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Dynamical systems game theory II
A new approach to the problem of the social dilemma
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Abstract

The “social dilemma” is a problem inherent in forming and maintaining cooperation among selfish individuals, and is of
fundamental importance in the biological and social sciences. From the viewpoint of traditional game theory, the existence
of the social dilemma necessarily implies degeneration into selfish behavior as the numbers of members in a community
increases, unless there exists some external power. In the real world, however, cooperation is often formed and maintained
merely through mutual interactions, without the influence of an external power. To answer questions concerning appearance
and maintenance of cooperative behavior in societies, we study what we call the “Lumberjacks’ Dilemma (LD) game”, as an
application of the dynamical systems (DS) game theory presented in [Physica D 147 (2000) 221], which can naturally deal
with the dynamic aspects of games. Dynamical processes that lead to the formation and maintenance of cooperation, which is
often observed in the real communities, are realized in our model. The mechanism underlying this formation and maintenance
is explained from the DS game point of view, by analyzing the functional dependence of the attractor of the game dynamics
on a parameter characterizing the strategy. It is demonstrated that norms for cooperation are formed as strategies that are
manifested as specific attractors of game dynamics. The change in the stability of this cooperative behavior as the number of
members increases is also discussed. Finally, the relevance of our study to cooperation seen in the real world is discussed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Social dilemma

Constructing and maintaining cooperation within
a relatively large group of individuals often entails a
dilemma, as is seen, for example, in the problem of
garbage disposal, where those who do not care about
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the public good can attain a relatively high utility.
More generally, this type of dilemma exists in the situ-
ation that the collective profit of the entire community
is maximized by cooperation, but each member indivi-
dually can obtain a larger personal profit by behaving
selfishly. In this case, theoretically, rational players
should behave selfishly. However, if they do so, the
society will be damaged and will eventually fall apart.
Here, rational behaviors of the community members
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paradoxically bring about a bad result. The problem
involved in the maintenance of cooperation in a
social group is generally called the “social dilemma”,
for which then-person Prisoners’ Dilemma game is
often used as a typical model. The social dilemma
is important in sociology, socio-biology and other
fields.

1.1. The Tragedy of the Commons

Let us briefly review some studies of the social
dilemma[18].

The classical story expressing the social dilemma is
the so-called “Tragedy of the Commons”, presented
by Hardin in 1968[12]. Because of its applicability to
a variety of environmental issues, this story has been
often referred in the fields of sociology and political
science. The story is the following:

“There is a pastureland open to any villager. If the
villagers are completely free to put their cattle out
to graze, and if there is no restriction placed on each
person’s use of the land, they always increase the
number of cattle they send to pasture to increase
their personal profits. As a result, the common pas-
ture is eventually exhausted, and pasturage becomes
impossible. The loss by increasing one cattle to
the pasture is not large, but if this increase contin-
ues, the capacity for breeding cattle will eventually
collapse.”

An example of the Tragedy of the Commons is
provided by the collapse of grazing land in North
America[19]. The total area of pastureland in North
America is 312 million ha, which occupies one-third
of the entire area of the US. On most of this area,
domestic animals are put out to pasture, and the cattle
consume about 95% of the grass. In the late 19th cen-
tury, ranchers in the west continually increased the
number of cattle, and left them without control. As a
consequence, most of the highlands became stripped,
the soil became poor, and eventually pasturage for
cattle became almost impossible. Since this tragedy,
grazing land has gradually been recovered by mutual
cooperation among community members, by dividing
the land into parts and using them in turn.

Table 1
The payoff matrix for the Prisoner’s Dilemmaa

Player 1 Player 2

C D

Cooperate (3, 3) (0, 5)
Defect (5, 0) (1, 1)

a In the Prisoner’s Dilemma game, the two players either
cooperate or defect (act selfishly). For each element of this table
(S1, S2), S1 is the score of player 1 andS2 that of player 2.

1.2. Theoretical works on the social dilemma

In socio-biology, the emergence and maintenance
of cooperation in society is thought to be a result of
kin selection[11] or altruistic reciprocity. The first
important study of cooperation based on “reciprocity”
was the experimental and theoretical study of the iter-
ated Prisoners’ Dilemma game carried out by Axelrod
[2]. (The payoff matrix of the Prisoners’ Dilemma is
shown inTable 1.) He showed that the simple strategy
TIT-FOR-TAT is evolutionarily stable against other
strategies, such as ALL DEFECT, and as a result, a
cooperative society can be maintained.

This explanation of the appearance and mainte-
nance of cooperation based on the iterated Prisoners’
Dilemma has been applied to a variety of social phe-
nomena. However, many researchers have come to
believe that a direct application of the result of the
iterated Prisoners’ Dilemma to the problem of coop-
eration in a group is difficult, because interactions in
a society usually involve more than two individuals.
Therefore, the necessity of game models with more
than two players has been recognized. For example,
Axelrod and Dion argued that the social dilemma
should be formulated as ann-person Prisoners’
Dilemma withn > 2 [4].

Boyd and Richerson[5] and Joshi [14] have
analyzed then-person Prisoners’ Dilemma using evo-
lutionary games, and proved that the condition for
(the n-person version) TIT-FOR-TAT to be evolu-
tionary stable is harder to be satisfied asn increases.
Let us call thisthe effect of the number of players.
In this case, ‘reciprocity’ is not sufficient to explain
the maintenance of cooperation. Hence, the following
two questions are raised:
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(1) If reciprocity is not sufficient to explain the main-
tenance of cooperation in a social group, how is
cooperation maintained?

(2) Is the n-person Prisoners’ Dilemma really app-
ropriate to study the social dilemma?

With respect to the first question, Boyd and Rich-
erson have found an additional strategy, “sanction”
against non-cooperators in then-person Prisoners’
Dilemma. They have also investigated the evolution
of sanction (see[7], for example). Axelrod has also
introduced a model that involves a ‘metanorm’, which
involves an incentive to punish not only betrayers but
also those who have not punished betrayers[3]. Fol-
lowing another line, Boyd and Richerson considered
a cultural effect to maintain cooperation[6]. These
works are concerned with the way that cooperation in
a society can be maintained by external factors other
than mere reciprocity between agents. Actually, as
discussed in the field of human ecology, “tragedy” in
real society is often avoided through the action of the
institutions outside the interacting agents.

Regarding the second question posed above, a
problem involved in using then-person Prisoner’s
Dilemma to study the Tragedy of the Commons has
recently been pointed out[9]. Indeed, an appropriate
description for the ‘tragedy’ may not be the Prisoners’
Dilemma, but theChicken game. (The payoff matrix
of the Chicken game is given inTable 2.) In the
Chicken game, the simultaneous selfish behavior of
both players results in the lowest overall value of the
wellbeing, while in the Prisoners’ Dilemma this results
in the second lowest such value. In this regard, the
Chicken game appears to be more realistic, because in
the real world, with the continuous use of a common
resource, the overall wellbeing is lowest when all
members waste this resource and suffer bankruptcy.

Table 2
The payoff matrix for the Chicken gamea

Player 1 Player 2

C D

Cooperate (3, 3) (1, 4)
Defect (4, 1) (0, 0)

a In the Chicken game, two players either cooperate or act
selfishly.

Summing up, there is a recent trend in thinking
that “reciprocity” is not sufficient for the maintenance
of cooperation in a society of interacting individuals,
and that sanction or some other strategies, based on
institutions or norms, are necessary.

1.3. Problems in modeling the social dilemma

Here we discuss two problems associated with the
model study of the social dilemma. The first problem
concerns the use of an external norm, and the second
problem involves the disappearance of the dilemma
itself.

(1) As discussed in the last subsection, the introduc-
tion of external social norms is often made in
studies of the social dilemma. However, if these
norms come from a source outside of the inter-
acting agents (for example, from a government),
we cannot study what type of norms will emerge
spontaneously in a society. For example, after a
cooperative social norm is set, the success in cre-
ating a cooperative society depends on how many
individuals sacrifice themselves for the society. If
such a norm completely ignores personal benefit,
it is unlikely that people will obey it. People will
only conform to norms that allow some personal
benefit. As long as the norm is externally set in
models, however, we cannot discuss what norm
could be selected spontaneously by players.

Another question regards the origin of external
norms. Do people always need some external in-
stitution, like a government, outside of their com-
munity? Of course, there is no doubt that people
cannot avoid tragedy if they cannot communicate
with each other, for example, when they live in a
large village. However, this does not necessarily
imply the need for a government, because a norm
may be formed through the players’ communica-
tions or interactions alone, without the presence
of an external institution. For example, negotia-
tions or struggles among nations may sometimes
result in cooperation, even without an external
“metapower”. (Only an exception for this is the
cooperation formed through the occasional inter-
vention of the UN.) Furthermore, even if norms
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and sanctions applied from outside the system are
necessary in some cases, it may be possible to
create a social structure maintained only by the
individuals within the system. If this is true, such
social structure would certainly be more stable
than structure that is simply imposed on society
only by some external force. Then, it is important
to ask if there is some characteristic feature of
such a social structure.

(2) The inclusion of norms and sanction strategies
changes the nature of game itself. It is not nec-
essarily true that the original dilemma still exists
in this modified game environment. To see this,
consider the following. Assume that each player
has a strategy to sanction other players who act
selfishly. If it is easy to apply sanctions to play-
ers who do not conform with the norm, it is a
matter of course that the game society becomes
cooperative. That is, if the cost for punishing the
betrayers is small, such sanctions will be advan-
tageous in the long run, since they will eliminate
selfish behavior, and a cooperative society will be
realized. In this case, however, it is not correct to
conclude that “a cooperative society has emerged
in the presence of the social dilemma”. Rather,
one should better say that “cooperation resulted
because the dilemma has been eliminated as a re-
sult of the change of the rules”. In fact, if the rules
of the game explicitly permit the punishment of
betrayers, this game differs from those with a
social dilemma at the level of a payoff matrix.

From the viewpoint of sociology, it is surely inter-
esting to work out how to introduce additional rules,
such as sanction and norms, in order to change the
game and dispel its dilemma. However, the problem
we would like to deal with here is that of the spon-
taneous formation and maintenance of cooperation
within interacting playersin the presence of this
dilemma.

Without an external institution, it is true that the
tragedy of betraying each other may sometimes arise.
However, it is also true that we do not always fall
in the tragedy and that we can sometimes cooperate
in a community, even under the social dilemma, by

creating tacit consensus, some kinds of ritualizations,
mores, and so forth, which emerge through mutual
communication and interaction. To understand this, it
is necessary to consider how cooperation is organized
in the presence of this dilemma. In this case, what we
should study is not a system in which the changes of
the rules of the game are made externally, but the sys-
tem in which they are formed spontaneously through
interaction of players.

1.4. Dynamical structure of games

Here we discuss some important characteristics of
social dilemma in the real world that are not (or cannot
be) treated by models in the traditional game frame-
work.

Most of the real systems plagued by the social
dilemma, whether they end in tragedy or not, can ba-
sically be understood in terms of some characteristic
dynamics, such as decrease of petroleum resources,
fluctuations of livestock resources, marine resources
and a change of peoples’ economic conditions. It is
often the case with such systems that comprehension
of the space–time structure of the systems plays an
important role in the avoidance of tragedy[13]. For
example, in the situation involving grazing land in
North America discussed above, and in the open field
of Medieval Europe, where the so-called three field
system of crop rotation was widely used, tragedy was
avoided through cooperation based on the temporal
and spatial differentiation of their roles that take into
account the geographical nature and the innate dy-
namics of the resources. The cooperative dynamics
actually observed in these examples correspond to
attractors that emerged according to some internal
dynamical laws and the decisions made by people that
were part of the system. Issues concerning, for exam-
ple, the stability of such cooperative attractors, which
are made by the strategies of the people, against the
invasions of other strategies cannot be addressed with-
out consideration of the dynamical structure of the
systems in question. In these games, from the players’
point of view, in order for players to cooperate, they
sometimes have to decide themselves what the norm
(the consensus about what level of behavior can be
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considered cooperative) is, if there is no outside agent
who gives them the norm, and such self-determined
norms can not be considered apart from the concept
of ‘time’ or ‘dynamics’. For example, if the current
prevalent behavioral pattern maintained by a cooper-
ative player group makes the dynamics of the game
environment in a way that is relatively productive for
all players, then no player will violate the cooperative
behavioral norm, because such violation might give
rise to a ‘change’ of the game environment into a
nonproductive state in the future, in which all play-
ers, including the violator, have a lower wellbeing. In
such cases,the robust normmay be found only in the
dynamical structure of games.

It is certainly productive and of course important to
represent various situations involving social dilemma
in a traditional (static) way, that is, as a payoff matrix
of n-person Prisoners’ Dilemma. Thus, we can make
clear an important feature of the games. However, rep-
resentations games in a static form alone may entail
the loss of features of specific dynamics in the games.
In the present paper we study the social dilemma from
a dynamical and novel point of view, by employing
dynamical systems (DS) games, where the game is
conducted repeatedly (like the iterated Prisoners’ Dile-
mma game), while the nature of the game can change
with time through the effect of the players’ actions.

2. DS game

In the real world, when we decide to select an
action and carry it out, our behavior sometimes
changes our own game environment. Moreover, a
change in the environment may also have an effect
on a person’s decision-making process. Further, the
utility of a given behavior sometimes varies according
to that individual’s (or others’) current circumstances
(for example, the pleasure we find in some action
sometimes decreases as we get tired of it). However,
the static description provided by traditional game
theory, whether it is in the form of a payoff matrix
or a game tree, is not suited to describe and treat this
type of dynamical phenomena. In order to model such
phenomena, we presented DS games[1]. In a DS

game, the game itself can be affected and changed by
the players’ behavior and states. In other words, the
nature of the game itself is described as a ‘DS’. Here
we review briefly the basics of the DS game frame-
work. The details of this formulation and discussion
about DS games are given in[1].

In a DS game, players live in a certain game envi-
ronment and choose among several possible actions.
The game dynamics,g, are composed of the following
three component process:

(1) The states of the players’ surroundings (which we
call the game environment), x, and those of all
the players,y, change following a ‘natural law’
represented by some equation of motion.

(2) Players make decisions according to their own
decision-making mechanisms,f, by referring to
both the states of the game environment and of all
the players (including themselves).

(3) A change in the game environment and the
players’ actions affect the states of the players.

The game dynamics with the above components
is continuously repeated, and the nature of the game
itself can change through this repetition ofg:

g : (x(t), y(t)) �→ (x(t + 1), y(t + 1)).

The entire game dynamics are described by this map
g, and the players’ decision-making functions,f, are
subsumed withing. In this way, a DS game explicitly
describes the game-like interactions as well as the
dynamics in the game.1

3. Lumberjacks’ Dilemma (LD) game

As an application of the DS game framework to the
social dilemma, in this paper we use the LD game.
Here we summarize the LD game, whose detailed
formulation is given in[1].

1 In fact, the game dynamics could be described either in
a continuous-time style (by using differential equations) or a
discrete-time style. We use the latter in this work, since it is con-
venient for comparison with the so-called “iterated game model”
of traditional game theory, which consists of a mere repetition of
a static payoff matrix.
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3.1. Abstract description of the LD

Let us consider the following story that describes
the situation of LD game:

“There is a wooded hill and several lumberjacks on
it. The lumberjacks fell trees for a living. They can
maximize their collective profit if they cooperate
in waiting until the trees have grown fully before
felling them, and share the profits. However, any
lumberjack who fells a tree earlier takes the entire
profit on that tree. Thus, each lumberjack can max-
imize his personal profit by cutting trees earlier.
If all the lumberjacks do this, however, the hill
will become barren and there will eventually be no
profit. This situation represents a dilemma.”

The LD game provides an example of the social
dilemma. In other words, it can be represented in
the form of an (n-person) Prisoners’ Dilemma if we
project it onto the space of static games. However,
there are several important differences between the
LD game and then-person Prisoners’ Dilemma. First,
dynamics of the size of the trees are expressed explic-
itly in this LD game. Also, the yield from one tree,
and thus a lumberjacks’ profit upon felling it, differs
according to the time that it is felled. These profits
have a continuous distribution, because the yield of a
tree takes continuous values. Finally, a lumberjack’s
decision today can affect the future game environment
due to the dynamic nature (i.e. the growth) of trees.

3.2. Modeling

3.2.1. The game-world of the LD game
We now discuss the concrete modeling of the LD

game. In the game-world, the ecology of the LD game,
there areh wooded hills in which the lumberjacks live.
Suppose that the lumberjacks in the population can be
classified intosspecies. We define the set of the ‘lum-
berjack species’ asS = {1, 2, . . . , s} and the set of the
hills asH = {1, 2, . . . , h}. The lumberjacks who be-
long to a speciesi (∈S) have the same decision-making
function f i , and therefore they all exhibit the same
decision-making behavior. Each lumberjack belongs
to one hill and competes with the other lumberjacks

that belong to that hill to fell trees that grow in time,
according to his strategy. The game played on each hill
is played completely isolated from the games played
on the other hills; that is, the lumberjacks on a given
hill have no idea how the games are progressing on
other hills. (In all the simulations,s is 10 andh is 60.)

Let us denote the number of trees on each hill by
m, and that of lumberjacks byn. Now, on each hill,
n lumberjacks (players) compete overm trees (the re-
sources of the hill) to be hewed as lumber. In the com-
puter experiments carried out in the present study, the
n lumberjacks who live on a given hill were selected
randomly from thes species, and multiple lumber-
jacks of the same species can live on the same hill. We
define the set of players on a hill asN = {1, 2, . . . , n}
and the set of resources asΞ = {1, 2, . . . , m}. These
n players play a 400 round repeated game (“the LD
game”). At each round, each player has a ‘score’ of
his wellbeing according to the value of the lumber he
cuts in that round. Aftert = T rounds, each player’s
average score over theseT rounds is calculated. (In
the simulations in this study,T was set to 400 rounds.)

This LD game is played parallely overT rounds in
each of theh hills, which givesone generationof the
game. Thefitnessof a species is defined bythe aver-
age of the average scoresthat all the players of that
species have acquired on all the hills. Before the next
generation of players enters the game, thek species
with the lowest values of fitness are replaced byk new
species. These new species are obtained as mutants of
thek species randomly selected from among the other
(s−k) species. The other (s−k) species survive for the
next generation. The same procedure is repeated in the
next generation, without the memory of the previous
generation. (Throughout all experiments in this study,
the parameterss andk were set tos = 10 andk = 3.)

3.2.2. LD game conducted on a hill
The LD game played byn lumberjacks (players) on

h hills competing form trees (resources) is described
as follows:

Let us denote the ‘state’ of the resources on a given
hill at time t by x(t). This is a vector-valued function
whose elements are the ‘heights’ of them trees;x(t) =
(x1(t), x2(t), . . . , xm(t)). Each player possesses a
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one-dimensional variable that represents his ‘state’.
Here, a ‘state’ represents, for example, the monetary
state, nutritional state, and so forth, of the player.
Its value at any given time represents that player’s
score for that round. Each player also has his own
decision-making function. The state of the playeri is
denoted byyi(t) and his decision-making function by
f S(i) whereS(i) is his species in the game-world. We
definey(t) and f as y(t) = (y1(t), y2(t), . . . , yn(t))

andf = (f S(1), f S(2), . . . , f S(n)).
At any given time, each player decides his next

action by considering the sizes of the trees,x(t), and
the states of players,y(t). All of the players’
actions are represented by the vectora = (a1(t), a2

(t), . . . , an(t)). Each player’s individual action at
a given time can be one ofm + 1 actions: “do
nothing”, “cut tree 1”, “cut tree 2”,. . . , “cut tree
m”. These actions are represented by 0, 1, 2, . . . , m,
respectively, and the set of all these feasible actions,
{0, 1, 2, . . . , m}, is denoted byA.

The T-times repetition of the mapg generates the
game dynamics((x(t +1), y(t +1)) = g(x(t), y(t))).
In the simulation of this study, for the first round of
the game on each hill, the valuesxi (i ∈ Ξ ) were
all set to 0.1 (although this choice itself is not so
important since soon the resource dynamics falls on
an attractor independent of the initial values). The
players’ initial statesyj (j ∈ N ) were chosen as ran-
dom numbers from the normal distribution with mean
0.1 and variance 0.1. The mapg is composed of three
components: (1) natural law, (2) decision making by
players (f) and (3) effects of actions:

(1) The natural law is one of the components deter-
mining the overall dynamics of the game, but has
nothing to do with the decision making of players.
In the LD game, the natural law consists of (i) the
growth of the trees,xk(t)′ = uΞ (xk(t)) (k ∈ Ξ),
and (ii) the decrease of the values of players’
states,yi (t)′ = uN (yi(t)) (i ∈ N). In this study,
we setuN(y) = 0.8y. (The formula foruΞ is
given below.)

(2) Player i’s decision-making function, f S(i),
determines his action, ai(t), based on the states
of the environment and the players on the same

hill, denoted byx(t)′ and y(t)′. In other words,
ai(t) = f S(i)(x(t)′, y(t)′). The termf S(i), which
varies throughout the evolution, represents ‘inter-
nal structure’ of the playeri and is invisible to
other players.

(3) Players’ actionsaffect the state of the resource
on the hill. The height of treei when cut by
the players decreases according toxi(t + 1) =
(1/3)νi xi(t)

′, whereνi is the number of players
who cut this tree. The lumber cut from any given
tree is divided equally among all the players
who cut that tree. Acquiring lumber in this way
increases the value of the players’ states. Thus,
playeri’s state becomesyi(t +1) = yi(t)′ +∆ in
the subsequent round, where∆ is the amount of
lumber this player received in the present round.

These three steps as a whole is calledone round of
the game. In each round, for any player to increase his
score in that round, it is always better to cut a tree,
because∆ is always positive if he cuts a tree, while it
is zero if he chooses to ‘wait’. However, in the long
run, taking action of ‘cutting’ too frequently does not
always result in the highaveragescore.

3.2.3. Settings for LD games

3.2.3.1. Two natural laws of the tree growth.In this
paper, we consider two types of maps to describe the
natural law of the tree growth,uΞ :

(1) uΞC(x) = 0.7x3 − 2.4x2 + 2.7x,
(2) uΞL (x) = min(1.5x, 1.0).

We call uΞC (Fig. 1(a)) the convex mapand uΞL

(Fig. 1(b)) the (piecewise) linear mapbecause of their
graph shapes. Here the detailed forms of these maps
are not important. The point is that we have defined
two differentnatural laws witha common nature. For
example, in either case, a tree grows rapidly during
the early rounds, but its growth gradually slows and its
height eventually converges to 1 if it is never cut. Fur-
thermore, both natural laws bring about a LD, because
players can maximize their collective profits through
cooperation by waiting for trees to have fully grown
before felling them, while any individual player can
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Fig. 1. Maps for the growth of trees,uΞ : (a) convex map; (b) linear map.

receive the entire profit from a tree if he alone does
not cooperate and cuts the tree before maturity. The
situations of the both the convex and linear LD games
would be represented by the same payoff matrix of the
n-person Prisoners’ Dilemma in the traditional, static
game framework.

3.2.3.2. Decision-making function.To implement
concretely the decision-making functionf, we intro-
duce the “motivation map” mtvr for each feasible
action r (r ∈ A), which gives a player’s incentive to
take the actionr. The values of the coefficients of mtv
for a player change as this player evolves. The form
of this map as follows:

mtvr : (x, y) �→
∑

k∈M

ηkrxk +
∑

l∈N

θlr y
l + ξr .

Here, the valuesηkr and θ lr form real number ma-
trices and the valuesξ r form a real number vector.
These coefficients, which change through mutation,
determine the player’s strategy, and a tiny difference
in these values can lead to those different strategies
for which ‘fitness’ clearly differs.

In each round, each player selects the action
whose motivation has the largest value among the set
{mtvr}.2

The coefficient parametersηkr , θ lr , andξ r of the
initial 10 lumberjack species in the game-world are
generated as random numbers from the normal distri-

2 The functionf (x, y) is given by

f (x, y) = k (k ∈ A) if mtvk(x, y) ≥ maxr∈A mtvr (x, y).

bution with mean 0 and variance 0.1. The coefficients
of offspring are chosen as random numbers from nor-
mal distributions with varianceσ , and means equal
to the corresponding parameters of the parents. The
valueσ , corresponding to the mutation rate, is set to
0.1 here.

4. Evolutionary LD games—effect of the number
of players and game dynamics

In this section, we briefly explain how the number
of game participants and the game dynamics influ-
ence the evolutionary phenomena seen in the games.
As stated in the previous sections, it is already known
from the analytical findings of traditional, static games
that under social dilemma, it is harder to achieve a
cooperative society as the number of people in the
society increases. Now, we are concerned with how
the dynamics in games (which cannot be described by
static game models) affect the realization of coopera-
tive society.

Our method of modeling evolution was described
in Section 3. In most of the LD game simulations
presented in this study, the number of trees was set
to one. In this case, each player’s available action is
‘waiting’ or ‘cutting the tree’. We have studied both
two-person and three-person DS games using both
the linear and the convex maps for the natural law of
the tree growth. (Thus, we consider four cases.) We
focus on how thenumber of personsand thediffer-
ent characteristics of the game dynamicsaffect the
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evolution of the society. An evolutionary simulation
was conducted three times for each of the four cases.
We now discuss typical simulation results for each.

Fig. 2 shows how the fitness value changes as the
generation of each simulation increases (fitness chart).
(The fitness of the fittest species in each generation is
calledthe fitness value(of the generation) here.)

In the two-person linear LD game(Fig. 2(a1)), a
high fitness value is realized at an early stage and it
fluctuates around 0.5 for some time. However, as the
strategy evolves, some lumberjacks begin choosing to
betray. From about the 500th generation, they start
competing to cut trees, lowering the fitness value of the
generation. Then, for a long time the society is ruled
by betrayers. At about the 7500th generation, however,
the lumberjacks form rules for cutting trees, a sign of
cooperation in the society. Finally, the fitness value
of the generation is stabilized around 0.5. Contrast-
ingly, in thethree-person linear LD game(Fig. 2(a2)),
from approximately the 30th generation, the lumber-
jacks enter a competitive society, and they cannot get

Fig. 2. Fitness chart:fitness valueof each generation is plotted, with the horizontal axis representing the generations. Thefitness value
of a generation is defined as that of the fittest species in that generation. The fitness chart for a (a1) two-person linear LD game, (a2)
three-person linear LD game, (b1) two-person convex LD game and (b2) three-person convex LD game are shown.

out of the mode of tree-cutting competition. (Though
the number of trees on a hill is set to 1 here, we
have found that a society of tree-cutting competition
also results in three-person linear LD games when the
number of trees is increased from 1 to 3.) This sug-
gests that a cooperative society cannot be achieved
as the number of persons increases in the linear LD
game.

Next, let us consider the fitness chart oftwo-person
convex LD games(Fig. 2(b1)). Here again, at an
early stage, the fitness value of the generation drops
suddenly. Then, after some fluctuations and jumps,
it remains around a certain high value. In short, the
society is able to emerge from tree-cutting competi-
tion, and it is transformed into a cooperative society
at a relatively early stage. In this way, it is able to
regain a high fitness value. Then, following several
transitions in the fitness value, a cooperative society
is established from about the 4500th generation with
the fitness value fluctuating between 0.6 and 0.8. The
average of the size of the tree is approximately 0.25
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in later generations. It is thus seen that eventually a
fertile game environment is created and maintained.

In the three-person convex LD game(Fig. 2(b2)), a
cooperative society is formed at an early stage. Once
this society is formed, the society never returns to a
competitive state. The maximum fitness value fluctu-
ates near 0.5. The approximate mean value of the tree
height is 0.35, and a more fertile game environment
than that in the two-person game is maintained. (Of
the three simulations for the three-person convex LD
game, one turned into a lawless society at an early
stage, but a cooperative society was established at
about 6000th generation and maintained steadily after
that, seeAppendix B.)

The important conclusion of this section is the fol-
lowing. An increase of the number of players works
as an obstacle to the creation and maintenance of
a cooperative society in the linear LD game, as the
static game model (such as then-person Prisoners’
Dilemma). In the convex game, however, an increase
of the number of persons does not prevent the cre-
ation of a cooperative society. On the contrary, in this
case it appears that a more cooperative society can
be established, as evidenced by the results for the
three-person game.

Note that when considered in the framework of a
static game, the linear and convex LD games have
identical social dilemmas. The only difference lies in
the rule of the dynamics of the tree growth. Hence, in
order to understand why a cooperative three-person
society can be established and well maintained in the
convex case, we need to determine how the dynamic
structure of the game depends on the nature of the
tree growth by examining the simulations in detail
and comparing this structure in the linear and convex
cases. In the next section, we first present character-
istic phenomena for the two-person, one-tree convex
LD game. InSections 6 and 7, we elucidate the mech-
anism underlying in these phenomena, focusing on the
dynamics of the game. There, the formation and main-
tenance of cooperation and the increase in number of
betrayals are studied in terms of DS. InSection 8, we
discuss the evolutionary LD games under different
conditions (number of players, number of trees, and
the rule for tree growth). Finally, inSection 9, we

discuss the social dilemma and DS games in general
by drawing together the results of these investigations
of the LD games considered in this study.

5. Simulation of the two-person, one-tree
convex LD game

5.1. Outline of the evolutionary process

In this section, we will discuss specific phenomena
seen in the simulations of the two-person, one-tree
convex LD game.

First, we give an overview of the simulation results
(Fig. 2(b1)). In early generations (roughly up to the
1000th), lumberjacks attempt to compare with each
other by cutting as many trees as they can. As a result,
cooperation does not appear in the society; that is,
players are likely to betray each other on almost all
the hills. However, as generations pass, lumberjacks
begin making rules of cooperation. These rules of
cooperation adopted in the society gradually change
as generations go by, and as a result, the state of
cooperation sometimes collapses completely and is
replaced by a competitive society. In this way, cooper-
ative societies form, change, and collapse repeatedly
over generations (until approximately the 4000th gen-
eration). Eventually, however, a cooperative state is
established completely, and a non-cooperative society
no longer appears.

We now examine the results of the simulations,
and in the process clarify the origin of a cooperative
society.

5.2. Bias toward betrayal

Since the LD game possesses the social dilemma,
there always exists a structural bias toward betrayal,
as in the Prisoners’ Dilemma. For this reason, at early
generations, selfish action with exploitation is com-
mon among players.

Fig. 3 displays the fitness chart for the early period
(up to the 1000th generation). Initially, it is seen
that lumberjacks’ strategies are distributed randomly.
Here the fitness value exhibits large fluctuations, since
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Fig. 3. Fitness chart of early generations for the two-person and one-tree convex LD game simulation.

players undertake trial-and-error behavior to test a
variety of sequences of actions (cutting the tree and
waiting for tree growth) almost randomly. The fitness
value of the generation found in this period is some-
times high. This is not because the strategies have
evolved enough for lumberjacks to form cooperation,
but because the above randomness sometimes low-
ers the frequency of tree-cutting action and makes a
productive game environment accidentally. Then, as
evolution progresses the fitness value drops suddenly
around the 100th generation when players start to
compete in cutting trees. Such competition and its
effect on the game environment can be observed in
the game dynamicson the hill: (1) the dynamics of
the players’ action; (2) the dynamics of the tree size;
(3) the dynamics of the players’ state.

The action chart (Fig. 4) shows how the players
in the LD games are relentless in cutting trees. The
frequency of cutting trees becomes higher after this
competitive behavior begins. Accordingly, as seen in

Fig. 4. Action chart (200th generation): a black rectangle indicates the action of ‘waiting’, and a white rectangle that of ‘cutting the tree’.
The horizontal axis represents the round. From the total of 400 rounds, the first 80 rounds are shown. ‘ID 0000025A’ and ‘ID 0000022B’
are the names of the two species to which the two lumberjacks belong.

the resource chartandstate chart(Fig. 5(a) and (b)),
the height of the tree and the state of the player remain
at low values.

In any single round of this game, the benefit of
cutting the tree always exceeds the payoff of waiting.
In this sense, the above described blind competition
for cutting trees during this period is a natural con-
sequence in a game characterized by theTragedy
of the Commons. In fact, selfish strategies with
non-cooperative behavior are commonly observed in
many kinds of LD games, and they are not limited to
the present two-person convex LD game. Increasing
one’s individual benefit through selfish behavior is an
easier tactic for evolution than increasing the overall
benefit by cooperating with other lumberjacks, which
requires strategies to coordinate behaviors with others.

In order for cooperative behavior to spread among
players, some agreement on the definition of ‘coope-
ration’ needs to be made among them. However, in the
present LD game, no specific symbols representing
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Fig. 5. (a) Resource chart: the height of the tree is plotted as a function of the round number. (b) State chart: the state of the player is
plotted as a function of the round number. Both charts are corresponding to the action chart,Fig. 4. Throughout this paper, for the first
round of the game, the tree height is set to 0.1, and the state of each player is chosen from random numbers from the normal distribution
with the mean 0.1 and the variance 0.1 (seeSection 3.2.2).

“cooperation” or “betrayal” are given in advance as a
rule. Furthermore, since variables (such as the size of
the tree) are continuous, the value of benefits reaped
has innumerable possibilities, depending on the timing
when a tree is cut. Thus, social standards regarding
cooperation, such as the minimum tree height neces-
sary for cutting, are not specified in the construction
of the model, in contrast with the traditional games,
such as the Prisoners’ Dilemma. Such standards must
be formed among the players through evolutionary
dynamics. For this reason, more is demanded in this
LD game with regard to achieving cooperation in
comparison with the traditional games.

In spite of the above difficulty a cooperative soci-
ety is formed. First, it is temporarily created around
the 800th generation, resulting in an increased fitness
value. This cooperative state, however, soon collapses
at a little later generations, being replaced again by a
competitive society, which lasts a long time. In this
simulation, the large-scale collapse of the cooperative
society occurred four times (Fig. 2). In the present
simulations, the evolution toward a competitive so-
ciety was found to accelerate, once the fitness value
of the generation fell below 0.4. The cause for this
collapse of a cooperative society is discussed in later
sections.
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5.3. The formation and transition of cooperation
rules

There are many possible types of norms regarding
the cooperation agreed among the players in our LD
game. For example, behavior in which an individual
only cuts a tree if it is taller than 0.7 might be called
cooperative in one society, while it might be deemed
selfish in another. Through the evolutionary process,
a society keeps changing its norm for cooperation.
In our simulation, first, a certain type of cooperative
society was formed and maintained for a short time.
Then, it was replaced by a different type of cooperative
society. These process was repeated again and again.
Now, we study the changes in the cooperative norms
observed in our game-world.

5.3.1. Stepwise evolution (from 900th to 1800th
generation)

Fig. 6 (a blow-up of Fig. 2(b1)) displays fitness
charts from the 900th to the 1800th generation. As
can be seen, from about the 1000th generation, the
fitness value of the generation (referred to as the “fit-
ness value”) begins to rise step-by-step. Gradually, in
a stepwise fashion, a cooperative society is created
by moving away from the competitive state. For each
epoch that displays such stairs, a type of game dynam-
ics specific to that epoch dominates the game-world,

Fig. 6. Two-person, one-tree LD game: the fitness charts from the 900th to the 1800th generation (blow-up of the graph inFig. 2(b1)).
A–D in this figure denote Epoch A (1100th generation), Epoch B (1250th generation), Epoch C (1450th generation), and Epoch D (1700th
generation).

i.e. the 60 hills used in the simulation. By contrast,
epochs without such stairs exhibit many different kinds
of dynamics distributed over the various hills. In the
former case, between each step, the society changes
drastically. Let us take a close look at three epochs:
Epochs A–C (seeFig. 6).

Let us name the distinct game dynamics charac-
terizing each of the Epochs A–C as types A–C. The
dynamics are completely identical for all hills in some
cases, while they are nearly identical in the other cases.
For instance, type-A game dynamics exist on more
than half of the 60 hills during a certain generation
of Epoch A, while during all other generations of this
epoch, type-A dynamics exist on almost all 60 hills.

5.3.2. Characteristic dynamics in Epoch A–C
Fig. 7 displays type-A game dynamics that are

dominant inEpoch A. As indicated inFig. 7(a) and
(a)′, the players here exhibit the period-5 action se-
quence of “wait, cut, wait, cut, wait”. In addition, the
two players’ actions are identical. From the dynamics
of the tree sizes (Fig. 7(b)), it can be seen that the
lumberjacks collect lumber while allowing the trees
to grow to some extent. The actions forming type-A
are considered as the norm for cooperation for lum-
berjacks living in the game-world. During this epoch,
the nature of the game is such that the mean height
of the tree is approximately 0.12.
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Fig. 7. Epoch A: (a) action chart (with (a)′ its attractor part); (b) resource chart; (c) state chart.

Fig. 8 displays the dominant game dynamics in
Epoch B. During this epoch, the mean height of the
tree is again approximately 0.27. The dominant action
of the players in this epoch are given by the period-3
sequence “wait, cut, wait”, as shown inFig. 8(a) and
(a)′. The frequency of cutting in this epoch is lower
than that in Epoch A, and thus a more productive envi-
ronment is maintained. The actions of the two players
are also identical in these type-B dynamics. Dynamics
similar to these are also seen in Epoch D (Fig. 9). The
difference between Epochs B and D is only the pro-
portion of the players that adopt this dominant action
sequence. In Epoch D, the same dynamics are likely
to be exhibited on all of the hills.

The nature of the game inEpoch Cis such that the
average tree height is approximately 0.45. As seen in
Fig. 10(a) and (a)′ each player carries out the period-4
action sequence, “wait, wait, wait, cut”. The most
salient feature of this type of dynamics is that the two
players are not synchronized in their action. Here the
action sequence is performed out of phase by the two

players and they alternately raise trees and gather lum-
ber. As a result, a more productive game environment
than that of Epoch A or B is created.

5.3.3. Transitions between epochs
It is clear that different types of dynamics are dom-

inant in Epochs A–C individually and that each type
is maintained over a certain time. As time passes
from Epoch A–B to C, productive game dynamics
are gradually generated. Of course, in some cases,
productivity drops, as from Epoch C to D. We wish to
know how the transition between two ages proceeds.

Judging fromFig. 6, the fitness within a given
epoch is not completely constant. There are several
pulse-like periods here and there (as indicated by the
arrows). Such periods are common in Epoch A and
some of them last too long to be called ‘pulses’. Dur-
ing the time of a wide pulse around the 1137th gener-
ation within Epoch A (indicated by the wide arrow in
Fig. 6), the fitness value is slightly larger than the mean
fitness value of this epoch. In the generations during
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Fig. 8. Epoch B: (a) action chart (with (a)′ its attractor part); (b) resource chart; (c) state chart.

Fig. 9. Epoch D: (a) action chart; (b) resource chart.
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Fig. 10. Epoch C: (a) action chart (with (a)′ its attractor part); (b) resource chart; (c) state chart. In this case, beginning at the 22 round,
each player waits for the other player to cut the tree. In this way, there comes to be a temporal differentiation of roles, and the actions
fall into cyclic dynamics of period 4.

this pulse, dynamics of both types A and B are ob-
served frequently. The game dynamics exhibited on an
individual hill depend on the species (i.e. the strategy)
of the lumberjacks on that hill. In the 1137th genera-
tion, some species can execute only type-A action se-
quences, while others can execute both those of types

Fig. 11. Two types of game dynamics observed at the 1137th generation (Epoch A): (a) and (b) action diagrams of type-A and type-B
dynamics, respectively. In both (a) and (b), there is one player from species ID-00000D57. Depending on the opposing player, this player
employs either type-A or type-B dynamics.

A and B, as inFig. 11(a) and (b). There are a number of
different kinds of dynamics displayed on the 60 hills in
a generation of Epoch A. The numbers of lumberjacks
displaying type-A dynamics, type-B dynamics and
other types change as generations pass, but in general,
the number displaying type-A is largest throughout
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Fig. 12. 9000th generation: (a) action chart; (b) resource chart; (c) state chart.

the epoch. In Epoch A, there are occasionally switches
between types A and B. For instance, the number of
lumberjacks displaying type B is larger at the 1137th
generation, mentioned above. Still, as long as the tran-
sition to type B is not complete, the society eventually
returns to type A. The pulse phenomena in Epoch A
exemplify this kind of switching process. Conversely,
Epoch B is characterized by the stabilized state that
appears when the transition to type B is complete.

5.3.4. Later generations
Later in the evolutionary process (Fig. 2(b1)),

after the 2000th generation, the society continues to
change the rules of cooperation, and the fitness values
also continue to change. Although, during this time,
occasionally a cooperative society collapses and turns
into a competitive society (at about the 3000th and
the 4000th generations), a cooperative society is more
easily recovered as generations proceed. After the
4000th generation, the society never again becomes
competitive, and a cooperative society is established,
although the norm for “cooperation” continues to
change.Fig. 12illustrates the dominant game dynam-
ics of the 9000th generation. Here, two lumberjacks
manage to grow the tree by having time-sharing for
cutting trees with a different phase, and changing the
role in turn, as discussed above in the case of Epoch C.

6. Stabilization of a cooperative society
and changes of rules

6.1. Stability of the game dynamics—analysis
using AGS diagrams

In the previous section, we observed that lumber-
jacks form rules to manage the dynamics of the resou-
rces cooperatively in the two-person, one-tree convex
LD game. Specifically, they grow and consume the
natural resources together or alternately, periodically
changing their action. Also, the rules for cooperation
change with generations. How can such formation and
development of the rules be possible? How can such
forms of cooperation remain stable given the social
dilemma that exists? To answer these questions, we
will analyze the relationship between the evolution
of strategies and the game dynamics using theAGS
diagram, which was introduced in a previous paper
[1], to show the change of attractor of game dynam-
ics due to the change of strategies. (SeeAppendix A
for a brief introduction to the AGS diagram, which is
necessary for the latter part of this paper.)

Note that (a) decision making of the players
determines the (b)game dynamicsand therefore
determine the (c)average scores of the players. AGS
diagrams can elucidate the relationship between (a)
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and (b), while the ‘average-score landscape’, used in
Section 6.3, reflects the relationship between (a) and
(c). Here, using AGS diagrams, we mainly discuss
the stability of the game dynamics in a cooperative
society.

6.1.1. Articulated structure in the AGS diagram
First, let us consider Epochs C and D (Fig. 6). Their

dominant game dynamics are displayed inFig. 10
(1501st generation) andFig. 9 (1700th generation).
The decision-making functions (Section 3.2.3) of the
fittest species of these epochs are shown inFig. 13(a)
and (b). We call the fittest species of the 1501st gen-
eration ‘Species C1’ (and a player of this species
‘Lumberjack C1’), and that of the 1700th generation
‘Species D1’. The characteristic game dynamics ex-
hibited in Epochs C and D are completely different.
Nevertheless, the decision-making functions in these
epochs are quite similar. The main differences are in
the values ofθ11 andθ20. For example,θ11 is approx-
imately−0.65 for Species C1 and−0.15 for Species
D1.

Next, let us study the AGS diagrams. The LD game
played by a player of Species C1, which is the fittest
species of the 1501st generation, and a player of the
second-fittest species results in the period-4 dynamics
displayed inFig. 10. The AGS diagrams for the game
played by two such lumberjacks appear inFig. 14,
with the value ofθ11 appearing there being that of
Lumberjack C1.

As seen in the figure, near the parameter value
−0.5, there is a period-3 attractor, as indicated by the
three parallel segments existing there. These segments
correspond to dynamics of type D. On the other hand,
the two dark segments ranging from about−0.4 to
+1.0 correspond to the period-4 action sequence of
type C dynamics.3 Let us call such a parallel seg-
ment area aplateau. The valueθ11 of Lumberjack C1
(about−0.65) is within the period-4 plateau. With a
change ofθ11 to the period-3 plateau (about−0.15)
the player comes to exhibit type-D dynamics. Differ-

3 Although the players’ actions are attracted to the period-4
action sequence, the dynamics of the tree height are period 2. This
is because the dynamics of the tree size depend solely on whether
it is ‘cut’ or ‘not cut’, independent of the player who cuts the tree.

Fig. 13. (a) and (b) Decision-making functions of the fittest species
of the 1501st generation (in Epoch C) and the 1700th generation
(in Epoch D), respectively. The solid line and the dashed line
indicate the incentive for action 1 (cutting the tree) and action
0 (waiting), respectively. Here, the points of intersection between
the solid line and the ‘Environment’ axis, the ‘Player 1’ axis,
the ‘Me’ axis, and the ‘Const’ axis indicate the values of the
corresponding coefficients of the decision-making functions,η11,
θ11, θ21, and ξ1, respectively, while the points of intersection
between the dashed line and these axes giveη10, θ10, θ20, and
ξ0, respectively. Although the game dynamics are all significantly
different, as we can see from (a) and (b), the decision-making
functions are quite similar. The slight difference in the value of
θ11 that causes the significant difference in dynamics is indicated
by the arrow.

ence between Epochs C and D is produced by such
a difference in strategies, and is due to the dynamical
structure of this two-person convex LD game.

When a stable cooperative society in the two-person
convex LD game is realized, as seen inFig. 14,
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Fig. 14. AGS diagram: attractors of the dynamics of the tree size are plotted for a range of values ofθ11 for two lumberjacks in the
1501st generation. The two segments indicated by the arrow C represent a period-2 attractor of the tree height type-C dynamics. The three
segments indicated by the arrow D represent a period-3 attractor consisting type-D dynamics.

almost all of the AGS diagrams of the lumberjacks are
composed of plateaus of periodic attractors.4 Within
the plateau, the game dynamics do not change even
when there is a change in strategy. For example, in
Fig. 14, the θ11 value of Lumberjack C1 is approxi-
mately−0.65, within the plateau of type C. However,
even if the θ11 value of this player has a slight
deviation due to mutation, the game dynamics to be
observed will remain the same. Ifθ11 exceeds−0.4,
the game dynamics will jump into type D immedi-
ately. Afterwards, even ifθ11 is further increased, the
game dynamics will remain type D.

From the viewpoint of lumberjacks’ strategies, the
structure of game dynamics is clearly articulated with
many plateaus in the AGSs of the lumberjacks when
the mutual cooperation is formed among them.

6.1.2. Plateaus in AGS diagrams and their effect on
the evolutionary phenomena

In our LD game simulations, several cooperative
societies, each of which exhibited distinctive game dy-
namics, succeeded in lasting over several generations.

These game dynamics are also found among the
plateaus in the players’ AGS diagrams. We refer

4 We have already observed such plateaus in the AGS diagram
in the one-person convex LD game[1]. However, the structure in
the present case is completely different from that in a one-person
game.

to these dynamics asstrategic metastable game
dynamics (SMD). In SMD, lumberjacks live in a
cooperative society that exhibits game dynamics that
are stable with respect tochanges in some players’
decision-making functions. In other words, some
plateaus in the AGS diagrams correspond to SMD
that can create cooperative societies.5

When the system displays cooperative behavior, the
game dynamics do not change gradually as the strat-
egy changes. Rather, they suddenly jump to different
game dynamics at certain critical points. In the cases
of Epochs A–D, certain kinds of game dynamics are
dominant in the game-world. These all correspond to
plateaus in the AGS diagrams of lumberjacks existing
in those epochs. In other words, these plateaus define
standards for the society or the rules that most players
follow. Their very existence is a necessary condition
to establish a stable cooperative society. (Thesuffi-
cient conditionis given in the following subsection.)
We will refer to a plateau as an SMD if these suffi-
cient conditions are satisfied. SMD expresses a mutual
agreement among players acting cooperatively.

In the present study, the observed transitions
between different cooperative societies always cor-

5 According to this definition, treasonous game dynamics in a
competitive society that persist for a long should be called SMD,
but in this study, we restrict “SMD” only to that which forms a
plateau for a stable cooperative society in the AGS.
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respond to the transitions between different types of
SMD. The stepwise development of cooperation rules
follows the stepwise structure of the SMD in this
game.

The LD game is played out in terms of continu-
ous variables. Thus, there are potentially innumerable
varieties of dynamics in action, resource, and states.
However, for the ‘cooperative society’ seen in this
two-person convex LD game, there are only a few
types of game dynamics that we have observed. In
fact, it is often the case that only one type of game
dynamics is observed throughout the entire 60 hills
in the game-world. Such a reduction of the game
dynamics is reflected by the articulated structure in
the AGS diagrams. As will be shown in the following
subsection, the sufficient condition referred above for
the stabilization is satisfied due to the limitation of
the number of dynamics. As is shown inSection 7,
if such articulated structure of the dynamics does not
exist, the social dilemma of the LD game cannot be re-
solved, and a cooperative society can not be achieved.

Now let us study how cooperation is created and
stabilized when the game dynamics are articulated.

6.2. Mechanism responsible for the stabilization and
development of cooperative rules

In this subsection, we examine how cooperative
rules are established and stabilized and how they
develop into new rules.

6.2.1. Robustness of two-way strategies: transition
from Epoch A to B

First, let us study how the transition from Epoch A
to B takes place and how type-B dynamics are stabi-
lized.

During the transitional period between Epochs A
and B, two types of species are mainly observed in
the game-world. We call the one ‘Species A’ (and a
player of this species ‘Lumberjack A’), and the other
‘Species B’ (and ‘Lumberjack B’, correspondingly).
Through the selection process, the number of Species
B eventually surpasses that of Species A (Fig. 6).

Table 3gives the average scores for Lumberjacks
A and B. In a game played by two lumberjacks of

Table 3
Score table for Lumberjacks A and B (at the 1250th generation)a

Name Score Comparison Score Name

A 0.4 = 0.4 A
A 0.4 = 0.4 B
B 0.6 = 0.6 B

a The values are approximate average score for lumberjacks in
an LD game of 400 rounds.

Species A, the game dynamics are type A, and the
average score is 0.4 for both. (There is some fluctua-
tion of the score for each game around this average,
though.) Meanwhile, Lumberjack B employs type-A
dynamics for the game with Lumberjack A, and as a
result the average score is 0.4 for both. For the game
with two lumberjacks of Species B, type-B dynamics
are employed, and the average score is 0.6 for both
lumberjacks. In other words, Lumberjack B is able to
successfully use both type-A and type-B dynamics.

Due to the dominance of Species B over Species
A during this transitional period, the former grad-
ually increases its population in the game-world,6

thereby establishing Epoch B. The evolutionary
stability of Species B can be understood as fol-
lows. Suppose thatE(X, Y ) is the score of Strat-
egy X against StrategyY. Then, the condition
for Strategy I to be an evolutionary stable strat-
egy (ESS) is that for all StrategiesJ (I �= J ),
(1) E(I, I ) > E(J, I ) or (2) E(I, I ) = E(J, I ) and
E(I, J ) > E(J, J ) [16].

From Table 3, it is clear that the strategy of Lum-
berjack B satisfies condition (1). If we assume that
most strategies in this period are limited to either
Species A or B,7 the increase in the Strategy B and
the stability of Species-B society is thus explained. In
other words, if the game dynamics are articulated, as
discussed in the previous subsection, due to the char-
acteristics of the dynamical law of this LD game, and
all lumberjacks are in the state of employing dynamics

6 This process is similar to that seen the evolution displayed
in the imitation game[15], since B can imitate A, but A cannot
imitate B.

7 This is true in the case that, in the AGS diagram, lumberjacks’
strategies are concentrated near the border between the two plateaus
of types A and B.
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Table 4
Score table of Lumberjacks C and D

Name Score Comparison Score Name

C 0.7 = 0.7 C
C 0.5 < 0.8 D
D 0.6 = 0.6 D

of either type A or B, then the transition from Epoch
A to B can be explained by ESS. We can also explain
the transition from Epoch B to C, in a similar manner.

6.2.2. Continuous nature of the LD game and the
level down of the game dynamics from Epoch C to D

Next, let us take a look at the transition from Epoch
C to D (Fig. 6). Since the fitness value drops at this
transition, the previous explanation of the transition
from Epoch A to B cannot be used here.

Table 4 gives the scores for two lumberjacks of
Species C and D during the transition period from
Epoch C to D (at 1685th generation). In the game
involving two Species C lumberjacks, type-C game
dynamics are used and the average score is approxi-
mately 0.7 for both lumberjacks. In the game involving
two Species D lumberjacks, type-D game dynamics
are used, and the average score is approximately 0.6
for both, which is smaller than the average score be-
tween C lumberjacks. However, in the game between
Lumberjacks D and C, Lumberjack D exploits the
Lumberjack C. His average score is 0.8, which is
larger than the average score in the game with two
Species C lumberjacks. We conclude that, if the dis-
tribution of strategies is concentrated around those of
Lumberjacks C and D, the population of Lumberjack
D will increase.

The reason for the success of the invasion by Lum-
berjack D lies in thecontinuity in the LD game.
Among the strategies classified into type C, there is
continuous set of slightly different values. Although
the typeof a species is determined by the correspond-
ing attractor of the game dynamics, the parameters
in the decision-making function for a given species
can vary continuously over certain ranges. In the
early stages of Epoch C, immediately after the end of
Epoch B, the parameter values for Species C are se-

lected so that it has the ability to successfully compete
against Species B, which is less cooperative. Species
C at this stage possesses a strategy ‘strict’ against the
type-B (and type-D) dynamics that are more selfish.
However, with the success of Species C, almost all
lumberjacks begin to use type-C game dynamics as
generations pass. At this stage, it is most advanta-
geous for a lumberjack to adopt the more cooperative
type-C game dynamics, as quickly as possible. For
example,Fig. 10shows that the type-C dynamics be-
gin after 20 transient rounds. By decreasing the length
of this transient period, the average score from the
total 400 rounds is increased. As a result, as periods
pass, there is a continuing trend toward an increase in
the number of lumberjacks possessing strategies char-
acterized by greater “generosity” among the range
of type-C dynamics. After this trend in evolution
reaches some point, the lumberjacks of Species C are
now so generous that they can no longer successfully
compete against lumberjacks of Species D, who cut
the tree more frequently. This allows for the invasion
of the relatively selfish strategy.8

6.2.3. Summary of mechanisms allowing
escape from the ‘tragedy’

Now let us summarize the formation and stabiliza-
tion of and transitions among cooperative societies in
the LD game, the DS game model that we consider as
a model of thesocial dilemma:

(1) The key for establishing cooperation lies in the
articulation of the game dynamics, as reflected by
the AGS diagrams inFig. 14. Whether or not artic-
ulation is possible depends on the dynamical law
of the game-world. For some dynamical laws, it is
difficult or impossible to realize such articulation.
For example, in the linear LD game, which uses
a piecewise linear map for the growth of trees, it
is very difficult to realize articulation of the game
dynamics (seeSection 7). Furthermore, even in
the convex LD game, articulated structure is rarely
observed in a completely non-cooperative society.
In cooperative societies of the convex LD game,

8 A similar mechanism causing the collapse of cooperativity due
to excessive generosity is also seen in the collapse of money[20].
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some articulation is realized through the interac-
tion of the lumberjacks, and a discrete structure
is created in the originally continuous LD game.

(2) The cooperative norms of the society are formed
as stable game dynamicsthat result from artic-
ulation. In spite of the existence of the social
dilemma in the LD games, its detrimental effect
is avoided as a result of the dynamical structure
created within the game. There are several such
stable types of dynamics that yield cooperation.
These different types correspond to different
epochs of the stable society, each adopting a dif-
ferent norm. Evolution from one stable society to
another can be analyzed by studying the dynamics
of the scores for the different strategies articulated
from a continuous range of parameters.

(3) After a cooperative society is achieved as the
result of the articulation of dynamics, it is some-
times taken over by a more selfish society. This is
because the norm adopted for cooperation within
this established society becomes too generous
through the evolution of the continuous para-
meters, and the society becomes vulnerable to the
invasion of selfish strategies.

Fig. 15. Fitness chart from the 4000th to the 4500th generation. In Epoch X, a period-5 action sequence is dominant, while in Epoch Y,
a period-3 action sequence is dominant. The 4196th generation is located in early Epoch X, while the 4229th and 4319th generations are
located in early and late Epoch Y, respectively.

6.3. Stability with respect to the invasion of
unrealized strategies—investigation using the
“average-score landscape”

To this point, we have studied the generation of
the cooperative society observed in the simulation.
However, innumerable types of strategies are possi-
ble, in addition to those that actually appeared in the
simulation, since a continuously infinite number of
decision-making functions can exist, described by DS
with real parameter values. Now, we examine if the
dominant strategies found in the cooperative society
at a certain generation can successfully compete with
several strategies that differ from those found in the
simulations. In particular, we study if these strategies
are stable with respect to invasion by certain selfish
strategies.

As an illustration, we consider two types of coop-
erative strategies that appeared in the simulation. In
Fig. 15, the fitness chart from the 4000th to 4500th
generation is given. In the cases considered here, a
cooperative society is gradually created, while com-
petition in cutting trees is gradually replaced by
cooperative behavior. Although the cooperative rules
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Fig. 16. The average-score landscape of�-player (1). The figure depicts the average scores of�-player and opponents. The opponents
represented in this figure are players obtained as mutations of species 312D, the fittest species of the 4196th generation (in Epoch X). To
be specific, the mutant is obtained by using all of the parameter values for species 312D, except that ofξ0. This value is continuously
changed from−10 to 28 for the mutant species. The value ofξ0 for the opponent is indicated by the horizontal axis. The solid line
represents the average score of�-player (400 rounds of the LD game), while the dotted line represents the average scores of the opponents.
Note that the actual value ofξ0 for the fittest species of Epoch X is about−2.3, as is indicated by the arrow.

occasionally change in later generations (after the
4500th generation), we have found that the cooper-
ative society itself isnever taken over by a selfish
society.9 Two phases, “Epoch X” and “Epoch Y”,
appear in the manner described above, as inFig. 15.
Here we focus our attention in particular on Epoch
Y, in which a period-3 action sequence is dominant.
Let us call the 4229th generation (early in Epoch Y)
the “�-generation”, and the 4319th generation (late in
Epoch Y) the “�-generation”.

6.3.1. Stability of theα-player respect to various
competing strategies

First, we considera playerwith the optimal strat-
egy of the�-generation (strategy ID: 3190), which
we call the “�-player” hereafter. We investigate here
the performance of the�-player when he competes
against players of various other strategies, each of
which is a mutant of the optimal strategy of the
4196th generation in Epoch X. More precisely, the
mutants are created by changing the parameterξ0 of
the decision-making function of the optimal strategy
of the 4196th generation.Fig. 16displays the average

9 Simulations were conducted up to the 20,000th generation.

scores of the two players in all the games. We call
this type of graphs anaverage-score landscape. As
we can see, the average score of the two players never
exceeds 0.6. Note that when two of the�-players
(or �-players) participate in a game, they employ
the period-3 game dynamics that are characteristic
of Epoch Y, and the average score is approximately
0.6 for both players. The results obtained here pro-
vide evidence that no strategy introduced here can
overthrow the society that the�-players control[16].

Next, let us study the immunity of the society
against a selfish player. As such selfish players, we
prepare mutants of the optimal strategy of the 200th
generation, which is a completely non-cooperative so-
ciety.Fig. 17displays the average scores of the games
played between�-players and those selfish invaders.
As we can see here also, the average score of the in-
vading players never exceeds 0.6. In other words, any
strategy prepared here cannot overthrow the society
of the �-players. Based on this result, we can say
that the�-type strategy is also stable with respect to
strategic invasions, which were not actually seen in
simulations. Furthermore, the�-player remains mem-
ory of the battles carried out in a competitive age that
his ancestors experienced.
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Fig. 17. The average-score landscape of�-player (2). The figure also depicts the average scores of�-player and opponents. The opponents
represented in this figure are obtained as mutations of species 25A, the fittest species of the 200th generation. To be specific, the all
parameter values of species 25A are used for the mutant, except that ofξ0, which is continuously changed from−10 to +30. The actual
value of ξ0 for the species 25A player is about 0.64, as indicated by the arrow.

6.3.2. Stability ofβ-player with respect to
exploitative-type strategies

Let us next examine the stability of the coopera-
tive society of the�-generation with respect to self-
ish strategies. For this purpose, we pit a�-player
against players of various selfish strategies. As the
opponents, we again prepare mutants of the optimal
(non-cooperative) strategy of the 200th generation.

Fig. 18 plots the average-score landscape for such
confrontations. Here, it is clear that the�-player so-
ciety is certainly stable with respect to the invasion

Fig. 18. The figure depicts the average scores of�-player and opponents. The opponents represented in this figure are also obtained as
mutations from the fittest species (species: 25A) in the 200th generation. The actual value ofξ0 for the species 25A player is about
0.64, as indicated by the arrow. We can see from this figure that the mutant strategies for which the value ofξ0 is near wide arrows can
successfully invade the society of�-players.

of the (actual) optimal strategy of the 200th genera-
tion with ξ0 ≈ 0.64 (denoted by the narrow arrow),
because the average score of the invader is far below
0.6. However, the average score of the invading play-
ers exceeds 0.6 when the parameterξ takes a value
near the wide arrows. That is, the�-player society
would collapse due to the appearance of players with
strategies obtained from the mutation of theξ0 value
of the optimal strategy of generation 200 if these mu-
tated values reach the value indicated by the wide
arrow.
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Fig. 19. Action charts at early times (140th generation). (B) The basic action sequence in this generation. Similar sequences are observed
on many hills in the game-world of this generation. (T) One of the lumberjacks (species ID: 000001A5) acts selfishly, with a higher
frequency of tree cutting. The average scores of the two players over 400 rounds also appear for each case.

Statistically speaking, such large mutations are al-
most improbable, since there is a very large difference
between the parameter values of the strategies for the
�-players and that indicated by the wide arrow. This
is why the cooperative�-player society does not col-
lapse in simulations and the game-world remains co-
operative for a long time (at least up to the 20,000th
generation).10

From the above analyses, we can conclude that the
�-player society is not as stable with respect to various
strategies as the�-player society. This is because the
‘generosity’ of the dominant strategy in the�-player
society developed in Epoch Y, which exists a long
time after the last battle against selfish players. In the
actual simulations, however, this very generous nature
of the �-players is advantageous, because, by being
more generous, the lumberjacks can more effectively
cooperate with others that possess various strategies
(Fig. 15).

7. Decline of cooperation due to the
continuous change of dynamics

In the example simulation we have discussed in this
paper, the re-emergence of selfish behavior occurred

10 Of course, the probability of collapse is not zero theoretically,
however small it is, since the mutations are chosen randomly from
a normal distribution (whose tails extend to±∞).

four times. The collapse of a cooperative society and
the increase of selfishness are often observed in the
present model. We now analyze this kind of evolution
toward selfish behavior by considering the structure of
the game dynamics. We will also discuss the reason
that an increase in the number of players results in a
non-cooperative society for thelinear LD game, but
not for the convex LD game.

7.1. Non-cooperative societies in the two-person
convex LD game

To understand the evolution toward selfish behavior,
we plotted the action chart of a particular confrontation
in Fig. 19. This shows the lumberjacks’ actions on two
hills of the 140th generation of the two-person convex
LD game, when selfish actions are dominant.

Fig. 19(B) is the action chart of a battle that is
somewhat characteristic of the game dynamics of the
140th generation, although there is no single typical
battle here, since the game dynamics exhibited on the
total 60 hills during this generation are highly diverse.
This is a common situation for a selfish society in
the convex LD game. In the battle represented in this
figure, the two lumberjacks simultaneously cut trees
about once every other time step.11

11 More precisely, the game dynamics observed on this hill are
period 22.
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Fig. 20. Resource charts at early times (140th generation), corresponding toFig. 19. Appearing in the titles are the average heights of the
trees over all 400 rounds. (T) has a small average value, about 0.1.

Hence, the average scores of both players are
low (about 0.1815 and 0.1987). On the other hand,
Fig. 19(T) depicts a battle on another hill in the
game-world of the same 180th generation. In this bat-
tle, one of the lumberjacks cuts the tree selfishly and
gains a high profit, without waiting for the trees to
grow. Here there exists a large difference between the
average scores of the two lumberjacks (about 0.264
and 0.051).

The resource charts corresponding toFig. 19 are
given in Fig. 20. As we can see in these charts, the
mean tree height of (T) is shorter because of the self-
ish actions of one of the two lumberjacks. However,
judging from the corresponding state chart (Fig. 21),
the state value of the selfish lumberjack (Fig. 21(T)) is

Fig. 21. State charts for the early times (140th generation) corresponding toFig. 19. In contrast to the states of the two lumberjacks in
(B), one of the two lumberjacks in (T) (the one who cuts the tree more frequently) maintains a higher state value, and the other remains
at a very low state value.

higher than that of the other’s. We thus see that if one
lumberjack acts more selfishly, the game dynamics for
each will be less productive, but the betrayer will in-
crease his profit a little. This is a clear manifestation
of the socialdilemmagame.

Now, let us study the evolution toward a compet-
itive society.Fig. 22 displays the AGS diagram for
the strategies of the two lumberjacks ofFig. 19(T),
where one of the lumberjacks exploits the other. Here,
the decision-making function of the exploited lum-
berjack is fixed, while the exploiting lumberjack’s
decision-making function is varied by changing the
parameterθ21. In Fig. 22(a), the attractor, represented
by the state value, changes with the parameterθ21.
Here, the attractor consists of quasi-periodic motion
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Fig. 22. AGS diagrams created by sampling the two players of the different two species in the same generation (the 140th generation). In
each figure, the horizontal axis shows the value of the parameterθ21 in the decision-making function of a player, while the vertical axis
shows the attractor of the tree height. (a) For all values ofθ21, the tree height changes quasiperiodically in time, taking infinitely many
values. The range of these values changes with a continuous slope as a function ofθ21. The actual value ofθ21 for the original player
is 0.2879, as indicated by the arrow. (b) The same AGS diagrams over a wider range (from−6 to 6) of θ21 values. The attractor of the
dynamics changes as the strategy of a player changes, and this change can be quite complicated.

(a torus) for all the values ofθ21. In contrast with
Fig. 14, there is no flat region here, but the state
changes with some slope when a strategy parameter
is changed. The actual value ofθ21 for the exploit-
ing lumberjack is indicated by the arrow in the figure.
In the region with a continuous slope in the diagram,
such lumberjack that has largerθ21 by mutation cuts
the tree more frequently, and has a higher score than
others. Thus in the next generation, the mean value of
θ21 increases, and the new standard for the game dy-
namics in the game-world goes down, following the
slope structure in the AGS diagram. Since there is no
flat structure here, this evolution continues to the bot-
tom of the slope, where a selfish society is realized.
(Such sloped structures are clearly seen in the AGS
diagrams of selfish lumberjacks, as shown inFigs. 17
and 18.) The decline of cooperation through this mech-
anism clearly exemplifies thetragedyof the commons
well—the process by which common resources grad-
ually decrease due to the gradual increase of players’
selfish behavior along with the evolution or “learning”
of the players.

In Fig. 22(b), a blow-up of the AGS diagram dis-
cussed above is shown. it is interesting to compare
this complex diagram with the clearly articulated AGS
diagram (Fig. 14) when a cooperative society is estab-
lished. We see that without articulated structure, it is
extremely difficult for players to set up a certain type
of game dynamics as a norm of cooperation. It follows

that once the game-world falls into a competitive state,
the society cannot easily get out of it over generations.

7.2. Linear LD games

To discuss the relevance of dynamics to the forma-
tion of cooperative society, we study the linear LD
game, where the absence of articulate structure also
has a dominant effect.

The one-personLD game was studied previously
[1], whose relevant part to this study is briefly summa-
rized inAppendix A. From the AGS of the one-person
linear LD game, we can see that the game dynamics
are in a quasi-periodic orbit over a wide parameter
region, and this region consists only of a continuous,
sloped structure (Fig. 26(b)). Plateaus exist only at
the top of this sloped structure (wherexd > 2/3).
This indicates that there are few plateaus inlinear
LD games, even in case of the one-person game.12

However, in the one-person game, cooperation
with others is not necessary, and the existence of
SSD, which is a prerequisite for the formation of
cooperation standards in multiple-person games,
is not relevant. Actually, in the one-person linear

12 Note that, in the AGS diagrams ofconvexgames, plateaus
can be observed everywhere in any generation for the one-person
game. By contrast, they do not exist in early generations of the
two-person game, although they emerge in later generations of the
two-person game through evolution.



E. Akiyama, K. Kaneko / Physica D 167 (2002) 36–71 63

Fig. 23. Two-person, one-tree linear game (the 10,000th generation): (a) action chart; (b) resource chart.

LD simulation, the player starts climbing up the
slope quickly, easily achieving optimal behavior[1],
although there are only a few plateaus in the AGS.

In linear LD games with two or more persons, how-
ever, as stated inSection 4, there is a tendency toward
competition in cutting a tree. Once the fitness value
goes down, recovery is extremely difficult (Fig. 2(a1)
and (a2)). This situation is due to slope-like structure
that exists commonly in the AGS diagrams for the lin-
ear LD game. Here, the acceleration of the movement
toward selfish behavior corresponds to the strategy pa-
rameter going down the slope in the AGS diagram. In
the AGS diagrams of the linear LD game, there exists
little structure that could provide a norm for cooper-
ation. Therefore, the existence of the social dilemma
characterizing the LD has a quite direct effect for the
linear game. In this case, it is not easy for players from
a non-cooperative society to realize SSD, which exists
at the top of the slope. In the two-person linear LD
game (Fig. 2(a1)), the players attain SSD after a very
long time (approximately in the 7500th generation),
and the cooperative society emerging then is stable.
The game dynamics for this cooperative society are
shown inFig. 23. In contrast with this situation, in the

case of the three-person linear LD game, the players
are completely stuck in a non-cooperative society and
are unable to crawl up to the SSD (Fig. 2(a2)).13

In the simulations we performed, random num-
bers chosen from a normal distribution were used to
obtain the mutated parameter values in this study.
Thus, the possibility for a great variation that could
allow the players to climb up the slope exists, even
though the probability of observing such behavior is
small. What is to be noted here is that this probability
becomes much smaller when the number of players
increases from two to three. It should also be noted
that, although in the fitness chart of the two-person
game (Fig. 2(a1)), pulses in which the fitness value
exceeds 0.01 can be seen occasionally, such pulses
are very rare in the three-person game (Fig. 2(a2)).
These results as a whole imply simply that ‘the effect
of the number of players’ in systems plagued by the
social dilemma is clearly and directly reflected here
due to the fact that ‘no (or only little) articulation of
the game-dynamics structure’ for the linear LD game.

13 Simulations were conducted up to the 20,000th generation.
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8. Dynamics-induced cooperation sustained
in multiple person games

In this section, we discuss the importance of the
dynamical nature of games in the maintenance of
cooperation.

As stated inSection 4, the effect of the number of
players does not work well in the case of the convex
LD game. That is, in the three-person convex game,
a cooperative society can be created at an early time
(Fig. 2(b2)) and the mean value of the tree height is
greater here than that in the two-person game. Thus
in this case, the game environment can be maintained
in a state of abundance. Once a cooperative society is
established, it is maintained more stably than in the
two-person game.

Fig. 24 displays the cooperative game dynamics
that are dominant dynamics in the three-person con-
vex LD game. The attractors of these dynamics con-
sist of period-15 cycles from the viewpoint of each
lumberjack (period-5 cycles from the viewpoint of the
tree). After each lumberjack performs the five-action

Fig. 24. The dominant pattern in a three-person, one-tree convex game (the 4878th generation): (a) action chart; (b) resource chart.

sequence of “cut, wait, cut, wait, cut”, they patiently
wait for as many as 10 rounds, to let the other lum-
berjacks perform the same five-action sequence.

In contrast to the convex case, an increase in the
number of the players for the linear LD game makes
the realization of cooperation more difficult. From the
perspective of the static game, both games are played
by the same social dilemma. Then why does the dif-
ference in the tree growth rule result in such essential
difference?

The answer to this question lies in the bifurcation
structure of the convex game. For convex LD games,
the productive, cooperative period-15 game dynam-
ics in the three-person game has a greater stability,
due to the mechanism resulting from articulation. In
the three-person convex game, the period-15 attractor
dynamics correspond to a plateau in the AGS dia-
gram. This type of structure implies a greater stability
against invasion of other strategies. The rate of cutting
trees of this period-15 attractor, 2/15 for each player,
is rather low, and the strategy here is therefore highly
cooperative.
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Fig. 25. The dominant pattern in a three-person, two-tree convex game: (a) action chart; (b) action sequence in the attractor part. Here, a
black rectangle represents the action ‘waiting’, a white rectangle ‘cutting tree 1’ and a gray rectangle ‘cutting tree 2’. Each tree is cut once
every two rounds, and each player cuts one of the trees every three rounds. They control the growth dynamics of the trees by alternately
their roles in both time and space (the trees).

However, in this three-person convex game it is
difficult for a lumberjack to increase his gain if he
deviates from the cooperation norms. Decision-making
functions of lumberjacks in this game show that, from
very early generations of the simulation, lumberjacks
begin to adopt the principle in their strategies, “I
cut the tree when my state value becomes too low”.
Therefore, if one lumberjack cuts the tree very fre-
quently, the other two lumberjacks would acquire only
little lumber each time they cut, and as a result, they
too would also start cutting trees at a more escalated
pace. At this point, because the period-15 dynamics
is isolated from other stable dynamics, by articula-
tion, the observed game dynamics would not change
gradually, but, rather, wouldjump to an attractor at an
extremely low level, if the frequency of tree-cutting
increased too much. As a result, lumberjack can-
not violate the cooperative norm completely in this
three-person game, because such a violation can bring
about his own loss. For this reason, the period-15
cooperation rule is highly stable and the high fitness
value is maintained stably in this game. (A slightly
distorted period-16 pattern can also be seen in some
generations.) Here, the influence of the dynamical
structure on the results, which cannot be considered in
traditional, static game models, is sufficiently strong

to overcome the tendency toward selfish behavior
that results from an increase in the number of players
(Fig. 25).14

Of course, it is interesting and important to study if
the present mechanism for cooperation works effec-
tively for more-than-three person convex games. By
comparing the three-person case with the two-person
case, there is no reason that the cooperation of the
present mechanism will be more difficult for more
person case, although there might be a threshold point
at which the effect of the game dynamics meets that
of the number of players. Although we have shown
here that the former can be more important than the
latter, future studies are necessary for more-than-three
person games.

By contrast, in the case of linear LD games, little
articulated structure in the game dynamics is formed,
even in the case of a one-person game (seeFig. 26(b)),

14 The relevance of dynamics to cooperation is also observed
in the results on three-person convex LD games with differ-
ent numbers of trees (one, two, and three trees). Among them,
two-tree games exhibit the most profitable game environment, not
three-tree games. This is also caused by the greater stability of a
somewhat peculiar cooperation rule in the three-person, two-tree
LD game, which yields period-6 game dynamics, as shown in
Fig. 25.
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Fig. 26. AGS diagram of one-person, one-tree convex LD games: (a) convex LD game—change of the attractor with the strategy is plotted.
A set of all the values ofx taken by the attractor (i.e. all the valuesx takes between the 200th and 400th rounds), is plotted with the
decision value,xd, given in the horizontal axis. For example, the two parallel straight segments aroundxd = 0.8 show that the dynamics
of x is attracted to the period-2 cycle taking the values around 0.3 and 0.6 alternately. (b) The AGS diagram for the linear LD game
plotted in the same way. Quasi-periodic attractors appear forxd ≤ 2/3.

because it is this structure that overcomes the tendency
toward betrayal that the social dilemma necessarily
involves, the effect of the number of players has the
same effect in linear LD games as in the static game
case.

9. Discussion

In this section, we discuss the findings for the LD
game both in terms of the social dilemma and in terms
of DS game.

9.1. Modeling of the social dilemma with static
games and DS games

Examples of the social dilemma, including prob-
lems of garbage disposal, consuming pasture, and dra-
ins on various resources, can be modeled using static
games, such as then-person Prisoners’ Dilemma, by
extracting their common dilemmatic qualities. It is
certainly important to direct attention to the common
qualities among a variety of phenomena. However,
should we model all the above problems in a similar
manner?
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For instance, there exists a significant difference at
the level of dynamics between the games involving
the consumption of resources that decrease only, like
petroleum, and resources that are also produced un-
der certain conditions. (The LD game is a model of
the latter situation.) In DS games, these two situations
are represented by different natural laws. These two
types of game have completely different descriptions
if they are modeled with DS games. When we model a
game-like interaction as an algebraic payoff matrix of
a static game, some kind of radical abstraction is defi-
nitely needed at logical level. In the course of such an
abstraction, however, we may cut off what can only be
described as specific dynamics, and it is possible that
those omitted parts may be essential for the resolution
of the social dilemma.

In the simulations presented in this paper, indeed,
the above ‘omitted parts’ have an important effect on
the avoidance of tragedy. In the modeling of the so-
cial dilemma using static games, such as then-person
Prisoners’ Dilemma, it becomes increasingly difficult
(or impossible) with the increase of the number of
the players to avoid this tragedy. The effect of the
number of players is undeniably real in any system
characterized by the social dilemma. On the other
hand, when we are faced with this dilemma in a real
group or a real community, we do not always take
tragedy-inducing actions. Why is this? As a new ap-
proach to understanding this problem, we introduced
DS games. This is because we often adopt forms of
cooperation accompanied with dynamics, as described
below, when a tragedy is avoided in actual situations
of social dilemma.

Our LD game exemplifies the social dilemma, and
the realization of cooperation inherently becomes
more difficult with the increase of the number of play-
ers. However, our study of the convex game shows
that this increase does not always bring about a less
cooperative society. Rather, the outcome depends on
the nature of the dynamics exhibited in game. In other
words, it is possible for the dynamical characteristics
of the game to play a more important role than the
effect of the number of players.

Indeed, as we have found, social norms that sta-
bilize cooperation are formed from some dynamical

structure of the system. Such norms in the convex
LD game are formed as a result of articulation of
an originally continuous distribution of strategies
through bifurcation in the DS. With this articula-
tion, each type of dynamics corresponding to each
cooperative society is greatly separated from the
non-cooperative dynamics. For this reason, a small
change in the strategies of the players cannot destroy
the cooperative society. It should also be noted that
we often adopt some kind of norm for cooperation
that is specific to the nature of the environment, when
a tragedy is avoided under social dilemma in the real
world.

On the other hand, it is difficult to form a cooper-
ative society in the linear game, and it becomes more
difficult with the increase of the number of players. In
other words, in this case the increase in the number of
players has the same effect as in the static game. In-
deed, there is little or no articulated structure obtained
through bifurcation. Without such articulation, the
system is vulnerable to the invasion of selfish players,
whose presence leads to an increase in the degree of
selfish action throughout the game-world.15

Note that the emergence and maintenance of the
cooperation in the convex LD games do not require
any external force. Rather, this cooperation is created
spontaneously within the system. The social norms
for cooperation are developed through interactions
among the lumberjacks and the game environment.
Also, sanctions applied to those who violate the social
standards are formed from the dynamical structure of
the system. It is important to note this is not imple-
mented assanction strategiesat the stage of modeling.
These social norms autonomously retain their stabil-
ity within the players’ system in the form of a certain
rules for cooperation. Conversely, when we attempt
to set a norm from outside the system, it is desirable
to set it so that it coincides with a stable rule formed
naturally in the articulated structure of the DS game.
In this case, this norm can be maintained steadily
with the aid of the nature of the DS.

15 Indeed, we face with this process of the collapse of cooperation
in our daily life: “I cheat a little, the environment becomes a little
worse, but I benefit a little, and if I cheat a little more. . . ”.
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9.2. DS game

We now point out two advantages in modeling with
the DS game.

First, in the DS game the decision-making mecha-
nism is represented as a ‘simple DS’. In this study, the
lumberjack’s decision-making function is expressed
as a linear combination of state variables. In spite
of this simple representation, players can attain high
scores by adopting non-trivial dynamics. For example,
some strategies lead to stable cooperative behavior
in which different types of dynamics are employed
to repel different invading strategies. Furthermore,
some strategies can successfully repel invasion by
continuously infinite number of unrealized strategies.
Also, during the evolutionary process, memory of
past battles with selfish strategies retained to a certain
extent. Note that the following advantages exist in
the representation of a strategy by a simple DS: (1)
it allows us to understand the features of a player’s
decision-making process as features of the equation
in the decision-making function. (2) It allows the
possibility of using DS theory, such as that regarding
bifurcations, as demonstrated, for example, by the
AGS diagram. (3) It allows suitable expression of
strategies to deal with a continuously changing game
environment.

Second, the DS game framework provides an an-
alytical method and a new viewpoint that cannot be
provided in the traditional game framework. Although
the convex LD game and the linear LD game from
the viewpoint of DS games correspond to the same
n-person Prisoners’ Dilemma from the view-point of
static games. However, these two DS games that rep-
resent the social dilemma generate two qualitatively
different types of social phenomena. The difference
is brought about in the game dynamics of the games.
We thus see that, several real social situations that
have their specific dynamical features, which would
be modeled as the same payoff matrix16 when ap-
plied abstraction and described in the static game
framework, are possible to exhibit completely differ-

16 It may be the payoff matrix of, for example, the Prisoners’
Dilemma, or the Chicken game, or the Battle of Sexes, or etc.

ent qualities by expressed respectively as DS games
with concrete dynamics. Particularly, with regard to
‘cooperation’, which is a key element in the issues of
multiple decision makers, cooperation that involves
dynamics can be discussed only in the form of DS
games. Through the result of the LD game simulations
we conducted, we were able to observe how interact-
ing players develop dynamical cooperation rules step
by step. The mechanism of this development can be
explained only from the distinct view of DS games.
Furthermore, the stability of the cooperative state can
be analyzed in terms of the stability of the game dy-
namics, while the mechanism governing the changes
in the cooperative rules can be explained as transitions
between metastable attractors in the AGS diagram.

9.3. The promise of forming dynamical cooperation
to avoid tragedy in the real world and in the
theoretical model

An example of avoiding tragedy in the real world
is seen in the issue of pasturing inSection 1.1. In that
case, in order to reduce the damage by cattle, strategies
to move cattle from one place to another in accordance
with the growth of grass were adopted.17 In addition
to this example, there are innumerable cases involving
the social dilemma and the sharing of resources within
a community[17], and most of their solutions such
as allocation of a place or rotation of roles take into
account their space–time structure.

Actually, when we attempt to avoid tragedy in con-
suming resources, we normally come up (consciously
or unconsciously) to consider the growth dynamics of
the pasture, the degree of the restoration of the land,
and the nutritional state of cattle. If we wish to obtain
a certain amount of resources without fail, we need
to manage the dynamics of the resources, and for this
reason it is necessary to create a certain norm for
cooperation. Indeed, we often behave based on some
norm for cooperation, which might be in the form of
explicit rules or implicit rules. As a result, we may
begin to take actions such as “raising the resources

17 However, it is now argued by specialists whether such strategies
have actually effective or not[19].
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and then consuming them together” or “raising the
resources and consuming them alternately”. These are
nothing but the actions we found in our simulations. In
the real world, consideration of space–time structure
is important to avoid tragedy in the face of the social
dilemma, because if we ignore this, we directly suffer
the tragedy it can lead to. The cooperative states real-
ized in our DS game are metastable solutions that re-
flect the nature of the concrete dynamics of the model.

In traditional game theory, one cannot study such
cooperation in the form of dynamics. Not to mention,
one cannot investigate the dynamical stability of the
cooperative state. It can describe neither the temporal
change of resources nor the effect of the dynamics of
the game environment. Of course, one could model
such a social dilemma using a static game by prepar-
ing strategies such as ‘no grazing (cooperation)’,
‘grazing (betrayal)’, and ‘grazing ofn-cows (n-degree
betrayal)’. However, in order to handle the problems
of social dilemma, it is important to consider the
dynamics of the action taken based on the dynam-
ics of the resources, for example, the timing used in
allowing cows to graze, depending on the state of
the pasture, the nutritional state of the cows, and the
economic state of the herds.

In the DS games studied here, norms for coopera-
tion are organized spontaneously, in the form of articu-
lated structure of the strategy, which arises through the
bifurcation of the attractor dynamics. The realization
of this co-operation, as well as the nature of the norms
it involves, strongly depends on the environmental
dynamics. This should not be surprising, as, indeed,
the importance of environmental dynamics in the his-
tory of human society has been increasingly stressed
recently. Diamond[10] has discussed the generation
of different types of civilizations in response to differ-
ent ecological conditions, and in particular in response
to the degree of resource diversity. At a much deeper
and broader level, the school the annals in the history
science seriously considers the interference between
human actions and the change of the environment in
space–time, as discussed in the epoch-making volume
La Méditerranée, by Braudel[8].

In this paper, the results of our numerical exper-
iment and their analysis in the LD game not only

provide a new viewpoint regarding the problem of the
social dilemma, but also demonstrate the possibility
of using DS games as models that can investigate the
essence of games observed only at the level of dynam-
ics. Of course, the present DS game analysis is too
simple to capture the complexity of the space–time
evolution of our society. Still, as long as our world
includes space–time structure by nature, DS games
should provide a powerful theoretical framework to
study the evolution of societies consisting of multiple
decision makers.
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Appendix A. Attractors of the game dynamics
and the ‘AGS diagram’

In [1], we introduced the one-person LD game
using numerical analysis and discussed in detail the
phenomena seen in its evolutionary simulations. Let
us discuss the basic nature of this game in simpli-
fied models of the one-person, one-tree LD games
relating to this study. Here we investigate the effect
of a change in the decision-making function on the
attractor of the game dynamics.

We make two simplifications. First, in the situation
we consider here, the player never refers to his state,
y; that is, the player makes his or her decision by re-
ferring only to the size of the tree. Second, the player
cuts the tree if the size of the tree exceeds a certain
value, called thedecision value, xd. The decision
value uniquely determines the time series of the phase
(x, y). The attractor of the time series can be a fixed
point, or consist of periodic, quasi-periodic, or chaotic
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Fig. 27. Evolutionary process in a three-person convex LD game: (a) fitness chart for a three-person linear LD game; (b) action chart (the
3000th generation); (c) action chart (the 9000th generation).

motion. Its actual nature depends on the dynamical
law (including the natural law) given to the system.

As in a ‘bifurcation diagram’, we have plotted the
set of values ofx in the attractor for values ofxd

from 0 to 1 in Fig. 26(a). The figure is a diagram
describing how the attractor of the game dynamics
changes as a parameter in the decision-making func-
tion changes. We call such a figure theAGS diagram—
describing transitions of the attractor of the game dy-
namics resulting from changes of the strategy. With
the AGS diagram, one can study how the nature of
the game dynamics shifts among various states (fixed
point/periodic/chaotic game-dynamics, or produc-
tive/unproductive game-dynamics, etc.) with changes
in the decision making. The following two character-
istics ofFig. 26(a)are noted:

(1) For each decision value, the corresponding attrac-
tor is always a periodic cycle.

(2) There is an infinite number of ‘plateaus’ in which
the attractors are unchanged over some range of
decision values.18

For the one-person “linear” LD game, the AGS dia-
gram shows that the dynamics are attracted to quasi-
periodic motion if xd ≤ 2/3, otherwise to periodic
motion (Fig. 26(b)).19

Appendix B. Another result of the three-person
convex LD game

As mentioned inSection 4, in one of the three sim-
ulations of the three-person convex LD game, mutual

18 For examples of such plateaus, see the period-2 and period-3
plateaus inFig. 26(a).
19 More detailed investigations of these two AGS diagrams in the

evolutionary one-person LD games are given in[1].
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tree-cutting society appeared at an early stage but the
cooperative society was established and maintained
later.

The corresponding fitness chart is given inFig. 27
(a). This diagram shows that a cooperative society is
created in a stepwise fashion from the competitive
state, as in the two-person LD games. InFig. 27(b),
we have plotted the dominant pattern for coopera-
tive behavior observed at the 3000th generation, in
which the average tree height is approximately 0.05
and the average state of players is approximately 0.14.
Fig. 27(c) shows the dominant action dynamics ob-
served at the 9000th generation, in which the average
tree height is approximately 0.45 and the average state
of players is approximately 0.44. Both the game envi-
ronment and the players’ states are improved through
development of cooperation rules.

As far as the observed results of three-person con-
vex LD games are concerned, cooperative societies
can stably be maintained, once they are formed at an
early stage, as described inSection 4, or once formed
through a development of cooperation rules eventu-
ally from betrayal societies, as inFig. 27. Although
we have not made detailed analysis using AGS dia-
gram, the above results suggest that the cooperation
is sustained through bifurcation of attractors as in the
two-person convex LD game.
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