the time scale difference, the convective instability is still

Fig. 3. (a) Spatiotemporal plot ofbi(t) and (b) the power spectrum by gray scale. (a) Time series of elements are plotted, by putting them in the
order of the indexi from the lower column to higher, i.e., lower column showsbi of faster elements. (b) Abscissa axis denotes the frequencyf, and
the ordinate axis denotes the characteristic time scaleTi of each element, while the gray scale shows the power spectrum of the corresponding
frequency and the corresponding elementi. From the upstream (the lower side) to the downstream (the upper side), the shift of the peak frequency
of each element shift is detected from high to low frequency. The peak values increase as shown in the increase of darkness, showing the spatial
amplification of the fluctuation by the convective instability. (L, τ) = (100,1.05), |η| = σ = 10−5. The value ofv, k1 andk2 are same as those
for Fig. 1.
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Fig. 4. The spatial development ofV(i) is plotted as a function ofTi in (a) andi in (b), where small Gaussian noiseηwith the amplitudeσ = 10−6

is applied ati = 0. The marks correspond to different values of (L, τ) as shown in the legend, while in (b) the data forτ = 1 are also plotted as
�, for reference. For largerτ, the amplification rate ofV(i) by element or by time scale decays towards 0. Accordingly, the NSS, which appears
atV (i) ∼ 1, is difficult to be generated at the downstream. The value ofv, k1 andk2 are same as those forFig. 1.

maintained. Hence, when small Gaussian noiseη (with the amplitudeσ � 1) is applied ati = 1, the NSS is
generated at the downstream, as shown inFig. 3 for (L, τ) = (100,1.05). In the figure, the values ofv, k1 andk2
are same as those adopted inFig. 1, and the degree of exponential time scale gradient iskx = log τ = 2.0 × 10−2,
where spatiotemporal plot ofbi(t) is given inFig. 3(a) and the corresponding power spectra for all elements are
given inFig. 3(b) by using the gray scale. In (b), abscissa axis denotes frequency and ordinate axis the characteristic
time scale of each elementTi. As shown, the peak of the spectra is sharper as the peak frequency is shifted to smaller
frequency, as the element goes to downstream. With this shift, the peak amplitude also increases, as is seen in the
increase of the darkness in the figure. Note that the peak at a lower frequency at downstream is produced, even
if we apply a high-pass filtered noise, instead of white noise, at the upstream element, so that the low frequency
component does not exist at all, at an upper stream element.

The result shows that the upstream disturbance is not only spatially amplified but is also transmitted, successively
translated into a slower time scale, i.e., the convective instability allows for the time scale translation of the transmitted
fluctuation.

Fig. 4 shows the spatial development of the RMSV(i). Recall that forτ = 1, V(i) increases exponentially (as
is characterized by the spatial instability exponentλS) as already shown inFig. 1. As τ is increased, the spatial
amplification rate ofV(i), namely,ΛS(i), decreases. Accordingly a clear NSS is hardly generated. Instead,V(i)
shows an oscillatory change, as shown inFig. 4(b). Note also that the NSS is no longer generated ifτ is too large.
Only for a range of values ofτ (>1), the transmission of fluctuation with the time scale translation is possible.

5. Mechanisms for the convective instability

In this section, we analyze the process how the time scale of the fluctuation is made slower through the spatial
transmission to the downstream.

Since inherent time scale of the downflow dynamics is slower, the upstream fluctuation effectively has a higher
frequency viewed from the time scale of the downflow. For some motion to be propagated to the downflow, it is then
necessary that the time scale of fluctuation as well as some oscillatory motion should be translated into a slower time
scale. In the present section, we first show that the fluctuation cannot keep on being amplified, unless such translation
to longer time scale appears. Then, we will show that a bifurcation leading to time-scale multiplication provides a
mechanism of such translation here, in a similar way to period-doubling bifurcation. With this mechanism, some
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Fig. 5. Spatial development ofΛS(i) = log(V (i)/V (i− 1)) as a function ofTi is plotted under the application of Gaussian noise ati = 1.k1, k2,
v, σ and (L, τ) = (100,1.05) are same as those for� in Fig. 4(a). It shows damped oscillation aroundΛS(i) = 0 and smaller thanλS = 0.32
with τ = 1.

property in the fast dynamics is translated to the dynamics of slower time scale. Accordingly, the slow dynamics can
show sensitive dependence on the fast fluctuation in the upstream fast dynamics, as will be discussed inSection 6.

To study the present issue, we first need to characterize the position (i.e., the time scale) dependence of the
spatial amplification rate of fluctuation. For it, we study the relation betweenλS andΛS in the system with the time
scale variation. As described in Section 3.1,ΛS shows good agreement withλS for τ = 1. Fig. 5showsΛS(i) as
a function ofTi whereV (i) < 10−2 � 1 with (L, τ) = (100,1.05) corresponding to� in Fig. 4. ΛS(i) decreases
from the valueλS(= 0.32), as the sitei goes down flow. This is expected, sinceκ(f ) decreases for largerf, and the
fluctuation at the upstream is in a high frequency regime for the downflow element. For the further down flow site,
however,ΛS(i) increases again, until it decreases again. The oscillation ofΛS(i) around 0 is observed whenτ > 1.

In the following subsections, we will show the mechanism of the oscillation ofΛS(i). First, this oscillation will
be shown to be induced by bifurcation that produces a motion of a longer period. With this bifurcation, time scale
is translated to a slower motion. This bifurcation with the time scale multiplication of the fluctuation is repeated. A
single cycle of the oscillationΛS(i) corresponds to each bifurcation.

The organization of later subsections is as follows. InSection 5.1, we analyze the dependence of the convective
instability on the time scale of the fluctuation by measuringΛS(i) andκ(f ). In Section 5.2, we report the time scale
multiplication of the transmitted fluctuation that appears whenΛS(i) changes from positive to negative. By the time
scale multiplication, the characteristic time scale of the fluctuation gets slower. InSection 5.3, the length of the
multiplication cycle is analyzed in relation toκ(f ) as shown inFig. 2. In Section 5.4, through these analysis, we
derive the conditions for the NSS with the time scale multiplication of the transmitted fluctuation in the open flow
system with the time scale variation.

5.1. Measure of the convective instability

In this subsection, we introduce the measure of the convective instability in a system with time scale variation.
First, we extend the result on the degree of the convective instability to periodic perturbationκ(f ) in Section 3.1to
the case withτ > 1. Second, under the application of the Gaussian noise at the upstream,ΛS(i), the degree of the
convective instability, is shown to agree well withκ(f = ("̄(i)/Ti)−1), where"̄(i) is the temporal average of the
time scale of the fluctuation introduced later.

We numerically check the spatial amplification rate of the oscillation amplitude under the periodic perturbation
A sin(2πt/T0) (A � 1), which corresponds toκ(f ) in the case withτ = 1 given inFig. 2. Here, because the noise
is not applied, the periodicity is maintained as a transmission of wave with the periodT0. The amplification rate is
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in good agreement with the analytic results, i.e,κ(f = (Ti/T0)−1), where (Ti/T0)−1 denotes the inverse of the time
scale of the perturbation period normalized by the intrinsic time scale of each elementTi.

Here we study the relation betweenκ(f ) andΛS(i) under the application of Gaussian noiseη applied ati = 1.
First, as a measure of the inherent time scale of the fluctuation at each element, we introduce the average time scale
of the fluctuation ofbi(t) as"̄(i). The method for the computation is described inAppendix B. Then, the normalized
average frequencȳf i is expressed as

f̄i =
(
"̄(i)

Ti

)−1

(22)

It corresponds to the peak frequency at each element inFig. 3(b).
Second,ΛS(i) is measured by the convective instability of the fluctuation around (a∗, b∗). To compare this

quantity withκ(f̄i), we define the frequency corresponding to each sitei, which is given byf̄i defined above. Then
the rate of amplification for each sitei is estimated by the rate of amplification of the frequency given byκ(f ).
Indeed,

ΛS(i) � κ(f̄i) (23)

holds rather well up to some sites. InFig. 6, ΛS(i) andκ(f̄i) are shown as a function ofTi. This degree of spatial
amplification of fluctuation,ΛS(i), agrees rather well withκ(f ). In other words, the decrease of the spatial instability
along the site is well characterized by the change of effective frequency of fluctuation, due to the change of the time
scale of each element.

As shown inFig. 5, this decrease stops at some site. Indeed, there, the effective frequency of fluctuation starts to
decrease as is also shown inFig. 6. Here the time scale multiplication of the fluctuation occurs as will be discussed
in detail at the next subsection. By the multiplication,f̄i is decreased, and the correspondingκ(f̄i) is increased.
AccordinglyΛS(i) becomes positive again, and the convective instability is restored. Once the convective instability
sufficiently is restored, the fluctuation is amplified and transmitted without the multiplication. This amplification
rate is again estimated well byκ(f̄i), which decreases again with the increase off̄i along the downflow, inFig. 6.
This cycle of decrease ofΛS(i) and recovery to a positive value by period multiplication is repeated.

Fig. 6. ΛS(i) andκ(f̄i) are plotted as a function ofTi. They are rather good agreement with each other. The values ofk1, k2, v, (L, τ) andσ are
same as those forFig. 5.
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Fig. 7. (a)"̄(i)/Ti (�) andδ"(i)/"̄(i) (+) as a function ofi. The value ofk1, k2, v, τ, L, σ are same as those forFig. 5. (b) The schematic
representation of the time scale multiplication process.

5.2. Time scale multiplication of the transmitted fluctuation

In this subsection, we show that the origin of the oscillation ofV(i) in Fig. 5is the time scale multiplication of the
transmitted fluctuation. As schematically shown inFig. 3(b), the time scale multiplication is a bifurcation to eliminate
a motion with a higher frequency of motion. This multiplication is observed as the site goes downflow. We study the
process through the analysis of the average time scale"̄(i) ≡ 〈"s(i)〉s and the RMSδ"(i) ≡ √〈"s(i)2〉s − 〈"s(i)〉2

s

of bi(t). SeeAppendix Bfor the specific method for the computation of these quantities.
Fig. 7(a) shows"̄(i)/Ti andδ"(i)/"̄(i) as a function ofTi. AroundTi ∼ 12 and 60,"̄(i)/Ti takes local minima,

and then for largerTi, it shows a steep increase, and at slightly larger values ofTi, δ"(i)/"̄(i) takes local maxima.
This rapid increase of"(i)/Ti corresponds to the time scale multiplication. The time scale multiplication process is
also shown inFig. 3(a), where some pulses disappear at some element. Accordingly, the time scale of the transmitted
dynamics is made slower. This multiplication of time scale appears repeatedly from the upstream to the downstream,
as also shown inFig. 6.

Fig. 7(b) shows the schematic representation of the time scale multiplication process described above. As it goes
to the downstream,Ti increases and the normalized time scale of the fluctuation"̄(i)/Ti decreases, as shown, for
example, forTi � 10 in Figs. 6 and 7(a). Accordingly,κ(f̄i) changes from positive to negative value at some element
with Ti ∼ 6.

For an element withκ(f̄i) < 0, the distribution of"(i) gets broader, i.e.,δ"(i)/"̄(i) gets larger as shown in
Fig. 7(a). Within the broad distribution of"(i), some pulses are spatially damped and disappear, sinceκ(f̄i) < 0.
This occurs for"/Ti < f−1

max = 1.8, where" denotes the time interval of each pulse in the fluctuation as shown in
Fig. 7(b). Accordingly the time scale of survived pulses gets slower. Then, for the transmitted wave, the convective
instability is regained, the condition for the instability is satisfied for the normalized time scale,"/Ti > f−1

max = 1.8
again.

Here we define the multiplication ratio as the ratio ofTi’s for successive local minima. In this example, the
multiplication ratio per a single cycle is 60/12 ∼ 5 here, as shown inFig. 7(b). This roughly gives the rate of frequency
reduction by each multiplication process (recall alsoFig. 6). By the repetition of the time scale multiplication, the
fluctuation of fast elements can be translated into slower time scale, and transmitted to the downstream slow elements.

The noiseη is essential for the time scale multiplication process. When only periodic perturbationA sin 2πt/T0
is applied at the upstream, periodicity is just maintained and transmitted. Accordingly, at some sitei∗, normalized
time scale of the dynamics̄fi∗ = T0/Ti∗ becomes smaller thanf−1

max, satisfyingκ(f̄i) < 0. Then variance of the
elementV (i) = σ exp(

∑
i Λ

S(i)) � σ exp(
∑

i κ(f̄i)) (cf., Eqs. (17) and (23)) decreases towards 0, asi is larger. On
the other hand, aperiodicity of the transmitted fluctuation leads to the broader distribution as shown inFig. 7(a), and
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Fig. 8. (a)κ(f ) for a different set of values (v, k2) = (2,1.167) (bold line), (3, 1.317) (dotted line), (4, 1.5) (broken line). Althoughk2 is set so
that maxf κ(f ) is independent ofv, fmax, fmin and the ratiofmax/fmin depend onv. (b)Λ(i) under the application of Gaussian white noise at
i = 1 as a function ofTi for v = 2,3,4. Each mark corresponds to each line in (a) as shown in the legend of the both figures. The period of
oscillation, i.e., the rate of the frequencies by multiplication changes withv. (c) The multiplication ratio, plotted as a function offmax/fmin. It
is measured by ratio among the time scales whereδ"(i)/"̄(i) shows local maxima as shown inFig. 7(b), for various strength of the noise. The
marks are same as (b). (L, τ) andk1 are same with the marks.

allows for disappearance of some pulses through the transmission of the wave. Then, the time scale multiplication
is possible to make the time scale longer.

5.3. Cycle of the multiplication

Here we study the relationship of multiplication ratio withκ(f ). Fig. 8(a) showsκ(f ) as a function off, as in
Fig. 2, for variousv. fmax, fmin and the ratiofmax/fmin depend onv. Correspondingly we have computed the model
Eq. (7) by applying Gaussian white noise ati = 1, to obtain spatial development ofΛ(i), as is plotted as a function
of Ti in Fig. 8(b). The period of oscillation along the space, i.e., the multiplication ratio, changes withv.

As already mentioned, this multiplication ratio is highly correlated with the reduction of the frequency of the
transmitted fluctuation by the multiplication. RecallingFig. 6, we can say that the multiplication process occurs
when the correspondingκ(f̄i) becomes negative, while by the multiplication, the correspondingκ(f̄i) again takes
a large positive value. Then, it is expected that the multiplication ratio is correlated withfmax/fmin for κ(f ). In
Fig. 8(c), the multiplication ratio is plotted as a function offmax/fmin. As expected, the ratio increases monotonically
with fmax/fmin.
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As fmax/fmin gets larger, the multiplication ratio, i.e., the period for successive multiplication events increases.
The event of multiplication is less frequent. Accordingly, the multiplication influences less on the fluctuation in the
downstream.

Furthermore, whenfmin dose not exist, i.e., ifκ(0) > 0, any lower frequency fluctuation thanfmax is amplified
and transmitted without the time scale multiplication, though the time scale multiplication can still appear for higher
frequency. The time scale translation to slower scale by the multiplication is then blurred by the amplification without
the multiplication. Accordingly regular structure is no longer produced at the downflow.

To sum up, existence offmin > 0 and not too large ratiofmax/fmin is necessary for successive appearance of the
multiplication, to produce NSS at the downflow. Meaning of this condition will be discussed again atSection 6.4.

5.4. Conditions for the noise-sustained structure with time scale multiplication

In the previous three subsections, we have shown that the time scale multiplication leads to the propagation of
the noise sustained structure, to a slower time scale. Summarizing the result of the above three subsections, we state
the conditions for it.

As described inSection 5.1, the convective instability with time scale variation is well characterized byκ(f̄i).
Adoptingκ(f̄i) instead ofλS from Eq. (23), we extendEq. (19) for the open flow with time scale variation asEq. (7)
given by

σ exp


 ig∑
i=1

κ(f̄i)


 ∼ 1 (24)

In our modelEq. (7), the condition for the NSS through the time scale multiplication, namely,Eq. (24), is satisfied
under the following three properties.

• As shown inFig. 2, the degree of convective instability depends on the frequency of the transmitted fluctuation
with the frequencyf as

max
f

κ(f ) > 0, lim
f→∞

κ(f ) < 0 (25)

The former is necessary for the convective instability and the latter for damping of faster fluctuation than the
scaleTi (i.e., κ(f ) < 0 for f = ("/Ti)−1 > fmax as shown inFig. 2). In the present model, these conditions
hold for a given range of the parameters,v, k1 andk2.
The latter condition is not satisfied, for example, in a unidirectionally coupled complex Ginzburg–Landau os-
cillator model, instead ofEq. (4). For the model within some range of parameters, the condition maxf κ(f ) > 0
is satisfied, but limf→∞ κ(f ) = 0. In this case, for a system with time scale variation such asEq. (7), the time
scale multiplication of the transmitted fluctuation cannot appear.

• The existence offmin > 0, namely,

κ(0) < 0 (26)

and the ratiofmax/fmin is not too large as discussed inSection 5.3. These conditions are necessary for the
appearance of the multiplication effect in the downstream fluctuation.

• The motion of the transmitted fluctuation is not periodic, described inSection 5.2. This is necessary to have
broad power spectrum so that faster motions are only eliminated, leading to a bifurcation with a slower time scale
dynamics. This condition is necessary for the time-scale multiplication.
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6. Sensitive dependence of slow dynamics on fast elements

In this section, we report how fast elements in the upstream affect the slow dynamics in the downstream, by the
time scale multiplication of the transmitted fluctuation, as described in the above sections.

6.1. Numerical results

First we will show how statistical property of the slowest dynamics depends on that of fastest one by making the
following operation to the fastest element, as introduced in the references[10]. In order to check the influence of
the change of the fastest element, we apply some input to the upstream, and see how it affects the dynamics of the
downstream. We set up the following external operation, and study the response.

6.1.1. External operation and response
After the initial transients have died out, at an arbitrarily chosen point in the temporal evolution, we apply periodic

inputA sin(2πt/T0) (A � 1,T0 ∼ T1) and Gaussian noiseη (with the strengthσ � 1) at the most upstream element,
i = 1, where the time scaleT0 is the order of that of the upstream (T0 ∼ Ti). Then we examine if this addition of an
external input to the upstream influences the downstream with a slower time scale.

Fig. 9 shows the spatiotemporal plot whenT0 is changed from 6 to 12 at time= 20,000. At the downstream,
NSS is generated following this change ofT0, through the repeated time scale multiplication of the transmitted
pulses. Recall again that the time scale of the downstream dynamics is of the order of 102, that is much slower
thanT0.

The plot in Fig. 9 shows that the time scale of the NSS generated at the downstream is of the order of
the time scale of each element, and is much larger than the input time scaleT0, as inFig. 3(a). To study the
amplitude of generated oscillation, we again adoptV (L), the RMS ofbL of the slowest element.Fig. 10(a)
shows the spatial development ofV(i) by changing the frequency of the periodic inputs and noise applied

Fig. 9. Spatiotemporal plot ofbi, whenT0 is changed fromT0 = 6 toT0 = 12 at time= 20,000, whereT0 is the input period applied ati = 1
given byA sin(2πt/T0) with Gaussian noiseη. The plotting methods and the axes are identical withFig. 3(a). The NSS that does not exists for
T0 = 6, is generated at the downstream with the change toT0 = 12.|η| ≡ 10−6,A = 10−3, Ttotal = 100, (L, τ) = (80,1.06). The value ofv, k1

andk2 are same as those forFig. 1.



82 K. Fujimoto, K. Kaneko / Physica D 196 (2004) 67–89

Fig. 10. RMS ofbi(t) in (a) and the correspondingΛS(i) in (b) are plotted as a function ofTi, where Gaussian noiseη andA sin(2πt/T0) is
applied ati = 1. Each symbol in the plot corresponds to a different value ofT0 as shown in the legend. (a) They show oscillation corresponding
to the time scale multiplication of the transmitted fluctuation. (b) The phase of the oscillation and average ofΛS(i) is plotted for the same set of
input periodsT0, using the same symbol. The same values of (L, τ), A andσ are chosen as those forFig. 9.

at i = 1.7 The difference ofV(i) by the input period ati = 1 is amplified (exponentially) in space. Then a larger
difference is generated at the downstream. In other words, the amplitude of the element of the slow scale measured
by V (L) sensitively depends on the period of the input at the fastest element.

As shown inFig. 10(b) the pattern ofΛS(i) = logV (i)/V (i− 1) depends on the periodT0 of the upstream. There,
asT0 is larger, the amplitude of the oscillation ofΛS(i) is larger. The oscillation is maintained even at the downstream.
The summation

∑i
1Λ

S(i) at the downstream changes accordingly. Since the amplitude of the oscillationV(i) is
expected to increase asσ exp(

∑i
1Λ

S(i)), it is sensitively dependent onT0, as shown inFig. 10(a). Hence, the
downstream slow dynamics showssensitivedependence on the upstream fast dynamics characterized byT0.

6.2. The boundary condition sensitivity in an open flow system

In this subsection, we briefly review the condition for the boundary condition sensitivity[28,29], discussed
generally for an open flow system.

In general, we consider a unidirectionally coupled oscillator system given by d�Ai/dt = �F ( �Ai, �Ai−1), where
�Ai = (ai, bi) and system size isL. Assume that each element, without adding noise, is attracted to a unique fixed
point for any initial conditions. Generally, the value of this fixed point depends on the sitei. When viewed from
upstream to downstream, this spatial sequence of the fixed points is represented by a relaxation process from a fixed
boundary condition�A0 to a fixed point�A∗, at the downstream, that is independent of�A0. On the other hand, by the
application of Gaussian noiseη (|η| � 1), the property of the downstream dynamics, for example, the amplitude or
frequency of the NSS, characterized by the RMSV(L) of �AL, can depend on the value of the boundary condition.
This phenomenon is called noise-induced boundary condition dependence. This boundary dependence is maintained
even if a small noise is applied at all the elements. In other words, this sensitive dependence is both noise-induced
and tolerant to noise.

According to the spatial relaxation pattern of the fixed points, the degree of the convective instability of the fixed
points, quantitatively characterized byλS(i) in Eq. (2) of the upstream depends on the boundary condition�A0. On
the other hand, the degree of convective instability is independent of the boundary where the fixed point approaches

7 In the upstream,V(i) mainly shows the amplitude with periodT0 rather than noiseη, because ofA > σ. In Ti � 2,V(i) is spatially amplified
because of the convective instability satisfied withT0/Ti > 1/fmax in as described inSection 5.2. On the other hand, inTi � 2,V(i) is spatially
damped because of the absolute stability satisfied withT0/Ti < 1/fmax.
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Table 1
Correspondence of the boundary condition dependence in the open flow without time scale variation to initial condition dependence in a 1− d

chaotic mapxn+1 = f (xn)

Each step Space (i) Time step (n)

Initial state Upstream property�A0, σ x1

Final state Downstream property RMS of�AL xN
Instability Convective instabilityλS(i) Temporal instability log|dxn+1/dxn|
Difference on initial state Value of the boundaryδ �A0 Valueδx1

Initial state sensitivity

i=ig∑
i=1

{λS(i)| �A0+δ �A0
− λS(i)| �A0

} δx1 exp(
n=N∑
n=1

log |dxn+1/dxn|)

Condition ig � ir δx1 exp(
n=N∑
n=1

log |dxn+1/dxn|) > 1

�A∗ in the downstream. IfλS(i) relaxes spatially to the value for the downstream fixed point before NSS is generated,
then there is no boundary condition dependence. Hence, only if the scaleig, defined inEq. (19) as the formation
length for the NSS, is smaller than the scale for the above length for the spatial relaxation, the generated downstream
dynamics is expected to depend on�A0.

As a simple measure of the spatial relaxation lengthir of the fixed points, we have introduced a ‘half-decay’
length for the spatial relaxation ofλS(i) [28]. Roughly speaking,λS(i) is sensitively dependent on the boundary
�A0 for i < ir, while for i > ir, it weakly depends on�A0. Now let us focus on the relationship betweenig andir.
If the convergence scaleir is much smaller thanig, the summation of the amplification rate of the noise, given

by
∑ig

1 λS(i), depends little on the input. On the other hand, ifir is larger thanig, the downstream dynamics can
strongly depend on the input. Hence, the conditions for the dependence on the input is represented[28] by

ig � ir (27)

It may be interesting to compare the present boundary condition dependence with the initial condition dependence
common to chaotic system, for example in a one-dimensional map. This comparison is summarized inTable 1.

6.3. Boundary condition dependence in the presence of time scale variation

In the present system with the time scale variation, it is also interesting to discuss the boundary condition
dependence. Here, each sitei has its own time scaleTi and spatial relaxation in the last section is discussed in terms
of the time scale. The conditionig � ir is then discussed in terms of the time scale.

Here we numerically check the conditionEq. (27). For largerτ, ig is larger as shown inFig. 4(b), because the
convective instability exponent per element, characterized byΛS(i), is smaller. On the other hand, for largerτ, ir

Table 2
Boundary condition dependence in the open flow with the time scale variation

Open flow with time scale variation

Each step Time scale:Ti
Initial state Fast scale propertyT0, A, σ
Final state Slow scale propertyV(L), "̄(L) � T0

Instability Convective instabilityκ(f̄i) � ΛS(i) = log V (i)/V (i− 1)
Dependence on initial state Time scale of the boundaryδT0

Initial state sensitivity

i=ig∑
i=1

{κ(f̄i)|T0+δT0 − κ(f̄i)|T0}

Condition ig � ir
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Fig. 11. The RMS of the slowest elementV(L) is plotted as a function of the periodT0 applied at the fastest element asA sin(2πt/T0) with noise
η (with the strengthσ = 10−3A). The marks correspond to a different set of (L, τ) as inFig. 4. The dependence is sharper, and approaches
threshold-type dependence, asτ is smaller.

is smaller (data are not shown). This is because the time scale multiplication is more difficult to occur due to larger
time scale differenceτ and the oscillation ofΛ(i) along the flow disappears only at the upper flow. From these
tendencies andEq. (27), it is expected that the boundary condition dependence in the slow dynamics is stronger as
τ is smaller. This is demonstrated inFig. 11where the RMS of the slowest element is plotted as a function of the
periodT0, when the inputA sin(2πt/T0) with noiseη is applied on the fastest element. There the boundary condition
dependence is more strongly sensitive asτ is smaller. It also supports the validity of the conditionEq. (27). The
boundary condition dependence for a system with the time scale variation is summarized inTable 2.

As described inSection 5.2, noise is necessary for the time scale multiplication. In the present simulation, noise
is applied only at the fastest elementi = 1. On the other hand, even if the Gaussian noise with a small amplitude
is applied at the all elements, the above result is invariant. Hence, the present sensitive dependence on the input is
both noise-induced and noise-tolerant.

6.4. Effect of the multiplication ratio

In Section 5.3, we have shown that the ratio of the single multiplication cycle is highly correlated withfmax/fmin.
The multiplication is less frequent asfmax/fmin is larger. Then, according to the discussion in the last subsection, the
relaxation lengthir is smaller, and the dependence on boundary condition is expected to be weaker. Here we discuss
about such relationship of multiplication ratio with the sensitive dependence of slow dynamics on fast elements.

In Fig. 12 the RMSV(L) of the slowest elementL is plotted as a function of the periodT0 applied at the
fastest element asA sin(2πt/T0), together with the noiseη, with the amplitudeσ = 10−1A. As v is smaller, the
multiplication ratio, i.e.,fmax/fmin, is smaller, the boundary condition dependence is more sensitive. Rather sharp
threshold-type dependence is observed, then.

In conclusion, the dependence of slow dynamics on fast elements shows more sensitive as the multiplication
ratio, correlated withfmax/fmin, is smaller.

7. Summary and discussion

7.1. Summary of the mechanism

In the present paper, we have reported translation of fast dynamics to slower dynamics by taking advantage of
convective instability. The mechanism is explained by introducing the spatial instability exponent in the frequency
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Fig. 12. The RMS of the slowest elementV(L) is plotted as a function of the periodT0 applied at the fastest element asA sin(2πt/T0) with
noiseη (with the strengthσ = 10−1A). Here, the marks correspond to a different set of values of (v, k2) that is adopted inFig. 8(b)–(c).
The ratiofmax/fmin is smaller as shown inFig. 8(b)–(c). With the decrease offmax/fmin, dependence of the downflow dynamics onT0 is
stronger.

space, given byκ(f̄ i), wheref̄ i ≡ ("̄(i)/Ti)−1, instead of the spatial Lyapunov exponentλS. The phenomena and
the mechanism we found are summarized as follows.

Time scale translation of the transmitted fluctuation with the use of convective instability is reported inSection 4.
There the transmitted fluctuation is not only spatially amplified but also is made slower from the upstream to the
downstream. This translation is realized by the time scale multiplication of the transmitted fluctuation, where the
bifurcation to the motion with larger periods occurs successively. This mechanism is quantitatively expressed by the
oscillation ofΛ(i) � κ(f̄i) in Fig. 6and the broader distribution of the fluctuation at the onset of the multiplication
in Fig. 7(a). This time scale multiplication is found to occur when the following conditions are satisfied. First, the
spatial instability exponent is positive only within a range of frequencyfmin < f < fmax as given byEqs. (25) and
(26). Second, non-periodicity of the transmitted fluctuation allows for a broad spectrum in the frequency. These
conditions are satisfied at smallerτ, τ � 1.05, i.e.,kx � 2 × 10−2 because ofτ = expkx, in the present model as
shown inFig. 4(a).

Next, due to the convective instability with the time scale translation, the slow dynamics in the downstream are
shown to sensitively depend on the fastest element in the upstream, as described inSection 6.1. It is realized by the
modulation of the time scale multiplication process that depends on the dynamics of faster elements. By extending
the boundary condition sensitivity introduced in[28,29] to include the change of time scale, the conditionig � ir
for the sensitivity is rewritten inTable 2. Accordingly the dependence is shown to be more sensitive asτ is smaller
as shown inFig. 11.

These mechanisms are maintained even ifTtotal is larger by fixingτ and making the system sizeL larger. It
should also be noted that these mechanisms work even in an asymmetric reaction diffusion equation with time
scale variationEq. (6). The phenomena and the mechanisms are rather universal in a class of systems with spatially
asymmetric coupling with the time scale change. As long as the conditions mentioned above are satisfied, the present
phenomena are observed. These mechanisms and conditions are experimentally verifiable, because the measure of
the convective instability, i.e.,κ(f ) andΛ(i) can be calculated from experimental time series data, as described in
Eq. (17) andAppendix A.
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7.2. Asymmetric diffusion from slow to fast element

In the subsection, we discuss about an open flow system where the time scale becomes faster as it goes to the
downstream, in contrast to the system studied in the present paper. To be specific, we adoptedτ < 1 in Eq. (7).

For a NSS to propagate to the downstream with a faster time scale, the fluctuation is not only spatially amplified and
transmitted, but also translated into a faster time scale, in contrast to the convective instability reported inSection 4.
Then, instead of the time scale multiplication of the transmitted fluctuation aroundf̄i = fmax in Section 4, the time
scale division around̄fi = fmin is necessary. Then, from the analogy ofEqs. (25) and (26) in Section 5.4, it is
necessary for

max
f

κ(f ) > 0, lim
f→∞

κ(f ) < 0, κ(0) < 0 (28)

We have studied several examples usingEq. (7) with τ < 1. For some cases that satisfy withEq. (28), the NSS is
propagated with the time scale division of the transmitted fluctuation, andsensitivedependence of the downstream
fast dynamics on the upstream slow dynamics is observed, similarly withSection 6. For some other cases, however,
the NSS is not generated to downflow. For example, during the spatial amplification with the period division,
refractory period of slower upstream elements is too long for the downstream faster elements, which may hinder
the propagation of the NSS, even ifEq. (28) is satisfied.

If the time scale division works, the statistical properties of the fast elements can affect the slow dynamics
in the open flow withτ > 1. This is in contrast to the results insymmetricallycoupledchaoticoscillators with
power law time scale variation, where statistical properties of fast elements can affect the slow dynamics but
that of the slow elements cannot affect the fast dynamics[10]. In this sense, the role of convective instability
in the present case may be different from that of the chaotic instability in the previous study, though the ap-
pearance of the bifurcation cascade is common whenever the fast elements affect the slow dynamics. Further
analysis is necessary for the case withτ > 1, to discuss the condition for the transmission from slow to fast
elements.

7.3. Relevance to a physical system

We discuss possible relevance of the present result to a physical systems, in particular, to memory effect in glassy
systems, gel, granular materials and so forth[33].

As already mentioned inSection 3.2, in the avalanche behavior of a sand pile, it is observed that the particle
flow on the surface is fast but the velocity gets much slower as the position is deeper from the surface[31]. Indeed,
existence of such time scale variation distinguishes the granular flow from ordinary fluid flow. The flow at the
horizontal direction along the surface, i.e., that of the granular flow in avalanche, is an open flow, while the system
has a unidirectional coupling also along the vertical direction to the surface because granular particles are piled up
on the vertical direction, and a flow at a deeper side is triggered to a faster flow at the surface. Since the time scale
for the velocity increases along the vertical direction, the convective instability in this direction may lead to the
time scale translation of the transmitted fluctuation reported in the present paper. It is then interesting to measure
the development of the fluctuation and the void creation in the sand pile that may correspond to the time scale
multiplication in the present paper. Then, through the convective instability, the slow creep motion in the inside of
the sand pile can be sensitively dependent on the fast surface flow. This cascade transfer of flow could be studied in
comparison with energy or inverse cascade in fluid turbulence.

History dependence of stress pattern in the sandpile on the way how granular particles are piled up is recently
discovered[34]. The mechanism of the history dependence is discussed in terms of convective instability and the
time scale variation from the surface to the inside[35]. Further study of the history dependence based on the time
scale translation in the present paper may be relevant to understand the memory effect in such systems.
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7.4. Relevance to biological system

Finally we give some remarks on the relevance of the present study to biological systems, which often involve
multiple time scales. There, changes at a faster time scale sometimes affect the dynamics on slower time scales. In
a biological system, this leads to various forms of ‘memory’. For example, cells can adapt to fast external changes,
with some changes in their internal states[37]. In an intra-cellular signalling system, through cascade of reactions,
environmental change is successively transferred to other chemicals, and then to the change of gene expression.
Here each reaction has a different time scale, and the change of chemical concentrations at a downflow in the
cascade may be slower[11]. Then, the mechanism presented in the paper provides a way how a fast external change
is translated into a slower change of intra-cellular chemical states. Here, sensitive dependence on the external
(boundary) condition is important for biological response.

In the above discussion, the suffixi of ai in the present paper is regarded to correspond to a different chemical
species (say kinase), and the unidirectional coupling is taken along the reaction network. It is also possible to
consider more directly reaction-diffusion dynamics in a single cell, so that the suffixi denotes the real space. Due to
the concentration gradient of some catalyzing chemicals, some parameters in the reaction equation vary accordingly
(see[36], for a model for the embryonic development). When there is concentration gradient of the chemical C that
has a property introduced inSection 3.2, it is possible that the concentration change near the membrane, i.e., the
boundary condition of the upstream, can be fast, and the time scale is slower at the inside of the cell, i.e., at the
downstream. With an external flow expressed asv∂b/∂x in Eq. (5), this intra-cellular dynamics has an open-flow
type coupling with the time scale variation. Then, a fast change near the membrane may crucially influence on the
chemical state of the inside of the cell, and history dependence of the cell on the external environment may arise.

Another possible application of the results of the present paper will be a neural system, where fast changes in the
input can be kept as memory over much longer time scales. The memory is believed to have different time scales, as
often discussed in the regulation among short-term memories, long-term memories and learning[38,39]. Long-term
potentiation of a single neuron involves cascade reactions, similarly to the MAP kinase cascade in the intra-cellular
signalling system. The long-term potentiation appears as a response with a slower scale at the downstream of the
cascade, depending on the environmental stimuli with a faster scale at the upstream of the cascade[12]. It is also
interesting to note that the firing rate of neurons depends on area of the brain, and thus the time scale is changed as
the external information is transferred. Thus, the mechanism in the present paper may shed new light on memory
in brain.
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Appendix A. The degree of the convective instability to periodic perturbation

We consider unidirectionally coupled ordinary differential equations as

�̇Ai = �G( �Ai, �Ai−1) (A.1)

Here the stability analysis is calculated for�A∗
i + δ �Ai ≡ (a∗ + δai, b∗ + δbi) as

˙
δ �Ai = ∂ �G

∂ �Ai

∣∣∣∣∣ �̇Ai=0

δ �Ai + ∂ �G
∂ �Ai−1

∣∣∣∣∣ �̇Ai=0

δ �Ai−1 (A.2)
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where �A∗
i ≡ (a∗, b∗) is a fixed point satisfied with�̇Ai = 0 andδ �Ai ≡ (δai, δbi). The Fourier transformation is

introduced as

�Ψi(f ) =
∫
δ �Ai(t) e2πjft dt (A.3)

where �Ψi(f ) ≡ (ψa,i(f ), ψb,i(f )). ThenEq. (A.2) is transformed as

2πjf �Ψi = ∂ �G
∂ �Ai

∣∣∣∣∣ �̇Ai=0

�Ψi + ∂ �G
∂ �Ai−1

∣∣∣∣∣ �̇Ai=0

�Ψi−1 (A.4)

The spatial recursive equation for the frequency Fourier component is derived as(
− ∂ �G
∂ �Ai

∣∣∣∣∣ �̇Ai=0

+ 2πjf

)
�Ψi = ∂ �G

∂ �Ai−1

∣∣∣∣∣ �̇Ai=0

�Ψi−1 (A.5)

Accordingly, the degree of the convective instability to periodic perturbation with frequencyf, i.e.,κ(f ), is calculated
from Eq. (A.5) by introducing the spatial recursive equation for the frequency Fourier component[24,25]. κ(f ) is
given by logarithm of the transfer function from the spectra at the upstream to that at the downstream as

κ(f ) = log
| �Ψi|

| �Ψi−1|
(A.6)

Hence, we can experimentally calculateκ(f ) from power spectra of the fluctuation at the upstream and the down-
stream, when the strength of each fluctuation is not so large.

Appendix B. Calculation of the distribution of the fluctuation

The distance of each local maximum in the time evolution ofxi is defined as"s(i) and measured as shown in
Fig. B.1,s denotes the sample index. We construct the distribution from the collection of the samples"s(i) for a
long time.

The average and the root mean square of the distribution are calculated as

"̄(i) ≡ 〈"s(i)〉s
δ"(i) ≡

√
〈"s(i)2〉s − "̄(i)2

(B.1)

〈·〉s means sample average fors. "̄(i) denotes the average time scale of the fluctuation andδ"(i) denotes the root
mean square of the distribution.

Fig. B.1. Schematic representation of the measurement of the distribution."s(i) is measured as the time interval of each local maximum of
xi(t). sdenotes sample index. By sampling"s(i) for a long time, the distribution is constructed.
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