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Several extensions of an iterated function system (IFS) are discussed as possible applications to
abstract dynamics of units (molecules) with slowly relaxing internal states under frequent collisional
interactions. It is found that an increase in the collision frequency leads to successive discrete states that
can be analyzed as partial steps to form a Cantor set. By considering the interactions among the units, a
self-consistent IFS is derived, which leads to the formation and stabilization of multiple such discrete
states. The proposed mechanism, if it exists in a complex polymer under a crowded condition, allows for
the kinetically induced formation of multiple states.
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Biological units have internal dynamics which are often in
the same order of magnitude as those caused by interactions
between different units. Furthermore, the internal relaxation
times can be rather long in general. This is true also in
complex biomolecules, as, for example, was shown in recent
experiments on Ribozymes and some proteins.1–4) Besides
this slowness in relaxation, the molecules also take multiple
conformations dynamically.

On the other hand, molecules in a cell are in a very
crowded situation, as, for example, was beautifully illus-
trated by Goodsell,5) leading to relatively frequent colli-
sional interactions. Then, in contrast to the standard
situation, the time scale of the internal relaxation is in the
same order of magnitude or even slower than that of the
interaction as has also been discussed by Mikhailov and
Hess.6) In this case, if the magnitude of the forces for the two
are of the same order, the interaction cannot be treated as
perturbation, and such ‘‘inter–intra dynamics’’7) may lead to
novel behaviors unexpected from internal dynamics. Here
we discuss the possibility that molecules with slow relax-
ation time scales, when put in crowded conditions, may
exhibit novel dynamical states that are not expected when
considering only single molecular dynamics (see also ref. 8.)
To be specific, we consider the situation that the internal
dynamics have just a single stable state, and seek the
possibility that only random collisional interaction with
other molecules induce multiple stable states, by assuming
that memory on the internal state is not completely lost
through the collisional interaction.

Instead of studying a realistic molecular process, we
choose a rather abstract model to propose a novel ‘crowded-
ness-effect’ and to describe it in simple dynamical systems.
We will show that iterated function systems (IFSs),9,10)

originally studied in the mathematics of fractals, can be
relevant for studying such inter-intra molecular dynamics,
by making several extensions.

Here, we explain what we mean by ‘‘collision’’ (or
collisional interaction) in the present letter. A biomolecule
often has some binding sites. When a specific molecule
binds to such a site, conformational change in the molecule
often occurs before it is released. We call such a process a
‘collision’ in this letter, i.e., the process of binding of a
specific molecule leading to a specific conformational

change and its release [see Fig. 1(a)]. By this collision, the
molecules are excited so that in this crowded condition with
frequent collision, they are assumed to be in a nonequili-
brium state.

Concretely, we consider situations where the average time
between molecular collisions tc is less than or in the same
order of magnitude as the internal relaxation time of each
molecule tr. As we have mentioned, the major assumption
we made here is that the memory of the internal variable is
not completely lost by the collision: for some variable
characterizing the internal state, the value after the collision
depends on that before the collision to some degree, even
though large fluctuations exist around the mean value.
Although the existence of such memory has not been
directly been proved experimentally, it is interesting to
consider such a theoretical possibility, as motivated by
recent discoveries on long-term dynamics in proteins.1–4)

Instead of attempting to simulate realistic dynamics of
complex biomolecules, we consider an abstract model here
in order to obtain insights into possible novel features in
systems with slow internal relaxation and frequent inter-
action, as a first step to understanding interacting biomole-
cule dynamics. We take a simple internal state of a
‘‘molecule’’ X that is represented by a scalar variable x.
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Fig. 1. A toy molecule, that may illustrate the internal variable x. It has

two binding sites, and when the ‘‘triangle’’ molecule Y1 collides (binds) to

the corresponding site, a conformational change to a positive angle

direction occurs, while the ‘‘square’’ molecule leads to a different

conformational change. In (b), multiple units of a single type of molecule

collide with each other. When x < 0, the ‘‘triangle’’ part is at the outside

so that it can bind to the triangle hole of another molecule more easily,

and vice versa.

Journal of the Physical Society of Japan

Vol. 74, No. 9, September, 2005, pp. 2386–2390

#2005 The Physical Society of Japan

2386



For example, one can consider a toy molecule with an
internal angular variable x, as schematically shown in
Fig. 1(a). As a starting point, we take the simplest form of
relaxation of this internal state towards x ¼ 0,

dx=dt ¼ ��xþ
ffiffiffiffiffiffi
�T

p
�ðtÞ; ð1Þ

with white Gaussian noise �ðtÞ, � ¼ 1=tr, and T the
temperature. Hence the distribution of x approaches Gauss-
ian around x ¼ 0 as the collision frequency decreases. In the
toy molecule of Fig. 1(a) the energy is at a minimum when
the molecule is straight.

In general, collisions with other molecules induce changes
in the internal states such that x ! x0, which are assumed to
occur randomly at the rate rc ¼ 1=tc. If the memory on the
state before collision is lost completely, x0 is just x� þ �, with
x� as the target value after collision and � a random variable,
both of which are independent of x (before the collision).
Instead, we have assumed here that some memory is
retained, meaning that x0 approaches x� but still retains
some memory on x. As a simple idealization, let us represent
this change as the map x ! x0 ¼ f ðxÞ, which will depend on
the species of the colliding molecules. Here, f ðxÞ is a
function contracting to the target value x� but preserving
some memory on x, the value before the collision. As an
abstract example, let us consider the case where there are
other molecule species Y1;Y2; . . . ; Yk (k > 1), and the target
value depends on the type of collided molecule. Upon
collision, the state of molecule X changes as x ! f jðxÞ
( j ¼ 1; . . . ; k).11) As mapping has the target value x�j , and
retains some memory on x, a simple illustration will be
f jðxÞ ¼ ajðx� x�j Þ þ x�j . In other words, the state x of
molecule X moves towards x�j , depending on which molecule
type Yj it collides with, while retaining some memory of the
original state value x before the collision, to the degree of aj

( j ¼ 1; 2). Thus x takes a value between x and x�j with the
weight aj : 1. Representation of the change in the internal
state upon collision as a map is a drastic simplification. Still,
by assuming that some memory is retained, existence of such
variable x may not be so absurd. (Note the use of the above
one-dimensional map merely represents memory for some
variable on the previous value of x, while one can add a large
noise term to it, as will be discussed.)

Now we study an ensemble of ‘‘molecules’’ X, to see how
the distribution of the states x depends on r ¼ rc=�. Note
that in the limit of � ! 0 (i.e., r ! 1), this problem is
reduced to an IFS (with noise). Iterated function systems
have been studied extensively9,10) in fractal geometry and
dynamical systems theory12–14) as well as in the context of
image data compression. It was shown, for example, that the
stationary distribution of the states x obtained through
random iterations of functions with these contracting
mappings can take an infinite number of peaks on a Cantor
set. On the other hand, in the limit of r ! 0, the distribution
of internal state x approaches the normal distribution given
by Langevin equation (1). For a finite value of r, and under
finite temperature T , it is then expected that the complete
Cantor set by the original IFS is destroyed. Still, more than
single states may remain, which will be interesting since the
molecule in a less crowded condition (with small r) takes
only a single state. If so, the formation of these multiple
states are a salient feature of ‘‘crowdedness’’. Hence, we first

discuss how the behavior in the original IFS is altered for a
finite value of r and finite temperature T .

As a simple example, we consider the case k ¼ 2 with

f1ðxÞ ¼ a1ðx� 1Þ þ 1; f2ðxÞ ¼ a2ðxþ 1Þ � 1; ð2Þ

as illustrated in Fig. 2, where state x of molecule X moves
towards þ1 or �1, depending on which molecule type Yj

( j ¼ 1; 2) it collides with. The molecule state x is shifted to
either þ1 or �1, retaining some memory of the original state
value x before the collision, to the degree of aj ( j ¼ 1; 2).
For example, in the toy model described in Fig. 1, there are
two types of colliding molecules: triangles and squares.
Depending on the type, the binding site on X where a
molecule attaches is different, so that the direction of the
angle change is opposite.

Let us consider the distribution of state values x when the
collision process is repeated. In the limit of r ! 1 the
distribution of state values x is shown to form a Cantor set if
a1 þ a2 < 1, i.e., if there is a gap between maps f1 and f2, as
displayed in Fig. 2. [This is easily understood by considering
the distribution function to be invariant in time, as
constructed by the inverse of map (2).] This invariant
measure on the Cantor set does not rely on the specific linear
form of eq. (2), but is general as long as there are (at least)
two stable fixed points around which the map is contracting
sufficiently, corresponding to the condition

P
j aj < 1.

For finite r and finite temperature T , we numerically
studied our model by colliding two types of equally
distributed molecules at a rate rc. We obtain the stationary
distribution of x by taking a large number of molecules, or
by sampling the values of x of a single molecule over time.
(The results of the two methods agree, as expected from
ergodicity.) As shown in Fig. 3(a), several peaks are
observed in the distribution with the increase of r > 1.
Even though the whole Cantor set structure is not observed
for finite r, multiple peaks are clearly discernible for r > 1.
Several discrete states of x are formed through the molecular
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Fig. 2. One-dimensional map of eq. (2), with a1 ¼ a2 ¼ 1=3. The values

of x which belong to the invariant measure of the IFS consisting of these

two maps can simply be obtained by successively removing the

preimages f� jðXkÞ, starting from the interval X0 ¼ ½2a2 � 1; 1� 2a1�,
which leads to a standard Cantor set that is constructed by removing the

middle one-third segments successively.
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collisions, even if the original relaxation dynamics has just a
single stable state. The peaks successively split as r

increases, so that many discrete states are formed. Figure 4
shows that the number of peaks in the distribution versus r
displays a power-law increase with an exponent that is
consistent with that for the increase of the peaks against the
precision in the Cantor-set construction, � log 2= log a (for
the present example with a1 ¼ a2 ¼ a). In other words, an
increase of the collision frequency corresponds to an
increase of the precision in the Cantor set construction. This
power law is not altered much by changing � or T , while for
large T (i.e., larger noise), the increase is suppressed. Also,
even if the condition for the Cantor set

P
aj < 1 is not

satisfied, the multiple broad peaks appear, as shown in
Fig. 3(b).

So far we have discussed the case where molecule X

collides with only a finite number of other molecule species,
Y1; . . . ;Yk. Now, we consider the case where there is only a
single type of colliding molecule, but it has a continuous
state so that the change of molecule X by it depends on the
state of the Y molecule whose internal state is represented by
the variable y. (Or one can consider the case that the change
of x upon collision depends on how it collides, e.g., the angle
of collision, which corresponds to y.) In other words, the
state change of x is given by a family of functions gðx; yÞ
parametrized by continuous y, instead of f jðxÞ, for discrete j.
Here the distribution of y is given by some distribution
function �ðyÞ. The question now is whether the discretization
of states appears even for this continuous case. (As a
dynamical system, this provides a novel class of problem,
i.e., a continuous IFS.) As a specific example, we investigate

gðx; yÞ ¼ aðx� f ðyÞÞ þ f ðyÞ; f ðyÞ ¼ tanhð�yÞ; ð3Þ

where, for simplicity, we take �ðyÞ ¼ constant over ½�1; 1�.
In the limit of � ! 1, the model reduces to eq. (2), and
here we are interested in how the behavior is altered for
finite �. The distribution of PðxÞ obtained in this case is
depicted in Fig. 5(a) which shows the existence of a Cantor-
set-type structure as � increases beyond 2. To have these
multiple peaks in the distribution, threshold-type dynamics
(tanhð�yÞ with � > 1) is necessary, a situation which often
exists in molecular interactions or in biological systems in
general.

Thus far we have discussed the situation where the
distribution of �ðyÞ is given in advance. There are cases,
however, in which the distribution of state x influences the
distribution of the state of the colliding molecules. For
example, assume that X is an enzyme protein with multiple
catalytic activities and the shape of X governs which
molecule it can catalyze. We consider a single species of X,
but the production rate of molecule species Yj depends on
the internal state x of molecule X, and thus on the
distribution of PðxÞ, with the internal variable x being an
index of the shape. If this influence of the distribution of x on
the distribution of Y molecules is sufficiently fast, the
fraction of Y molecules can be regarded to change instanta-
neously, and is adiabatically eliminated. Then the distribu-
tion of y is replaced by the distribution of x, which changes
through the collision dynamics. Alternatively, one can
simply consider the collision dynamics just among X

molecules such that the configuration of the colliding

molecule determines what type of collision takes place [for
example, consider the modified toy model in Fig. 1(b)].

In these cases, the state change of molecule X (with the
state value x) upon collision with another molecule X0 of the
same species (with the state value x0) is given by the mapping
x ! gðx; x0Þ. If the distribution of x0 were given and fixed,
this would be nothing but the IFS discussed above. The
distribution of X, however, changes upon collision, because
the distributions for x and x0 are identical since they are the
same molecule species. With this update of the distribution,
the problem is represented by a ‘‘self-consistent IFS’’.

As a specific example, consider the case

gðx; x0Þ ¼ aðx� yÞ þ y; y ¼ tanhð��x0Þ: ð4Þ

The result of a numerical simulation of this model15) is given
in Fig. 5(b) where it can be seen that the distribution has
again multiple peaks when r is larger than 1, i.e., when the
collisions are frequent. With the increase of r, peaks
successively split, thus discretizing the states. There are
already 4 peaks for � ¼ 2, and as the threshold function
becomes steeper, more peaks are formed, again mirroring a
few steps in the construction of a Cantor set. These discrete
states corresponding to peaks are stabilized ‘‘self-consis-
tently’’ through interactions with other X molecules and are
stable against noise and the influence of the relaxation
dynamics.

In summary, we have shown that multiple discrete states
can be formed as partial Cantor sets, through collisions of
units with internal dynamics, even if the dynamics of each
element has just a single stable state. This process is possible
when the time scale of the collisional interaction is similar to
or faster than the internal relaxation time scale and when
there are several types of interactions that cause different
conformational changes, and each element has some
memory of the previous state through the collision. A novel
class of phenomena, i.e., the formation of multiple internal
states due to the crowdedness, is observed. The discretiza-
tion of states becomes clearer as the ratio of collision
frequency to internal relaxation time increases.

Note that whether the present phenomena exist under a
crowded condition depends on the degree of the memory of
conformation through the collisional process. As the colli-
sional process includes high-dimensional dynamics repre-
sented as noise, the preservation of very fine structures in the
partial Cantor set should be almost impossible. When the
memory is totally lost [e.g., for ai ¼ 0 in model eq. (2)],
there is only a transition in the distribution from the peak
around x ¼ 0 to those at x ¼ �1 due to the crowdedness.
With some memory in the collisional process, however, the
formation of intermediate states is possible, despite the
presence of internal relaxation and noise, even though finer
structures in the distribution may be smeared out by noise.
Indeed, we have studied the present model by further adding
a Gaussian noise term � at every collision event. Even if the
standard deviation of this noise is 0.5, 6 peaks are observed
for ai ¼ 0:3, while even for ai ¼ 0:1, 4 peaks remain. Thus,
the generation of several intermediate states is possible, even
if the standard deviation of the noise is much larger than the
memory term (of the order of ai).

We have further studied a novel class of IFS by extending
it to a continuous family of functions in the IFS, while a
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novel class of statistical dynamics is introduced that could be
termed a self-consistent IFS (SIFS), by including a feedback
to the distribution of the internal states from the distribution
of the colliding units. Note that in the limit of r ! 1, the
SIFS is nothing but a random-update version16) of a globally
coupled map,17) where the distribution of states x can show

collective motion. By taking, for example, a non-monotone
map of gðx; x0Þ for x, there are cases that the distribution
function changes in time.

Another extension of the present approach will be an
explicit use of the population dynamics of the colliding
molecules Yj, instead of the adiabatic elimination of Yj

molecules as adopted in the SIFS. For example, by assuming
that which type of molecule Yj is synthesized depends on the
state x, the production rate of molecules Yj is proportional toR
x�I j

�ðx; tÞ dx, where �ðx; tÞ is the density of state x at a given
time t, and I j is the range of x values that catalyzes the
synthesis of Yj. By introducing the population dynamics
dNj=dt ¼ c

R
x2I j �ðxÞ dx� �Nj for molecule species Yj, and

the collision dynamics x ! f jðxÞ as in eq. (2), self-consis-
tent dynamics on the distribution �ðx; tÞ is derived, that
couples with the population dynamics of Nj as above. This
model was also studied numerically and it was found that,
besides the appearance of multiple peaks in the distribution,
the height of the peaks can change over time, suggesting the
existence of the collective motion well known to occur in
globally coupled maps.

The aim of the present letter is to propose a theoretical
framework where (self-consistent) IFS is applied to inter–
intra molecular dynamics of an ensemble of units. As an
illustration, a very simple model for collision and relaxation
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dynamics was discussed, while a variety of straightforward
extensions, such as higher degrees of freedom for internal
dynamics, more realistic collision dynamics and feedback
with several types of molecules, will be discussed in the
future. As cells are very crowded and some proteins such as
Ras show multiple conformations with a slow timescale, it
would be interesting to pursue the possibility of the present
mechanism studied here, which suggests that the conforma-
tions of some plastic molecules may depend on the
concentrations of the molecules themselves and of the
molecules they collide with. If the mechanism exists, we
expect to see the stabilization of the discrete states through
the interaction with other molecules, as well as switching
among these states.

Finally, the present discretization of states by IFS can also
be applied to systems with internal dynamics and ‘kicking’
interactions in general.18) The dynamics of coupled neurons
can also be discussed along these lines, while the relevance
of Cantor sets in neural information processing has been
pointed out by Tsuda.19) Several extensions of IFS, as
proposed here, will provide novel theoretical schemes for
analyzing biological systems that exhibit the formation of
stable, discrete states through synergies between interaction
and internal dynamics.

The author would like to thank H. Takagi, T. Yanagida,
Y. Sako, Y. Sato, S. Sasa and F. H. Willeboordse for
illuminating discussions.

1) X. Zhuang, H. Kim, M. J. B. Pereira, H. P. Babcock, N. G. Walter and

S. Chu: Science 296 (2002) 1473.

2) L. Edman and R. Rigler: Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 8266.

3) H. P. Lu, L. Xun and X. S. Xie: Science 282 (1998) 1877.

4) Y. Ito et al.: Biochemistry 36 (1997) 9109; Y. Arai et al.: private

communication.

5) D. S. Goodsell: The Machinery of Life (Springer, Berlin, 1998).

6) B. Hess and A. Mikhailov: Science 264 (1994) 223.

7) K. Kaneko and C. Furusawa: Physica A 280 (2000) 22.

8) A. Mikhailov and B. Hess: J. Theor. Biol. 176 (1995) 185; P. Stange,

A. S. Mikhailov and B. Hess: J. Phys. Chem. B 102 (1998) 6273.

9) M. Barnsley: Fractals Everywhere (Academic Press, San Diego,

1988).

10) K. Falconer: Fractal Geometry—Mathematical Foundations and

Applications (Wiley, New York, 2003).

11) Of course, fluctuations can be added as a noise term but here we have

not done so as the effect of fluctuations can be considered to be

incorporated in the term �ðtÞ, and consequently, no qualitative change

is introduced by adding noise to f jðxÞ. Also, a finite time interval for

collision, i.e., between binding and release, can be introduced, which

again does not lead to essential change of the result.

12) J. M. Deutsch: Phys. Rev. Lett. 52 (1984) 1230.

13) L. Yu, E. Ott and Q. Chen: Phys. Rev. Lett. 65 (1990) 2935.

14) N. Kataoka and K. Kaneko: Physica D 138 (2000) 225.

15) In the simulation only x in gðx; x0Þ is changed by the map.

16) S. Morita and T. Chawanya: Phys. Rev. E 65 (2002) 046201.

17) K. Kaneko: Physica D 41 (1990) 137; K. Kaneko: Phys. Rev. Lett. 65

(1990) 1391; K. Kaneko: Physica D 55 (1992) 368.

18) D. S. Broomhead: private communication.

19) I. Tsuda: Behav. Brain Sci. 24 (2001) 793.

2390 J. Phys. Soc. Jpn., Vol. 74, No. 9, September, 2005 LETTERS K. KANEKO


