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Abstract

A dynamical model of an economic production network is proposed as an extension
of von Neumann’s static model. Sets of input commodities are jointly converted
into sets of output commodities by production processes. The rate of production
of a given production process is limited by the minimum quantity of its set of
input commodities. It is shown that economic production is autonomously sustained,
without price divergence, even without the imposition of any external constraints
on price determination. This is accomplished through switching between different
choices of the minimum input commodity, which leads to the appearance of complex
cyclic behaviour. The mechanism and origin of this oscillation is analyzed in depth.
The generation of complex oscillations with multiple timescales is also shown when
several processes are combined to form a chain or a network.

1 Introduction.

We propose a non-linear dynamical model of a production network with the
motivation to understand the dynamical origin of non-equilibrium macroeco-
nomic phenomena. The model we propose is a new type of dynamical economic
model based on von Neumann’s neoclassical model of economic production
[von Neumann (1945), Morishima (1970)].

Von Neumann’s model is similar to a chemical reaction in some respects. He
regarded an economic production process as a transformation from one set
of commodities to another set of commodities. A set of input commodities is
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jointly converted to another set of commodities as production output. This
transformation process, which is termed “joint production” in the economics
literature, is similar to a chemical reaction that transforms several chemicals to
other chemicals. Generally, chemical reaction equations have multiple elements
on both sides, as in nyA; +n9As + - - - + np Ay = m1 By +moBy + - - - 4+ myBy,
for example. Here multiple chemicals, jointly, are transformed into multiple
output chemicals, as in economic joint production. In such chemical reactions,
there may be some chemicals which are necessary but are not transformed,
i.e., the same term may appear on both sides of the reaction equation. This
is nothing but a catalyst. Indeed, in von Neumann’s treatment of production,
some commodities play the role of catalysts. Some machines are necessary
for production but are not transformed by the production process. These are
similar to catalysts in chemical reactions. Finally, von Neumann describes
economic production as a network consisting of several production processes.
In this sense his description of an economic production network is similar to
a chemical (catalytic) reaction network.

In the present paper, we will introduce a dynamical version of von Neumann’s
model, noting the above analogy with a chemical reaction network. In fact,
applications of catalytic reaction network dynamics to biological systems, as
pioneered by Alan Turing (1952), have recently been developed for biological
cell production systems by Kaneko et al. (1997), and Furusawa et al. (2001).
We introduce our dynamical von Neumann model with reference to this de-
scription of biological cells in terms of reaction networks.

Here, we also note that Padgett et al. (2003) constructed an agent based eco-
nomic model, inspired by the theory of the hypercycle in a chemical reaction
network. They studied the emergence of a complex production network struc-
ture amongst agents with simple decision making rules, while the dynamics
on the network were not investigated.

Some economic theorists have studied the origin of economic instability, with
regard to economic dynamics. Several models of “endogenous business cy-
cles” have been proposed, for example Goodwin (1951, 1967), Kaldor (1940)
and Kalecki (1935, 1937, 1939, 1954). These models had many followers like
Goodwin, Kruger and Vercelli (1984), Goodwin and Punzo (1987, 1989), Dore
(1993), Tvede (1997) and other works referred to in these books. However,
these models are all low-dimensional macro-economic models and did not refer
to the instability originating from the microscopic-level interaction of several
production processes.

Morishima (1970) discussed the growth path of the von Neumann model and
showed that the path can follow a zig-zag which does not follow the von Neu-
mann steady-growth path. Goodwin (1989) discussed a multi-sectoral model
without joint production where each sector has its own limit cycle with a dif-



ferent periodicity. He showed that the growth path fluctuates around the von
Neumann steady-growth path. However, these works just indicated the possi-
ble complex behaviour of this type of model. They did not study the richness
of the behaviour.

In contrast, we propose a novel framework for understanding economic fluc-
tuations whereby such fluctuations originate in the instability which arises
from interactions of production processes, in a similar way to the dynamical
instability of chemical reaction networks. Even a simple toy model, where a
production process involves just three commodities, shows non-trivial oscil-
latory behavior where switching between minimum commodities is observed.
When we consider a network describing the production of multiple commodi-
ties, complex cyclic behaviour appears with alternation between multiple time
scales.

This paper is organized as follows; In §2, we briefly review the original von
Neumann model of an economic production network. Inspired by it, we pro-
pose our dynamical model in §3. Numerical results of the model are given in
§4, where non-divergent economic production processing is shown to be gen-
erated autonomously through oscillatory dynamics. The mechanism for this is
analysed and shown to be due to switching over choices of distinct minimum
terms. By studying a chain of production processes and also a network of
production processes, complex oscillatory dynamics with multiple time scales
are observed. The relevance of our model and results to economic dynamics is
discussed in §5, while the universality of our results is discussed in relation to
several extensions of the original model.

2 The original von Neumann Model

John von Neumann proposed a multi-sectional economic growth model [Neu-
mann (1945)].

The important ideas of his model are as follows: (i) joint production, (ii)
the inequality approach, (iii) dual-cross adjustment, and (iv) the time-lag of
production. Hereafter we will briefly explain the original von Neumann model
according to Morishima (1970).

Let us suppose there are N kinds of commodities and the economy has M
kinds of production process. A production process refers to a method for
transforming some commodities into other commodities. For example:

(1 egg, 1 new pan, 1 cooking stove, a little salt, a little pepper, 3 minutes
labour ) — (1 fried egg, 1 slightly older pan, 1 slightly older cooking stove.)



The left hand side is the ”inputs” and the right hand side the ”outputs”.
There are several goods on the right side, and this reflects von Neumann idea
of introducing joint production.

Amongst economists, the joint production function introduced by Sraffa (1960)
is more famous than von Neumann’s. However, Sraffa’s publication is far later
than von Neumann’s (1945). In addition, Sraffa’s “equation” approach is less
useful than von Neumann’s inequality approach. The famous Leontief model
does not include joint production, and is merely a special case of this von
Neumann model [Leontief (1941)].

The first production process can be described as follows;

(0611, A12; -ees alN) — (bn, bia, ..., blN)-

This means that the first process consumes a quantity a1 of commodity 1, a
quantity ais of commodity 2, ..., and a quantity a;y of commodity N. It also
produces a quantity by; of commodity 1, a quantity b5 of commodity 2, ...,
and a quantity by of commodity N. If commodity k& is not an input in this
process, ax = 0, while if this commodity is not an output, b1 = 0. In general
the [-th production process is described as

(all, ceey alN) — (blla . blN)-

This kind of production function has an L-shaped isoquant. The set of pro-
duction processes can be described by an M x N input matrix A = (a;;) and
an M x N output matrix B = (b;;). The matrices A and B are fixed, since von
Neumann assumes that there is (i) no innovation and (ii) constant returns to
scale.

The price of each commodity is defined as the column vector, p = (p1, p2, -, Pn)’,
and the activity level (or intensity) of each process as the row vector z =
(21, 22, -+, zp)- The total input vector of commodities of this economy is then,

m m
zA = (Z ZiQgly e v oy ZZZ'(LZ'N),
=1 =1

and the total output vector is

zB = (Z Zibila ceey Z zibiN)-
i=1 =1

In his model von Neumann assumes a time-lag of production. This means
that input commodities are converted into output commodities in all processes



simultaneously in fixed non-overlapping sequential time periods. Therefore the
quantities of each commodity available for input each period cannot exceed
the quantities output in the previous period. This means the relationship
between supply and demand is fixed according to the production output in the
preceeding period and the input in the current period. We introduce ¢ which
denotes the time period and write the price vector p and intensity vector z
of period t as p(t) and z(t). The relationship between supply and demand is
written as

2(t)B > 2(t + 1)A. 1)

We now write the rate of profit of production process i as I1;(t) given by,

_ {0, bigpi (t+1) — 73, ap(t)}

IL; (¢
() il aipy(t)

bl

the highest rate of profit I1(¢) amongst II;(¢) (i =1, ..., M) then fulfills,

S {0 bipi(t+1) = N, az‘jp(t)}_

Tt
0= >y aigp; (1)

If we write 5(t) = 1 + II(¢), we have

Bp(t+1) < B(H)Ap(t). (2)

According to the idea of dual cross adjustment, the prices of the commodities
affect the supply-demand relationships, while the supply-demand relationships
affect the prices of the commodities. This can be realised by two neo-classical
rules; (i) the free goods rule, and (ii) the profitability rule.

The free goods rule: If the supply of a commodity exceeds its demand at
equilibrium, its price is set to 0. That is, if the strict inequality ‘>’ applies
in (1) for j in equilibrium, then p; = 0. Therefore, we have

z(t)Bp(t +1) = z(t + 1) Ap(t + 1). (3)

The profitability rule: If production process i has a rate of profit which
is less than the highest rate of profit, no entrepreneur will use this process.
That is, if the strict inequality ‘<’ applies in (2) for production process i in
equilibrium, z;(t) = 0. Therefore, we have

z(t)Bp(t +1) = B(t)(t) Ap(?) (4)



Von-Neumann constructed a system with these four equations and discussed
the path of economic development. He assumed that labour is freely adjusted
to its demand, and that its price (the wage) is constant. According this as-
sumption, wages are kept constant and labour supply and demand are not
included in the equations.

The problem which von Neumann addressed with this system concerned the
existence of a long term equilibrium growth path. In this situation the activity
levels (or intensities) of all production processes increase (or decrease) from
period to period at the same rate, and all the prices are constant. In this
case, the rate of increase in activity, a is constant in all periods. Namely,
z(t + 1) = az(t) for all ¢. Because all prices are constant, all rates of profits
are constant. Thus II(¢) = IT and §(¢) = 8. This means that the quantities,
r; = 2(t)/ X, %,(t) are constants, as are the quantities y; = p;(t)/ 2, pq(t).

Von-Neumann demonstrated the existence of a long term equilibrium devel-
opment path under the following assumptions;

A>0, B>0, (5)

A+ B>0. (6)

However, the economic meaning of the assumption (6) is that every commodity
is involved (either as an input or an output) in every process. Needless to say,
this assumption is too strong. For example, an apple is not involved as an
input or an output in the production process of computer.

In addition, von Neumann neglected the important condition that xBy > 0,
which is necessary for the economy to be meaningful. If this condition is bro-
ken, not all commodities are produced, or all prices are 0. Kemmeny et al
(1956) added this condition and replaced assumption (6) with the follow-
ing reasonable conditions: “Every production process consumes at least one
commodity” and “Every commodity is produced by at least one production
process.” They demonstrated the existence of a long term equilibrium devel-
opment path under these more reasonable conditions.

As we have seen, the original von Neumann model addressed only the long
run equilibrium of economic growth. Morishima (1970, 1992) tried to revise
this model to include dynamics. His approach was to reconstruct the von-
Neuman model according to the Hicksian paradigm of a series of temporary
equilibriums [Hicks (1939)]. In this framework, Morishima addressed (i) the
Turnpike Theorem, (ii) the Optimal Growth Path, (iii) Monetary Instability,
(iv) Innovation by Entrepreneurs, and other topics. However, his treatment
was purely analytical. He did not perform any numerical simulations. It is
obvious that a time series of temporary equilibriums will not be identical to



the dynamics that emerge in the disequilibrium state, and for understanding
this numerical simulation is a powerful tool.

3 Dynamic von Neumann Model

In order to discuss the disequilibrium dynamics of the von Neumann system,
we must remove the two neoclassical rules, namely the free goods rule and
the profitability rule. Although these rules are useful for equilibrium analysis,
they are not appropriate when discussing disequilibrium. The reason is that
in disequilibrium, which processes are profitable and which are not will vary
with time, and indeed will depend on the environment of the process. In
particular profitability will depend on the state of the other processes in the
system, as well as on the external environment. This will be true even without
technological innovation, when the interaction matrices are fixed. In the same
way it is well known that the concentrations of chemicals in a cell will not
necessarily be at a steady state, but may deterministically fluctuate, even
chaotically, even though they react in fixed ratios and the reaction matrix is
fixed. Another well known example is provided by the populations of species
in an ecosystem. Such systems, which can be described by the famous Lotka-
Volterra equations, are well known to show permanent oscillations in predator-

prey populations, even though the matrix which describes their interactions
is fixed.

Besides this, another problem, is the assumption of perfect rationality and per-
fect foresight of the entrepreneurs. In fact entrepreneurs may not know which
processess are profitable when they come to invest in them, and may only
discover later when their produced output products are sold on the market.
Indeed the production process itself will affect the rest of the system itself in
complex and possibly unpredictable ways, which entrepreneurs may not even
in principle be able to account for.

In this model we take a more bottom-up view. We make a model where the pro-
cesses themselves dynamically adapt to their present environment and dynam-
ically affect their environment too. Processes respond in real time to changing
external supply and demand of the commodities which they consume or pro-
duce. Rather than imposing macroscopic global rules, such as the rule of free
goods and the rule of profitability, such rules will be an emergent property
of the microscopic interactions between processes. In this model we hope to
motivate an economy as a dynamical co-adaptive network of production pro-
cesses.

However removing these useful rules, we face a problem. In the von Neumann
model at the end of a production period ¢t we have an N-dimensional row



vector z(t)B = (XM, z;(t)bi1, ..., M, 2ib;x), which describes the quantities
of the N commodities available at that time. In the original von Neumann
model, the two rules are used to fix the M-dimensional column vector z(t +
1) describing the process intensities in the next time period. Since we have
removed these two rules, we must invent some suitable methods to allocate
the available commodity supplies among the processes which need them and
therefore fix the intensities of the processes. We do this in perhaps the simplest
way possible.

In our model we denote by S;(¢), the total quantity of commodity j available in
the economy at time ¢. We also assume each process 7 has a value, Fj(t), which
we refer to as funds. This is the revenue of sales of its produced commodities
in the preceeding timestep and therefore reflects the value (or fitness) of the
process in the economy at that time. We will explain the details below, but
each process uses its funds Fj(t) to obtain quantities of the commodities it
needs as input material for its processing. We denote these obtained quantities
of process i of product j at time t as S;;(?).

The process activity, which we now denote M;(t), is considered a rate of pro-
cessing. In one production period, At = 1, a quantity M;(¢) of processing
occurs in process ¢. Therefore preceeding a period of processing each process
i has quantities S;;(t) of commodity j, while after the period of processing
these quantities have become S;;(t) + (bi; — aij) M;(t).

The funds F;(t + 1) is the proceeds of sales of these commodities produced in
the previous time ¢, so that,

Fy(t+1) = > (Si(t) + (b — ai) Mi(t))p;(t + 1) (7)

J

where p;(t + 1) is the relevant price of product j. Note that this equation
includes the quantities of product j produced, i.e. after processing.

The total supply of commodity j, S;(t + 1), available in the whole economy
after processing is then given by S;(t) + >;(bij — aij)M;(t), where S;(t) =
>i Sij(t). As explained, we must introduce a procedure to allocate this avail-
able supply between the processes which require it. In order to do this we
assume that each process uses its funds available from the previous period
of processing, F;(t), to form demands for product j by dividing these funds
according to the ratios, a;;, that is according to the ratios it needs for pro-
cessing. Therefore process i forms demands Fj(t)a;;j/ 3°; ai;, for product j. If
we consider the a;; normalized, 3°; a;; = 1, the demands simplify to Fi(t)a;;.
New supplies S;;(t + 1) are then obtained as,

(8)



In order for (7) and (8) to hold consistently we require the price of commodity
J, pj(t + 1) formed in the economy by this exchange of commodities to be
given simply by,

B i ai Fi()
pi(t+1) = Si(t) 4+ 22i(bsj — aij) M;(2) “

i.e. as total demand for commodity j divided by total supply of commodity j.
If this is the case, the total supply of commodity j, S;(t) + X2;(bij — aij) Mi(%),
will be conserved in the commodity allocation and the total funds Y-, F;(?)
available in the whole economy will also be conserved.

We note that in considering the process ¢ demand Fj(t)a;;, for product j,
the price of product j does not enter the formular. It is not difficult to
incorporate knowledge of the last known price p;(t) in the demand form-
ing equation, so that the process 7 demands for product j are given by,
Fi(t)ai;jp;(t)/ X aijp;(t), rather than Fj(t)a;;, but as a first approximation we
consider the latter simpler prescription, and defer consideration of the former
prescription until the discussion section and later papers.

What about the process activity M;(t), the amount of processing? The amount
of processing is always proportional to the minimum quantity of commodity
the process has, i.e.,

M(t) = Min(Sald) Sel®)  Si()y (10)

;1 a2 a;N

where Min(z;) denotes the minimum over the quantities z;. For example sup-
pose that at the start of a production period of, say, 1 hour, a production
process receives 12 wheels, 3 engines and 2 gear shift sticks. Then it can make
no more than 2 cars in that hour, no matter how much machinery and labour
it has. Suppose further, for example, that the production process has only
one wheel fitting machine, which can only work at a given rate of fitting four
wheels an hour. Then even with the above sufficient quantities, the production
process can still only make one car in the hour. If there are 5 wheel fitting
machines, the process can now make 2 cars in the hour, with the above given
supply rates. Clearly the amount of production that can occur in any given
time period is directly proportional to the minimum quantity of the process.

The set of equations (7) and (8) with the subsitution of (9) and (10) define the
temporal evolution of our model, and using them we calculate the development
path of the economy.



4 Results

We have carried out extensive simulations of the model, taking a variety of
networks, and we have commonly observed complex oscillatory dynamics. In
general, we expect complex macroeconomic behaviour to emerge when many
simple microeconomic processes are coupled so that they can adapt to each
other. To understand such a system we first study the dynamics of a single pro-
cess in a fired environment, without other coadaptive processes. While such a
fixed environment system may seem unrealistic it can even itself be considered
a first approximation to a complete production economy, as we will describe.

With this in mind we first consider a simple single process example and then we
consider a network of such production processes, illustrating the appearance
of a multiple timescale limit cycle causing complex unpredictable production
dynamics.

4.1 Single Process in Fized Environment

To illustrate the meaning of this model and its dynamical behaviour we first
consider the simplest (non-trivial) example possible. This is a one input prod-
uct I, one pure catalyst product C, one output product O system in a fixed
external environment.

Indeed, as noted, such a system may represent a highly idealized single econ-
omy, where the input product is imported at a fixed rate from the external
environment and the output product is demanded by the external environ-
ment at a fixed rate. Clearly this is an idealization. Nevertheless we believe
it is still a relevant system to study and indeed captures the minimal essen-
tial characteristics of such a situation. Here we show that this simple system
shows complex dynamics, especially given the fact the environment is fixed.
In particular we show that the characteristic dynamical behaviour is a limit
cycle oscillation, which is a type of threshold oscillation produced by a feed-
back of the process onto the prices of its supply products and that this in turn
causes endogenous sudden price bubbles and crashes. Furthermore we show
that the production process shows intuitively correct dynamical behaviour.
Even in this simple model, we will show that the supplies oscillate.

The system is described by the input supply S;(¢), the catalyst supply Sc (%)
and the process value F'(t). We consider the process perfectly efficient and set
the production coefficients as a; = ac = bg = bo = 1/2 and by = ap = 0.
We now assume that all the other processes and the external environment
is fixed and describe it by a fixed set of environment parameters. They are
Sert) Sert and SE describing fixed external supply rates of the input, catalyst
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Fig. 1. (a) Single process supplies time series, Sy(t) solid, Sc(t) dashed. (b) The same
time series shown in the S;(t), Sc(t) plane. The dotted line is the S;(t) = S¢(t)
line and divides the plane into the (CM) and (I M) regions, as indicated. When the
trajectory crosses this line the equations switch the minimum condition. The (I M)
fixed point (SFM, SIM) is shown as a square and the (CM) fixed point (S¢M, SEM)
is shown as a circle. They lie on the dashed line of slope 1/p through the origin. The
parameters are S¢%¢ = 10, Dg* = 100, S&* = 0.1, D&* = 1.5 and D¢ = S&'* = 0.
a=1,ar=ac=bc=bo=1/2.

and output, respectively, and D$** D& and D&* describing fixed external
demand rates of the input, catalyst and output, respectively.

Now the single process model is described by,

Sr(t) — M(Sy(t), Sc(t)) + Sg*t
1/2F (t) + D5 !
Sc(t) + S&*
1/2F(t) + D&
Si(t) — M(S1(¢), Sc(t))

Si(t+1)=1/2F(t)

(11)

Sclt +1)=1/2F(t)

P+ =50 = M(51(0), e @) + s /2 O+ D1,
i Sc(t) (1/2F(t) + ngt) + M(SI(t),SC(t)) ext

Sc(t) + Sgt

11

M (S;(t), Sc(t)) + Sgt© 7



where M (S(t),Sc(t)) is the production function, i.e. the minimum of the
catalyst and input supplies.

First we show an example of the time series behaviour of the supplies S;(t)
and Sc(t) in this case in Fig.1. Oscillatory behavior, as shown in this figure,
is commonly observed and we will explain how this oscillation arises.

In order to understand this, we consider at first the case where there is no ex-
ternal demand for input product or catalyst, i.e. D" = D& = (). This means
the process has no competition when buying its input and catalyst products.
Then the process funds F(t) must become irrelevant since the process receives
all the available supply anyway. Indeed the supplies equations separate from
the funds equation as they should and we get for the supplies equations,

AS(t) =55 — M(Si(t), Sc(t)),
ASc(t) =S¢,

where ASy(t) = Si(t + 1) — Sr(t) and likewise for AS¢(t). From these equa-
tions it is clear that S¢' and S&* are simply to be thought of as rates of
external supply of the products. Furthermore the production function M is
a rate of production. The input supply S;(t) increases at a rate S¢' and is
consumed at a rate M(Sy(t), Sc(t)). While the catalyst supply simply grows
at a rate S&"'. Supposing initially that the catalyst supply is the minimum,
M(S1(t), Sc(t)) = Sc(t), these equations are easily solved so that,

1
S1(t) = 51(0) + 57t = S(0)t + 5 SE'L*,
Sc(t) =S¢ (0) + Sg't.

Therefore the catalyst supply Sc(t) grows linearly and the input supply S;(¢)
has a quadratic behaviour with a peak. Of course due to this quadratic be-
haviour S;(t) will eventually decrease. Eventually these equations will cease to
hold since the minimum processing condition M (¢) will switch when S¢(t) >
Si(t). In this case the appropriate equations become,

AS(t) =8¢ — S;1(¢),
ASc (t) = gct’

so that S¢(t) will continue to grow linearly but now S;(t) ~ S¢t. Indeed since
there is no competition for the catalyst i.e. D& = 0, S¢(t) continues to grow,
but S(t) is fixed, so there is no more minimum switching and this is the final
state with production occurring at rate M (t) = S¢**.

Now let us consider the case that all the external supplies are zero in (11),

12



ie. S¢t = S&t = S& = 0. Now the process is the sole supplier of these
3 products and has no competition to supply them. (This is not possible in
practice of course since the process would soon consume all its input product
S(t) without external supply S¢*.) Then, again the funds equation decouples
from the supplies equation and (11) simply becomes,

AF(t) = D{™ + D& + D"

and it is clear that the external demands, D" etc, are also to be considered
rates of supply of money from the external environment. Indeed the process
receives all the available funds at these rates since it is the sole supplier of
these products and has no competition to supply them.

We now return to the more general case described by (11), where none of
the external supplies and demands are necessarily zero. The initial part, up
to t ~ 270, is a transient and the roughly quadratic behaviour of S;(t) and
linear growth of S¢(t), as described for the simplified case above, is easy to
see from Fig.1(a). The transient can also be seen in the lower right part of
Fig.1(b). It is also seen that once S7(t) has crossed S¢(t) at t ~ 220 the input
supply goes quickly to a fixed level as it did in the simple case described above,
but rather than Sc(t) continuing to grow linearly it now decays. After some
time Sc(t) crosses back through S;(t) and the system switches back to the
roughly quadratic S;(t) growth behaviour. This state is repeated to produce
a permanent switching state, which is a novel type of limit cycle.

Indeed the origin of this limit cycle is quite novel in dynamical systems theory
since it is produced basically by the presence of the minimum condition which
switches between the catalyst minimum phase and the input minimum phase.
In fact the minimum condition turns a focus fixed point into a limit cycle
because the minimum switching boundary “traps” the oscillation around the
focus. As we will now describe, this limit cycle can be understood simply by
considering the fixed points of the system (11).

4.2 Equilibrium Fized Points in the Single Process.

We denote the two phases as (C'M) for catalyst minimum i.e. Sy(t) > Sc(t)
and (/M) for input minimum S¢(t) > S;(¢). In both (CM) and (/M) phases
the system has two fixed points. In both cases (CM) and (/M) one of the
fixed points is at the origin (S; = 0,S¢ = 0,F = 0), (we will say more
about this later.) The other fixed point is at a different position in each
phase however. Denoting the (C'M) catalyst minimum phase phase fixed point
as (S¢M SEM FCM) and the (IM) input minimum phase fixed point as
(SIM SIM FIM) we find,

13



ext Next ext Next
SI DO e DI
D(e)zt + D?wt
CM IM ext( Qext ext
SgM  SiM  DENSF + Sg)

SgM — S}M — — Mequil — quuil’ (12)

pP= - T Qex ex ext)’ (13)
SeM  SEM Sgt(D§*t 4 Dg?)
and
Dezt De;ct
FOM — 95oM Sgcwt FIM = 9gIM Sg(;t' (14)

Note that S&M = SIM. Since this is the fixed point of the minimum supply
in the two phases, the fixed point of the minimum is the same in both phases
and we denote it M¢!. This is the equilibrium production and is therefore
also the fixed point of the output supply which is also the same in both phases
Seit - Also see that the ratio of the fixed point values which we denote p, is
the same in both cases. This geometry means the fixed points lie on a single
line of slope p through the origin as shown in Fig.1. In fact the variation of p
controls a novel bifurcation from a non-oscillating state to a limit cycle.

Indeed we notice that at the parameter settings used for Fig.1 while the po-
sition of the (CM) catalyst minimum fixed point is inside the (C'M) phase,
the (IM) fixed point is not inside the (IM) phase. That is SEM < S¢M but
SIM > SIM T.e. the (CM) fixed point is compatible with its phase while the
(IM) fixed point is incompatible. This means that if the trajectory enters the
(IM) phase it will be attracted to the (/M) fixed point, but this is actu-
ally inside the (CM) phase. Therefore this will cause the system to switch
back into the (C'M) phase some time later. The other point to notice is that
the (CM) phase has an oscillatory character. In fact, although we have not
mathematically analysed it, we deduce from observing simulations that this
fixed point is a focus, while the (IM) fixed point is a node. The trajectory
transiently oscillates around the (C'M) fixed point, but before it can decay to
it, it crosses back into the (IM) phase producing the novel limit cycle. Note
also that if the external environment parameters are such that p < 1, the
system can remain at the node (/M) fixed point without oscillating. In this
case Sr(t) and S¢(t) decay to fixed values, with S¢(t) pemanently in excess.
At p = 1 the compatibility state of the fixed points is reversed and therefore
p = 1 produces a novel bifurcation from fixed point to limit cycle. We call this
a trapping bifurcation.

Furthermore the bifurcation parameter p also controls the frequency of the os-
cillation. This is due to the interaction of the line of slope p which contains the
fixed points and the minimum switching line S; = S¢. This can be seen from
Fig.1(c). As the parameter p decreases towards the bifurcation point 1, the
frequency of the oscillation will increase and the amplitude of the oscillation
will decrease since the focus fixed point will approach the switching boundary.
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Indeed numerical simulations confirmed that the switching frequency is rougly
linear in 1/p as would be expected from geometrical considerations.

If we substitute the fixed point values in the two phases (CM) and (IM)
equations (12),(13),(14) into the price equations (9) we get the equilibrium
fixed point prices. These turn out to be the same in both minimum phases
and are given by,

equil __  equil __ DIewt + Deoxt equzl Dext 15
I =DPo - Slgwt 4 ngt bc Semt ’ ( )
where ps@# ped and pé* are the equilibrium prices of the input, output

and catalyst respectively.

The parameter p can also be seen to be the ratio of the equilibrium prices,

equil equil
Pc

_ Pc
equil = equil (16)
by o

This means the important factor in determining the frequency of the limit
cycle oscillation, and indeed whether limit cycle oscillations occur at all, can
be seen to be the ratio of the equilibrium prices p¢®** and p&d“*.

Above we also mentioned that each phase has another fixed point, at the
origin, the bankrupt process fixed point. In this case, or when the process does
not exist, the equilibrium fixed point prices are simply given by,

ext ext ext
brupt D brupt D brupt D
1 S}zwt o Sewt c Sea:t ’

(17)

where 7%t refers to bankrupt fixed point prices. In fact the interior fixed

point, (12) (13), (14) (15), is stable, and the bankrupt fixed point unstable,

D$* Dget brupt

brupt
when sewt < Sm, i.e. when p; nup

<Po
gives rise to proﬁt the process can exist without going bankrupt and it does
so by processing input product into output product at a rate such that the
equilibrium prices given by (15) hold and the equilibrium price of the input
is now equal to the output. Of course the system is not necessarily at a fixed
point, but nevertheless will oscillate around it, so that the relations (15) ap-
proxnnately hold on average. On the other hand, if py™*"* > pi*"*, the process
‘goes bankrupt’ and does not affect the prices.

. In other words, when the process

Indeed this bifurcation to bankruptcy occurs smoothly. As noted the process
equilibrium production is given by M = SEM = SIM '(12). As we approach
the bankruptcy bifurcation the numerator in this M eq“” expression, Sertpert —
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St D™ goes smoothly to zero and the production drops to zero. In the VNM
equilibrium model this zero production condition is included as (4). In our
model this behaviour naturally emerges as a dynamical result when the process
is unprofitable. We do not need to impose 'the dual cross adjustment’ of the
von Neumann model, the autonomous dynamical adjustment selects which
processes remain and which “go bankrupt”.

Furthermore at equilibrium the relation (15) means that both the input price
and output price are equal to the total external demand divided by the total
external supply. This non-trivial relationship implies that for example chang-
ing the external supply of the output S&* will not only affect the output
product price, but also the input product price. This is because the equilib-
rium processing rate, M is affected by changing S&* which feeds back
onto the input product price. This is of course providing the quantities are
not changed so much that system goes bankrupt.

We have not yet mentioned the single process the funds F'(¢) fixed points (14).
These can be seen to be given by,

FCM,IM — 2Mequilp7cr'l]i\g,IM (18)

where prcn%’IM denotes the fixed point price of the minimum product in the two

phases. That is the funds fixed points F¢MM are different in the two phases
but are always given by the product of the fixed point of the minimum supply
i.e. the equilibrium production M which is the same in both CM and IM
phases, and the fixed point price of the minimum product in the two phases,
which is different in the two phases. In other words, the process equilibrium
value is the product of the equilibrium price of the minimum supply and the
equilibrium quantity of the minimum supply. Therefore when the minimum
switches this can cause a crash in value.

4.8 Chain of Processes

We now come to consider what happens when multiple processes are cou-
pled together. We show that in general we expect complex multiple-timescale
dynamics to appear when multiple processes are coupled.

The simplest and most economically relevant system is the chain of processes
in a fixed environment. Such a system might describe a factory production line.
We show that this system has a novel multiple timescale limit cycle attrac-
tor and that accordingly we expect the output production to be dynamically
rather complex.
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Fig. 2. Diagram of a 3 process chain with 7 products in fixed environment. 3 products
are catalysts, one in each process each with a fixed external supply S¢&' and demand
D¢%t| defining an external price for each catalyst. There is one input product I with
a fixed external supply S and one output product O with fixed external demand
Dgxt. There are two intermediate products with no external supplies and demands,

but which are supplied by the feeding process and demanded by the drawing process.

Such a 3 process 7 product chain is shown in Fig.2, while the detail from
the supplies time series for this system is shown in Fig.3. The time series grey
scales refer to the same grey scales as in Fig.2. The time series shows a segment,
from a multiple timescale limit cycle attractor.

It is easy to understand how this behaviour is produced from the previous
single process example. From Fig.1 we can see that as the slope of the line,
p, containing the fixed points (12), increases, the amplitude and therefore
period of the limit cycle increases. If the situation is such that each process
has a different p parameter, then each process will have a different intrinsic
oscillation frequency. We also know that the parameter p is given by (16) in
terms of the equilibrium prices (15). For this 3 process system these quantities
are given by,

ext ext ext
equil __ DlC equil DQC’ equil DBC (19)
1 — Seat’ 2C T Qext? 3C T Qext’

1C 2C 3C

for each process catalyst prices. While the input and output fixed point prices
for each process are,

' et DY

equil __ equil __

Pr - ro _ Sewt (20)
I

where we get this last relation, (20), from the fact that because of the input
and output price equalization considerations above, processes in a chain must
all have the same input and output equilibrium prices. Of course the system
is not at equilibrium, but nevertheless the input and output prices in a chain
should move approximately around the same long term average levels.
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Fig. 3. The 6 time supplies time series for the 3 process chain described in the text
and in Fig.2. The first process supplies, S17(t) and Si¢ (), move at lowest frequency,
with S17(t) > S1c(t) most of the time. Similarly the second process supplies, Sar(t)
and Syc(t), move at intermediate frequency with Sor(t) > Soc(t) most of the time.
Similarly Ss7(¢t) and S3c(t) move at highest frequency, with S3;(t) > S3c(t) most
of the time. The lower panel is detail of top panel.

Now if we set the external environment such that for example,

equil equil equil equil

pia™ >> pslit >> pihtt > pitet (21)

then all processes oscillate with very different frequencies. The first process
with the highest p value oscillates slowest the next at a higher frequency and so
on. In this example the catalyst equilibrium price in the first process is 10 times
the second which is 10 times the third, which is slightly greater than p%“*.
These 3 different trapped frequencies are easy to see in Fig.3, where the first
process switches on the slowest frequency, the second process at intermediate
switching frequency and the third at the highest frequency.

In this case according to (12) since the external demand for the input D$**
is fixed to zero for convenience in all 3 of the processes (although the same
dynamics appear when the intermediate products also have external demands
and supplies) we get that the catalyst supply fixed point for process 1 is simply
given by S{M = S¢t In other words, the catalyst will oscillate around the
external supply level as the process tries to keep the catalyst and the external
supply level the same. Similarly for the second process catalyst fixed point we
get, SSM(t) = Sio(t) = Sic(t) (where now the ‘fixed point’ is slowly time
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Fig. 4. Output production M (¢) time series from the 3 process chain described in
the text.

varying) so that the second process catalyst supply will oscillate around the
input supply which is the output supply from process 1 which is of course also
the catalyst supply for process 1 since the catalyst is the minimum. Similarly
we get SSM(t) = Soo(t) = Soc(t) for process 3 and this explains why the
catalyst levels all seem to get ‘sewn’ onto each other in Fig.3, in a hierarchical
cascade.

Indeed that the catalysts should all oscillate around the same level in non-
branching chains of processes is simply due to the fact that the fixed point
of the minimum supply i.e. M the production rate, must be the same in
each process in the chain. In this case where there is no external demand for
input, so that D¢ = 0, M°®®! = S¢* for each process in the chain.

This dynamical complexity is therefore reflected in the network production
M (t) (10), which is the output supply from the last process in the chain shown
in Fig.4. This is given by the output from the final process M(t) = Ssc(t),
which moves in a complex, apparently unpredictable way, around its fixed
point, the input supply rate M = S¢=t = 10.

As mentioned, chains of supply processes with different price catalysts is a
typical structure for a real economy, since most products are produced by a
series of companies supplying parts to the next link in the chain. This example
illustrates that even in the case of a fixed environment, as is the case here,
with fixed input supplies and demands for all products the dynamics can be
very complex and difficult to control. Control of such production processes has
recently been addressed by Helbing [Helbing (2003)]. We expect such dynamics
to therefore be typical of a real economy of coupled production processes.
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Fig. 5. Time series from process cycle described in bottom left panel (c). There
are three processes denoted 1, 2,3 and four products A, B,C, D. Process 1 converts
A into B via catalyst C. Process 2 converts B into C via catalyst D. Process 3
converts C into A via catalyst D. The squares in different greyscales correspond
to the 6 individual process supplies, whose time series is shown in the top left
panel (a). In that panel the high frequency oscillations occur in Sy 4(¢) and S1¢(t),
which move around the same long term supply level as Sap(t) and S3p(t). The
two supplies which move around much higher levels are Sap(t) and Ssc(t). The
top right panel (b) shows the 3 funds F'(t). The process 1, funds Fi(t), shows the
high frequency bifurcations. The process 2, F5(t), and process 3, F5(t), funds have
a much higher level. The bottom right panel (d) shows the prices, p4(t) has high
frequency oscillations and moves around the same level as , pg(t), and pc(t), but
product D has much higher price level, pp(t).

4.4 Cycle of Processes

While economically unrealistic a simple cycle of 3 processes is useful for
the illustration of the connection between multiple price levels and multiple
timescales. In this example we will show that large differences in price levels
between different products leads to the result that oscillations can have large
amplitude in some processes but not be visible in others.
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This system is, like the chain of processes, easy to understand simply by
considering the fixed points. This process cycle is described in Fig.5(c). In
this system product D is conserved by the cycle of 3 processes but may be
demanded and supplied by the external environment, products A, B and C
however are not supplied or demanded by the external environment. The total
supply of A+ B + C'is conserved by the system. Since A,B and C are in the
same chain they must have same price fixed points. In this example we set
the external supply S%' and demand D' of product D such that the fixed
point price of D, is large. We therefore expect the global price fixed points to
be such that,

pi‘lobal — pr}Obal — p%lobal << p%obal. (22)

where the 99 denotes global fixed points.

This is confirmed in Fig.5(d), where the 3 prices pa(t), pp(t) and pc(t) do
move around the same general equilibrium level and pp(t) is seen to be much
higher.

We also therefore get,

pglobal pglobal pglobal

global _ FPC global __ VD _ global _ MD

P1 ~ _global << P2 — global — M3 — _global (23)
Da DB bc

where the pd'®**

; is now the fixed point of the bifurcation parameter of the
i process. In fact the actual bifurcation parameter p;(t) for each process as

defined above, (16), is now time varying

S = B0 _ DEW(SF ) + S5(0)
pd(e)  SEODFD + DE0)

(24)

since the external environment of each process is time varying, and the external
environment variables here in (24) are the appropriate ones for each process.

However we expect the bifurcation parameter p;(t) fixed points, p?"”** to obey

(23) and we therefore expect process 1 to have much faster oscillation than
processes 2 and 3. That this is so is apparent from Fig.5. In this example
however, unlike the example of the previous 3 process chain, since the equi-
librium prices p¢*" () and p*"(t) are time varying around the same level we
expect the variation of py(t) = pir™*(t) /p5""(t) to cause a periodic bifurcation
in process 1 as it periodically crosses unity. This is clear to see in the figure,
where there is a periodic bifurcation from a high frequency oscillating state
when p;(t) is slightly greater than 1 to a non-oscillating state where p;(t) is

slightly less than 1.
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Since the 3 processes are in the same chain M®“" the fixed point of the
minimum supply, and the production rate, must be the same for each process.
This is clearly seen for the supplies S14(t), Sic(t), Sop(t) and S3p(t) in Fig.5(a)
which move around the same level. The catalysts Sop(t) and S3p(t) are always
the minimum supplies in processes 2 and 3 respectively, while the minimum
supply of process 1 varies between the input supply S;4(¢) and the catalyst
supply Sic(t) as can be seen.

Furthermore according to (18) the funds F;(t) fixed points are given by the
product of the production rate and the price of the minimum rate controlling
product. Again according to (22) since the price of D is much greater than
the prices of both A and C' the funds fixed point of process 1 will be much
less than 2 and 3, F/™“M = oM equilp-‘;ffc”“’ << Fyt =2M equilpyglobal = A gain
this relationship is clearly seen in Fig.5(b).

It is this large disparity in funds F'(t) between the 3 processes which explains
the fact that oscillations are seen in some processes but not others. In partic-
ular for example we see from the prices time series that p4(¢) shows the high
frequency oscillations from process 1 while pg(t) and pc(t) do not, although
all three product prices are affected by process 1. In fact for p4(t) we have,

_ SlA(t) —+ MZn(Sgc(t), SgD(t)) _ SlA(t) + SgD(t)
B 1/2F(t) O 12FR(t)

pa(t)

since S14(t) and Ss3p(t) are of the same order of size, the fast oscillations in
S14(t) and F;(t) show up in p4(t). However for pc(t)

 Sio(t) + Min(Sap(t), Sap(t)) + Ssc(t) — Min(Ssc(t), Ssp(t))
B 1/2F;(t) + 1/2F5(t)

_ Sic(t) + Sap(t) + Sso(t) = Ssp(t)  Ssc(t)

- 1/2F;(t) + 1/2F3(t) T 12R(t)

pc(t)

so that the high frequency oscillations of the process 1 variables are “swamped”
by the much larger magnitude process 3 variables which do not have high the
frequency component, and p¢(t) does not show the high frequency oscillation.

This combination of bifurcations between different frequency states and the
filtering of oscillations by threshold type prices, when some processes have
much larger magnitudes than others, means time series from random economic
networks show novel multiple timescale complex switching dynamics.
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Fig. 6. Examples of the time series of prices for a network model, consisting of 15
processes and 10 products. The connection matrix is generated as in the text, and
three examples of time series of such networks are plotted.

4.5 Dynamics of Process Networks

Real economic production networks are of course more complicated than the
cyclic process system discussed in the previous subsection. As mentioned in
§2, a production process is a transformation of some commodities into other
commodities via intermediate processes. The connections between commodi-
ties and processes are given by the input and output matrices A = a;; and
B = b;; respectively. One can consider various examples of such networks, and
study their dynamic behaviour. Indeed, by assigning connections between pro-
cesses and products randomly, and constructing the corresponding matrices
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A and B, we can make an example of such a network. The only requirement
are that each product should be an input to at least one process and an out-
put from at least one process, and that each process should have at least one
input product and one output product. We have numerically studied many
such examples. The behaviour, of course, depends on the particular network.
For most networks, however, we have observed complex oscillatory dynamics
as well as successive switching behavior from one type of oscillation to others.
Such behaviour is quite common in such networks.

Although it is not so easy to make a detailed analysis of the dynamics of such
networks of processes here, it will be useful to give a few typical example of
such dynamic behavior, showing the time series of the prices for three different
networks consisting of 15 processes and 10 products. As shown in Fig.6, the
time series shows switching over several states, where oscillations on multiple
timescales are involved. We find some processes controlling bifurcations in
other processes in a hierarchical way. This type of hierarchial structure with
multiple time-scales is commonly observed in the network model. Note again
that even in this network model the dynamics does not show price divergence
and economic production is dynamically sustained. The resultant dynamics,
as seen in Fig.6, however, is extremely complex and the detailed analysis will
be addressed in future work.

We note that a model with 15 processes and 10 products is too small for a real
economic model. Still, it is important to note that even this model, with such
a small network, can generally show very complex dynamics with hierarchial
multiple time-scales. A more complicated network model will include at least
this type of dynamics. Hence this result is expected to provide a basis for
considering a hierarcy of time-scales in economic processes in general.

5 Discussion

In the present paper we have explicitly constructed a dynamical model based
on the idea of von Neumann for an economic production network.

His original model only discussed the equilibrium state depending on the free
goods rule and the profitability rule. We discarded these rules in order to
discuss the dis-equilibrium state, and we replaced them with a simple proce-
dure for each production process to allocate its assets and a simple pricing
rule. Even with these simple procedures we found the system shows reason-
able behaviour. For example we found that, if in the absence of the process
the external environment is such that pJ™”* < p%*“"* then providing the pro-
cess is technologically feasible it will appear and grow in production until

equil equil

by = Do
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It is worth while noting that our model has no rational agents who optimize
their utility. Even so, we observe the above reasonable economic phenomena.
These results remind us of the conclusions of Padgett et al. (2003), that a
complex production network can emerge even if the agents have very simple
decision making process.

In this model we have found interesting oscillatory dynamics. One origin of
these complex dynamics lies in the “minimum” term in (10). This is in contrast
with the rate equation in standard chemistry, where the rate of a process is
given by the Law of Mass Action, i.e., the reaction rate increases when the
concentration of any of the reagents increases.

Still, this ”minimum” condition need not necessarily be so strict. We can
generalise this minimum condition (10) to a somewhat smooth function such
as

Mi(t) = M () = ()

which becomes the minimum (10) in the limit » — inf. Indeed the results
we described here are reproducible as long r is large enough. In economic
terms this means that the strict L-shape isoquant of production function is
not necessary for the complex behaviour of our model. Smoother (neoclassical)
production functions can also produce the complex oscillation observed here.

We must point out that this production function characterisitic doesn’t only
cause the observed complex behaviour, but also insures the absence of di-
vergence. Variations of economic production, or prices with large amplitude
appear, but at the same time the total destruction of economic production
is avoidable. This important macro-level dynamic stability is insured by the
shape of production function.

As we mentioned earlier, in our model the way the processes allocate their
funds between the different products they require is not directly affected by
prices. This assumption seems too strong for an economic model. However,
this assumption is not essential to the overall behaviour of our model. For
example, instead of using Fj(t)a;; as the process i demand for product j, we
introduce the term Fj(t)o;;(t) such that,

oy POy
OZ] (t) - 723 pj (t)aij + (1 fy)a’lj

to take into account the price feedback. (The model we studied in the paper
corresponds to the case with v = 0). Indeed we have also studied the above
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model with v # 0. Still the complex cyclic behaviour we presented here is
preserved with this extension, and the results here are qualitatively unchanged.
We suspect that no matter what prescription the processes use to allocate their
demand ratios o;;(t), the multiple timescale complexity we observed will be a
generic factor of production systems and production networks.

The complex oscillation itself is interesting as a dynamical system. The oscilla-
tion is sustained without divergence by switching over a succession of temporal
evolutions defined by each segment in the phase space, that is, by the specific
choice of the minimum condition. Such oscillations created by the switching
mechanism will be rather universal. Also, in high dimensional dynamics where
there are many degrees of freedom, the minimum condition produces a com-
plex segmentation in the phase space, which may lead to complex oscillatory
dynamics with multiple time scales, as observed here. Elucidation of this com-
plex oscillation will be an important problem in nonlinear dynamics theory.

Our model demonstrated the fact that the switching mechanism in the pro-
duction function results in the multiple time scale fluctuation at higher levels.
This view can open a new pathway to understand economic dynamics in real
economic history. Fernand Braudel, a great French socio-economic historian,
proposed the idea that there are layers of ‘duration’ in the history of capital-
ism [Braudel (1979)]. Our model can supply a mathematical background for
his view.
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