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Abstract. Memory is often considered to be embedded into one of the
attractors in neural dynamical systems, which provides an appropriate
output depending on the initial state specified by an input. However,
memory is recalled only under the presence of external inputs. Without
such inputs, neural states do not provide such memorized outputs. Hence,
each of memories do not necessarily correspond to an attractor of the
dynamical system without input and do correspond to an attractor of
the dynamics system with input. With this background, we propose that
memory recall occurs when the neural activity changes to an appropriate
output activity upon the application of an input. We introduce a neural
network model that enables learning of such memories. After the learning
process is complete, the neural dynamics is shaped so that it changes to
the desired target with each input. This change is analyzed as bifurcation
in a dynamical system. Conditions on timescales for synaptic plasticity
are obtained to achieve the maximal memory capacity.
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1 introduction

One of the most important features of the brain is the ability to learn and
generate an appropriate response to external stimuli. Output responses to the
input stimuli are memorized as a result of synaptic plasticity. A wide variety
of neural network models have been proposed to study how synaptic strength
pattern is formed to memorize given input-output (I/O) relationships. In most
of the studies[1], inputs are supplied as the initial conditions for neural activ-
ity, whose temporal evolution results in the generation of the desired outputs.
However, recent experimental studies have shown that there exist structured
spontaneous neural activity even in the absence of external stimuli[2]. Upon ex-
ternal stimuli, such neural activity is modified to provide appropriate response
neural activities[3]. Considering these studies, we propose a novel perspective
of the memorization of I/O relationships: If a neural system memorizes an I/O
relationship, the spontaneous dynamics is modulated by a given input to provide
a required output. In other words, the input changes the flow structure of the
neural dynamical system to generate the corresponding output.
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On the basis of this idea, we address the following questions: Can we construct
an appropriate neural network model to demonstrate the learning process under
biologically plausible assumptions? If so, under what conditions would learning
be possible? What changes in the neural activity brings about the output when
an input is applicated ?

2 Model

In modeling learning, we postulate the following two conditions that satisfy
the biological requirements of the brain: (i) The learning process should not re-
quire detailed error information. In other words, the number of error information
should be considerably smaller than the number of neurons. For example, the er-
ror back-propagation algorithm requires error information corresponding to each
of the output neurons. In the case of biological learning with neural network,
however, it is difficult to transmit such large amounts of information specifically
to each neuron. (ii) I/O relationships should be learned one by one, i.e., the
next novel I/O relationship is learned after one relationship has been learned
with preserving the previously learned relationships. In contrast, in most neural
network algorithms, many relationships are simultaneously learned by gradually
changing the synaptic strength until all the relationships are memorized.

We introduce a layered network model consisting of input, hidden, and out-
put layers along with a reinforcement learning such algorithm as the associa-
tive reward-penalty (ARP)(Fig.1A)[4], so that this model satisfy the above-
mentioned conditions. In this model, several I/O relationships are learned one
by one with only a single error signal which is given as the distance between the
activity pattern of the output neurons and a prescribed target pattern. During
the learning process, the synaptic strength varies in accordance with the Heb-
bian and anti-Hebbian rules, switched depending on the magnitude of the error
signal.

To be specific, we adopt the following model with N neurons in each layer.
Three types of synapses are considered: forward synapses (FSs), backward synapses
(BSs), and mutually inhibiting intralayer synapses (ISs). FSs connect the neu-
rons in the input layer to those in the hidden layer and the neurons in the hidden
layer to those in the output layer. BSs connect the neurons in the output layer
to those in the hidden layer, while ISs connect the neurons within a given layer
(hidden layer or output layer).

The neural activity in the input layer is determined by an input pattern I, a
vector whose element takes the value 0 or 1; the magnitude of the vector (input
strength) is η (Eq.1). The neural activities in the other layers change, as shown
by the rate coding model (Eq.2):

xi = ηIi (I ∈ {0, 1}) (input layer) (1)

τNAẋi = 1/(1 + exp(−βui + θ)) − xi (the other layers) (2)
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Fig. 1. A) Schematic representation of the network architecture of our model. B) Dy-
namics of neural activities during the learning of two input-output (I/O) relation-
ships. I/O relationships are learned in the search phase by the anti-Hebbian rule
(0 < t < 350,800 < t < 1200) and in the stabilization phase by the Hebbian rule
(350 < t < 800,1200 < t < 1700). As initial conditions for the network, we set τ

NA = 1,
τ

BS = 8, and τ
FS = 64 and assign the synaptic strength a random value between 0 and

1, except in the case of the ISs. (i) Raster plot of neurons in the output layer. Red bar
represents the high activity of each neuron (xi > 0.9). (ii) Time series of amplitude of
the error signal E between the output and the target patterns. Color bar above the
time series represents each set of (I/O) relationships.

where xi is the firing rate of a neuron i, and ui is the input current applied to each
neuron i. The input current is given by uhid

i =
∑N

j=1
JFS

ij xin
j +

∑N

j=1
JBS

ij xout
j +

∑

j 6=i J ISxhid
j for the neurons in the hidden layer and uout

i =
∑N

j=1
JFS

ij xhid
j +

∑

j 6=i J ISxout
j for the neurons in the output layer. Here, JFS

ij (JBS
ij ) is the strength

of the forward (backward) synapse from a presynaptic neuron j to a postsynap-
tic neuron i. J IS is the strength parameter for the mutually inhibiting IS; this
parameter assumes a fixed and identical value for all synapses. The parameters
are set at τNA = 1, β = 42, θ = 2.5, η = 1.0, J IS = −1.0, and N = 10.

For each input pattern, we prescribe a target pattern ξ as an N -dimensional
vector whose element takes the value 0 or 1. Sparse input and target patterns, in
which only one neuron is activated, are chosen. By describing the neural activity
in the output layer as the N -dimensional vector Xout, the learning task moves
the error E = |Xout − ξ|2/N closer to zero, as measured by the Euclidean norm.

Synaptic plasticity is necessary for achieving the learning in a neural net-
work. For simplicity, we maintain the strength of the ISs constant and vary the
strengths of the FSs and BSs. In accordance with the Hebb scheme and ARP[4],
we assume that the synaptic dynamics depends on the activities of the pre- and
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postsynaptic neurons as well as on the reward signal R determined by the error
signal E, as

τp ˙Jp
ij = Rp(xi − r)xj (J ≥ 0) (p = FS or BS) (3)

Here, r is the spontaneous firing rate(r is set at 0.1). The synaptic plasticity in
this model has two characteristic features as follows.

(i) Plasticity switched by the error:

As mentioned earlier, the sign of R determines the synaptic plasticity. The
sign of R changes with the magnitude of E such that

RFS =

{

1 for E ≤ ǫ
−1 for E > ǫ

RBS =

{

0 for E ≤ ǫ
−1 for E > ǫ

(4)

When the output pattern is close to (distance from) the target pattern, i.e.,
E ≤ (>)ǫ, the synaptic plasticity follows the Hebbian (anti-Hebbian) rule, as
derived by substituting Eq.4 to Eq.3. The Hebbian (anti-Hebbian) rule stabilizes
(destabilizes) the ongoing neural activity. In this manner, the error switches the
synaptic plasticity between the Hebbian and anti-Hebbian rules. Note that under
Hebbian rule, only the strength of the FS varies so that memories of the I/O
relationships are embedded in the FSs.

(ii) Multiple time scales:

In most neural network studies, only two time scales are considered: One for
neural activities and the other for the synaptic plasticity. Considering variety
of timescales of the synaptic plasticity, we introduce two time scales for the
plasticity of the FSs and BSs, τFS and τBS in Eq.3, respectively. As will be shown
later, I/O relations are successfully memorized when the difference between the
time scales is appropriate.

3 Results and Analysis

3.1 Learning Process

We first show that this model can be used to learn I/O relationships; the neural
activity is varied when searching the target and stabilized when matching the
target(Fig. 1B). When the error is large, the present neural activity becomes un-
stable by the anti-Hebbian rule and hence the neural dynamics itinerate among
different patterns (0 < t < 350). The target pattern is searched during this itin-
eration. We term this period the search phase in what follows. At t ∼ 350, the
magnitude of the error reduces to a sufficient extent when the output dynamics
are within the neighborhood of ǫ. Once this occurs, the neural activity is stabi-
lized as per the Hebbian rule, and the output activity remains close to the target
(350 < t < 800). Thus, the activated synapses are continuously strengthened un-
til a new target is presented. This period is called the stabilization phase. At
t ∼ 800, we switch a new input and the corresponding target pair to learn this.
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At that time, the distance between the output pattern and the target pattern
increases again, and therefore, the searching process progresses on the basis of
the anti-Hebbian rule (800 < t < 1200). In this manner, the neural activity
can reach the target by switching between anti-Hebbian and Hebbian rules al-
ternately for synaptic plasticity, depending on the error. Now, we successively
provide new input-target pairs after the time interval of stabilization phase,
which is sufficiently long for learning an I/O relationship.
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Fig. 2. Analysis of changes in the flow structure of the spontaneous neural activity
during the learning process. A)Temporal evolution of neural activity in the output layer.
Neural activity in the output layer is projected from the N -dimensional space consisting
of neural activities in the output layer to three-dimensional space by obtaining the
product of the output activity and the target pattern(s). (i) Neural dynamics after
learning four I/O relationships. Each axis represents the product of neural activity
and the corresponding target pattern. (ii) Neural dynamics after learning seven I/O
relationships. Each axis represents the product of the neural activity and corresponding
combined target patterns. B) Change in the number of attractors during the learning
process. Numbers of fixed-point attractors (green line) and limit-cycle attractors (blue
line) and the total number of attractors (red line) in the absence of inputs as a function
of the number of learning steps, i.e., number of learned targets, are plotted.

3.2 Memories as Bifurcations

The learning process changes the flow structure in neural dynamical system both
in the presence and the absence of external inputs. We examine the typical orbits
of neural activity without any input and changes of such orbits with inputs in a
dynamical system with a fixed synaptic strength after each learning step. Figure
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2 shows examples of typical orbit in the attractor, as shown by the results of
learning four and seven I/O relations. After four I/O relations are learned (Fig.
2A(i)), the neural activity in the output layer in the absence of any input is
itinerant over three patterns that are close to three of the target patterns until
the neural activity converges to a fixed point. Figure 2A(ii) shows an example
of a limit-cycle attractor in the absence of inputs after seven I/O relations are
learned, such that the orbit in the attractor (not a transient orbit as shown in
Fig. 2A(i)) itinerates over the targets in the cyclic order 2, 6, 3, 4, 5. In both
cases, these target patterns do not exist as fixed-point attractors without inputs.
In application of the input, the fixed point and/or the limit cycle collapse and the
corresponding target pattern change to a stable fixed-point attractor. Hence, this
network memorizes these I/O relations as bifurcations. The number of memories
varies through the learning process. Generally, as the learning progresses further,
the number of memories increases in adequate time scales and that of fixed-point
attractors begins to decrease, as these attractors are replaced by one or more
limit-cycle attractors (Fig. 2B).

3.3 Memory Capacity: Dependence on Time Scales for Synaptic

Plasticity

In this manner, our model can memorize I/O relationships successively up to
some limit. The maximal number of memorized I/O relationships through learn-
ing process gives a memory capacity. This capacity depends on three time scales:
τNA for changes in the neural activity, τBS and τFS for the plasticity of the BSs
and FSs, respectively. From extensive numerical simulations, we found that the
memory capacity reaches the maximal possible number N under the sparse cod-
ing case, when the condition τNA ≪ τBS ≪ τFS is satisfied. This implies that
with a single synaptic time scale (τFS = τBS) as in the case of usual learning
models, the capacity is not high.

To explain this time scale relationship, we study the synaptic dynamics dur-
ing the search phase. In the phase, the output activity may come close to one of
the previously learned target patterns. Since this pattern differs from the current
target pattern, the attraction to it may be destroyed by the anti-Hebbian rule.
In general, the longer the output pattern stays close to a state corresponding
to a previously learned target pattern, the stronger is the destabilization of the
state. Hence, the degree of destabilization of the previous memory increases with
the residence time of the pattern on the corresponding state. As shown in Fig.
3, the residence time as a function of τBS decreases to a minimum at the τBS

of the maximum memory capacity and increases as τBS approaches τNA or τFS.
This can explain the dependence of the memory capacity on τBS.

Now we discuss the origin of this behavior of residence time. First, τFS de-
termines the time scale of the memory decay, because the memory information
is embedded in the FSs (Eq.4). Second, a smaller value of either τFS or τBS de-
termines the time scale of the search phase, because the search for the target is
possible only on the basis of the change in the flow structure by the anti-Hebbian
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Fig. 3. Memory capacity (green) and residence time (red) as a function of the time scale
of backward synapse τ

BS. The other two time scales τ
NA and τ

FS are fixed at τ
NA = 1

and τ
FS = 64. See text for the definition of capacity and residence time. Computed

from the average over 100 learning processes for each τ
BS. Error bars indicate standard

deviations.

rule. Since the search phase should be sufficiently smaller than the memory de-
cay time, τBS ≪ τFS is required to preserve the previous memory during the
search phase. Third, τNA determines the time scale for the neural dynamics un-
der given fixed flow structure. If this value were larger than or of the same order
of τBS, the phase structure would be modified before the neural activity change,
so that the approach to the target pattern would be hindered. Hence τNA ≪ τBS

is required. Accordingly the relationship τNA ≪ τBS ≪ τFS is required for the
effective search for a new target without destroying the previous memory.

4 Discussion

In the present paper, we have proposed a novel dynamical systems model for the
memory, in which the learning process shapes the “appropriate” flow structure
of spontaneous neural dynamics, through successive presentations of inputs and
the corresponding outputs. Memory recall is achieved as a result of the bifurca-
tion of neural dynamics from spontaneous activity to an attractor that matches
the target pattern induced by the external input. This bifurcation viewpoint is
supported by, for example, a recent experimental study[3], in which the neural
dynamics of the olfactory system of insects were studied in the presence and
absence of odor stimuli. Here, we discuss how two above-mentioned features in
our model can be implemented in out brain.

(i) Plasticity switched by the error:

In our brain, there exist several neural modulators such as dopamine, sero-
tonin, norepinephrine, and acetylcholine. In particular, dopamine modulates the
synaptic plasticity at the hetero-synaptic[5] and is projected to the cerebral cor-
tex broadly. These natures correspond to the synaptic dynamics determined by
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the product between the reward, the activities of pre- and postsynaptic neu-
rons and that regulated by the error signal globally. In addition, the activity
of dopamine neuron producting dopamine is related to evaluation how consis-
tent the response is with the request[6]. Hence, in our brain, the switch between
positive and negative plasticity corresponding to that between Hebbian and anti-
Hebbian rules can be regulated by value evaluation through the concentration
of dopamine.

(ii) Multiple time scales:

Because the synaptic plasticity is propotional to the product between the
reward, the activities of pre- and postsynaptic neurons, the difference in the
sensitivity of the reward signal or the activities of pre- and postsynaptic neurons
controls that in the time scale of the synaptic plasticity effectively. In our brain,
this sensitivity can be interpreted as the number and/or the type of receptors of
neural modulators and neurotransmitters.

To achieve the maximum number of memorized patterns, a proper relation-
ship has to be satisfied among the time scales of the changes in the neural activity
and of the plasticity of the FSs and the BSs. By above discussion, the requested
relationships for successful learning can be implemented by the distribution of
neurons with adequate numbers and/or type of receptors in our brain.

According to our idea “memories as bifurcations”, the neural dynamics in
the presence and absence of different inputs are distinct and separated because
of bifurcation, which stabilizes distinct memorized patterns. In contrast to the
view “memories as attractors”, our interpretation allows for the coherent discus-
sion of diverse dynamics depending on the applied inputs. In fact, spontaneous
neural activity is recently reported, which shows itinerancy over several states
tat are stabilized by inputs[7]. This gives remarkable agreement with our results.
This bifurcation against the input strength will be experimentally confirmed by
measuring the neural activity depending on the external stimuli.

References

1. Hopfield JJ (1982) Neural networks and physical systems with emergent collective
computational abilities. Proc Natl Acad Sci USA 79:2554-2558.

2. Luczak A, Bartho P, Marguet SL, Buzsaki G, Harris KD (2007) Sequential structure
of neocortical spontaneous activity in vivo. Proc Natl Acad Sci USA 104:347-352.

3. Mazor Ofer, Gilles Laurent (2005) Transient Dynamics versus Fixed Points in Odor
Representations by Locust Antennal Lobe Projection Neurons. Neuron 48:661-673.

4. Barto AG, Sutton RS, Brouwer PS (1981) Associative Search Network. Biol. Cybern.
40:201-211.

5. Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory
mechanism. Prog Neurobiol 69:375-390.

6. John N. J. Reynolds, Brian I. Hyland, Jeffery R. Wickens (2001) A cellular mecha-
nism of reward-related learning. Nature 413:67-70.

7. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously
emerging cortical representations of visual attributes. Nature 425:954-956


