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Abstract

The articulation process of dynamical networks is studied with a functional map, a minimal model for the dynamic change
of relationships through iteration. The model is a dynamical system of a functionf , not of variables, having a self-reference
termf ◦ f , introduced by recalling that operation in a biological system is often applied to itself, as is typically seen in rules
in the natural language or genes. Starting from an inarticulate network, two types of fixed points are formed as an invariant
structure with iterations. The function is folded with time, until it has finite or infinite piecewise-flat segments of fixed points,
regarded as articulation. For an initial logistic map, attracted functions are classified into step, folded step, fractal, and random
phases, according to the degree of folding. Oscillatory dynamics are also found, where function values are mapped to several
fixed points periodically. The significance of our results to prototype categorization in language is discussed. ©2000 Elsevier
Science B.V. All rights reserved.
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1. General introduction

In studying a biological system, we face the problem of how rules are generated. In simulations of physical
systems, a rule is given in advance from a natural law. On the other hand, in trying to model a biological system at
a biological level, we need to study the origin or dynamics of the rule itself.

There are two possibilities for such a study. In one approach, one starts from a level that is more microscopic
than that of the biological system (e.g., the chemical reaction level) and determines from a description of behavior
on this smaller scale how a rule (e.g., a rule for cell differentiation) is formed at a biological level. In the other
approach, one attempts to start at a biological level from the beginning.

Since the latter approach, when successful, can allow for the extraction of the essential features of a biological
system, we consider this approach here. In attempting to employ this approach, however, we face the following
difficulty. In this approach, the rule (operator) and variable (operand) are not initially distinguished, and they should
be at the same level in the beginning. For example, consider a gene. This is nothing but a set of chemicals within
a DNA molecule. Among the chemicals in a cell, the chemicals contained in the DNA molecule constitute some
kind of ‘rules’ for other chemicals. A more straightforward example is seen in the problem of language, where code
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and encoding are not distinguished at a descriptive level. If a language were nothing but a signal (as is the case for
the emergency calls of birds), there would be no need to distinguish code from encoding. However, it is thought
that there is something called ‘encoding’ within our language. In spite of the conviction that there is meaning in
an uttered phrase or piece of text, this meaning can be described only at the code level. Although in describing
encoding, it is represented by a set of codes, the encoding in the natural language needs something beyond such a
set. (See Section 2 for discussion on language.)

In view of the above considerations, it would seem that we need to construct a model in which the rule (operator)
is not initially separated from the variable (operand). In the case of language, we have to start from a model without
distinction between code and encoding. Since a rule is not distinguished from the entity to which the rule is applied,
the operation of a rule can be applied to itself. Hence, one has to consider ‘self-reference’ seriously. As will be seen,
we consider the dynamics of networks of relationships. These dynamics are formulated in terms of the dynamics of
function, instead of dynamics of variables. In this formulation, self-reference is expressed by the operation of the
function on itself (i.e.,f ◦ f (x)).

The second problem in a biological system is the emergence of symbols, made possible by ‘articulation’ of contin-
uous objects. Here, ‘articulation’ means the categorization of the words or molecules. Although this categorization is
usually used as a classification of some elements at the same level into some groups, the inseparability of the rule and
the variable has to be considered, as pointed out in the discussion of the first problem. Thus, the articulation is used
to describe a categorization of words and rules. Through the dynamics of networks of relationships of objects, some
object begin to act as a symbolization of other objects. This can be seen in the emergence of ‘information carrying
molecules’, such as DNA, and in the emergence of language with some symbols. Once the symbols are formed,
they remain as stable objects, while connections to such symbols are formed as relatively stable relationships. In
the present paper, the process of articulation is studied through the dynamics of functions.

The third problem in the study of a biological system is understanding the formulation of a rule to change the
relationships among objects. Such a rule leads to dynamics of the symbols, but it also refers to the object assigned
to the symbol. For example, rules for differentiation are formed in reference to genes (symbols) in DNA, but these
rules also can depend on other chemicals associated with the genes. Although grammar consists of rules concerning
symbols, often these rules are not completely syntactic, but rather depend on the objects that are assigned to symbols.

The fourth problem is that of hierarchical rule formation, as is seen in the development process of an organism
or in the language. Here the dynamics of the changes of the rule itself emerge as a meta-rule.

The fifth problem is understanding the formation of a ‘social’ rule among some subjective, tissues or organs. The
‘society’ of ‘units’ is assumed to have a common rule. On one hand, this rule is given from the form of the whole
society, and on the other hand, it is generated from the concurrence among some units.

In a series of papers, we attempt to construct a mathematical framework that solves the above five requisites. In
this, the first paper of the series, we consider the basic structure of the functional map, and discuss the articulation
process. The third and fourth problems, which are more central to the present formulation, will be discussed in the
next paper. The fifth problem will be discussed in a third paper.

2. Introduction

Before discussing our model and the results of articulation dynamics, we briefly mention our motivation in
connection with the study of language. Since some epistemological understanding are necessary to study natural
language, we briefly review trends in the philosophy of language.1

1 If the reader is mainly interested in functional dynamics as a dynamical system, one can skip the following arguments and jump to the last
six paragraphs of this section.
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Although a logical model for language was extensively studied from the 1920s to the 1950s in the context of
‘logical positivism’ [1,2], this approach could not cover the entire area of cognition or semantics. Theory-laden
nature of measurement [3] and the position of the real world in the theory then led to a shift from ‘logical positivism’
to ‘logical negativism’ [4]. There, it has been recognized that a theory of natural language is not sufficient without
the concept of cognition. By this recognition, new trend in the language theory started, i.e., the theory of the ‘speech
act’ (usage of language), which focuses on ‘intention’ [5,6]. This theory, however, is grossly insufficient given the
diversity of utterances. In the logic-based theory, the problem of how the continuous world can be represented
by combinations of finite words is not addressed. In the theory, only minimal elements and rules governing these
elements from the outset are included.

In contrast to the above theories, ‘structurism’ attempts to attack the background of language [7]. In structurism,
one focuses on how continuous objects are articulated into words, depending on the structure of all other words.
However, this theory deals only with ‘static’ structure, and can only describe a ‘snapshot’ property of the language
mechanism, which indeed has developed from each individual’s birth and evolved historically since its origin. There
are some philosophical discussions [9] with regard to replacing a theory of the static structure of language by a theory
including dynamics, but these remain speculative, without any concrete mathematics. A mathematical model for
epistemology or articulation dynamics is necessary to study natural languages. However, in a mathematical model
we cannot deal with cognition directly. Thus, a ‘detour’ is needed to understand the underlying basic structure of
languages.

Since phones and letters are only signs, it is not possible to distinguish a code from the encoding entity. There
is only a circulation of signs. The code–encoding relation is decided by correspondence to the real world, although
the dynamics of signs seems to be self-driven at the descriptive level too.

The dependence of the rules imposed on signs upon the description level is evidenced by the existence of
dictionaries. This existence implies that a sentence cannot be produced only from the formal logic. If all sentences
were made logically, dictionaries would be much thinner or perhaps would be unnecessary. The role of dictionaries
shoulder the redundancy in language, which is beyond the formal logic. This redundancy is related to cognition and
derives from the uniqueness of our world. Hence, this redundancy shown by the existence of dictionary has to be
considered seriously for the study of cognition. In addition to redundancy, an important characteristic of dictionaries
is the circulation among words. A word is described by other words, which are, in turn, described by still other
words. In other words, there are self-referential relations among signs. This self-referential structure is taken into
account for our ‘detour’ of understanding the basic structure of language systems.

However, if we focus only on the static network of words, the detour is not relevant to the study of cognition.
The static network that has already been articulated is only a snapshot of language. To study the static structure
of language, we need a database of existing languages, which we cannot include in our preliminary study with an
abstract mathematical model. Rather, in our study, we focus on some universal structure that the articulation in
dynamical networks possesses, from which we regard the articulation process of cognition as one important aspect
of the natural language. Of course, this is a difficult problem that cannot be solved in a single paper. Here we present
a first attempt at solving this problem by introducing an abstract model for a dynamical network and study a class
of general phenomena.

In previous studies of natural language, it is common for code and encoding to be divided. The celebrated theory
of code is the ‘generative grammar’ [8], while ‘cognitive semantics’ [10] is a theory for the encoding.

For the study of codes, generative grammar deals with transformation of words and sentences. Given a formal
system, such transformations are classified into several classes [11], according to computation theory. Study of
generative grammar has succeeded in describing how an already described language is structured. However, this is
just a one-way flow from the phones or letters to the language structure. Natural language cannot be generated only
by this language structure. To produce a sentence, it is inevitably necessary to refer to the real world. If we have to
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refer to real world structure in order to produce sentences, the syntactic rules must be complemented by additional
cognitive rules in order for a machine to be able to speak or a program to be able to write. Thus, a theory or a model
of articulation of language is necessary, e.g., to construct a machine which can use language.

In this respect, cognitive semantics deals with the structure of the linguistic network among words, which is
preserved and constructed through the iteration. It is proposed that there is semantic structure (a network of category,
or a set of sets of words), which is formed through these iterations and is robust to some degree. This semantic
structure is an articulation of the real world. Although a category is a set of words, it is not decided only from
properties of objects, but also through cognitive processes. Because of this property of a category, it is not the case
that all the words in the category have the same status, and thus there is asymmetry in the structure of the category
derived from cognition. A reference element which is suitable for the cognitive process (restricted physically,
socially and so on) is called a ‘prototype’ [10], while other elements in the same category can have various status.
The repeated use of language produces a semantic network of category whose prototype is essential to the articulation
in the language.

In communication it is essential that some entities are identified through iteration which is restricted, for example,
by cognitive, physical, social and common laws. Iteration gives the foundation of the language. If the language were
not formed through iteration, it would be destroyed into fragments like those Borges [12] imagined or in Finnegans
Wake. Some iteration processes preserve meaning, while some others alter existing meanings. With the confliction
of these two processes, one can describe something already described, while one can also think about what has not
yet been described. By iterating encoded words in a language network, such a network is formed as a connection
of codes.

A fuzzy logic can be one of the tools to extract semantic structure, because each element which belongs to
the category can have a different status. However, semantic structure formed through the cognitive process has a
dynamical aspect, and hence a fuzzy ‘logic’ is not sufficient to deal with it. To consider cognitive and semantic
processes, a dynamical model of fuzzy logic [13] and a dynamical network of proposition in a fuzzy logic as a
functional form [14] have been proposed. However, to study the duality between rule and code directly, we must
avoid such a logic-based approach. Starting from an inarticulate system without logic, the emergence of articulation
is studied in this paper, while the emergence of rule (logic) is studied in the next paper, II.

To sum up the long discussion so far, we have to study a system having following features: (a) networks of
relationships change in time, (b) rules (operators) and variables (operands) are not initially separated, (c) the rules
(operators) are applied to themselves, since operands are not separated, (d) through the iteration of the rules (e.g.,
the use of language), some robust structure in the network is formed, by which the roles of operators (rules) and
operands are separated, (e) from continuous objects, discrete symbols are formed through the iteration of the rules
to change the network of relationships.

To represent an inarticulate network mathematically, we adopt a function (network) instead of a variable, as its
minimal element (word). This functionx → f (x) can represent the network of relationship, or a filter from inputs to
outputs. With this representation by a function, the application of a rule to itself is represented by the self-reference
termf ◦ f (x) so that the relationshipx → f (x) is applied tof (x) itself. Since the operand of the function is the
function itself in this term, the operator and operands are not separated.

In addition to the robust structure with respect to iteration, the language has ability to create variety. Objects
indicated by codes can vary in context and in time. Also, if a novel object, which has not existed before, appears,
language is able to refer to it. Conversely, we can describe only what our language can approach. In spite of this
restriction, we can always face new objects in a new manner. Hence the network structure in language has variability
to support such diversity. To cope with such variability, a dynamics of the functionf (x) will be introduced into our
model so that the relationshipx → f (x) can change dynamically. We study the evolution of the functionfn(x) at
time stepn, following functional dynamics depending onfn(x) andfn ◦ fn(x).
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By taking a continuous variablex, the problem of articulation will be studied as a classification process howfn(x)

converges to distinct intervals in each of whichfn(x) takes a different constant value. For a given valuea = fn(x)

the inverse setIn = f −1
n (a) is given as an articulated class. This means that the filter articulates the continuous

world x into some segments according to the valuefn(x).
This paper is organized as follows. We propose a model of the articulation process in Section 3, where a map for

a functionf (x), not for a variablex, is introduced. The dynamics of this function are given by a balance between
the original mapf (x) and its iterationf ◦f (x). As a preliminary step for later studies, we discuss some elementary
properties of these functional dynamics in Sections 4 and 5. In Section 4, we discuss the case in which the dynamics
are given only byf ◦ f (x) to clarify periodic dynamics of the network. In Section 5, we discuss the simplest case
with a monotonic function, to understand the minimal articulation property of our dynamics. In Section 6 we choose
a single-humped map as an initial function to understand the articulation process balancing between self-reference
and diversity. The limiting forms of the functions are classified in Sections 7 and 8 by introducing several quantities
characterizing stepwise, fractal and other singular functions. A self-folding mechanism is discussed in detail.
Periodic solutions in this model are given in Section 9. Summary and discussion are given in Sections 10 and 11.

The possible class of behavior in our functional dynamics is not restricted to those discussed in the present paper.
Here, we discuss only periodic structures generated by isolated fixed points. Indeed, a method to determine periodic
points mapped to continuous fixed points is presented in a subsequent paper, where hierarchical rules to change
rules will be organized in our functional dynamics [15].

3. The model

As a minimal model of the dynamics of articulation or categorization, we introduce a functional dynamics. Here
a function represents a relation among elements that can be words, chemicals, and so forth. In this abstract model,
a function corresponds to a network consisting of directed elements. We study some characteristic features of
functional dynamics with the iterated application of the function to itself.

Given an initial network, it evolves according to a transformation rule that is determined by the shape of the
network itself. On one hand, the function is postulated to have a self-referential property through the operation of
the function on itself. On the other hand, the function is required to have the ability to exhibit diverse behavior to
drive the network to include a variety of elements.

Here, we consider a minimal model with a transformation rule possessing both a self-referential structure and
some driving mechanism leading to diversity. For simplicity, we restrict the initial network to that represented by
a one-dimensional map, i.e., a one-variable function. This means that each pointx′ is mapped to a pointf (x′). In
other words, the functionf (x) represents the connection between a point in the inarticulate networkx and another
point f (x). The functionf (x) determines a network of relations among words. By setting some initial relations
through an initial function, we study how the network spontaneously grows and generates articulation from the
initial inarticulate network. As the dynamics of the network, we postulate that the form of the function changes
through reference to the function itself. This self-reference is represented by the application of the function to itself,
given by the termf ◦ f (x). Another and equivalent possible interpretation may be made by regarding the function
f (x) as a filter from the inputx to the outputf (x). In a biological system, the filter is changed in time by some
feedback process from its output. We try to capture the nature of the self-feedback process due to the output and its
influence on the filter itself as the simplest form of self-reference.2 Now the evolution of the function is written as

2 In the case of a filter, the termfn ◦ g(x) may be more relevant, with a given external functiong(x) representing the nature of the external
world (environment). Indeed, we have carried out some simulations for such a model, but the class of phenomena and concepts to be presented
here appear in this case too. Another extension necessary with the above interpretation may be the use of sequential dynamics rather than parallel
change for allx. As mentioned in Section 11, some structures to be presented are also relevant to this extension.
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follows:

fn+1(x) = F(fn(x), fn ◦ fn(x)). (1)

The termfn ◦ fn(x) changes the connections fromx → f (x) to x → f ◦ f (x) for all x. Next, we assume that the
change off (x) vanishes when the self-reference of a function agrees with the function itself. In other words, we
assume that the function can ‘relax’ to a fixed point function satisfyingf (x) = f ◦ f (x).

For example, when one listens to a soundx′ through the filterfn(x) and pronouncesfn(x
′), it is referred as

fn ◦ fn(x
′). In this case, the relationf (x′) = f ◦ f (x′) represents a self-consistent relation for the imitation

of sound. Iff (x) = f ◦ f (x) is satisfied as a whole function, the network is articulated to form a consistent
input–output table.3

As the simplest form of the evolution, we choose the form

F(x, y) = (1 − ε)x + εy, (2)

which is nothing but the operation of a weighted mean with weight parameterε. The evolution equation of the
function is now given by

fn+1(x) = (1 − ε)fn(x) + εfn ◦ fn(x). (3)

The time evolution of these functional dynamics is determined by giving an initial functionf0(x) and a control
parameterε. In other words, the inarticulate network spontaneously evolves without referring to the outer world.
The outer world is given as an initial functionf0(x). The complexity of the outer world(f0(x)) and the intensity
of self-referenceε determines the time evolution.

Although we have introduced the evolution rule of the functionfn(x) as Eq. (3), this rule is applied within the
functional space. We can study how some pointsfn(x

′) work as rules for other points through the application of the
function to itself by (3). Indeed, the emergence of rules from objects will be demonstrated in a subsequent paper.

Depending on the initial functionf0(x), the final state of the function asn → ∞ is generally different. These
differentfn(x) represent the variety of manners of articulation as a network of relations. Here we study the evo-
lution of the function under this iteration, varying the initial functionf0(x) and the (control) parameterε. In the
present paper, we choose a monotonically increasing function, a logistic map (as a representative of single-humped
map), as the initial functionf0(x), while some otherf0(x) leading to periodic points will be briefly discussed in
Section 9.

A model related to ours, including thef ◦ f term, was proposed by Deutsch [16,17]. In that model, motion in a
random potential is studied under the iteration of functions.

4. Recursive equation withε = 1ε = 1ε = 1

First, we discuss the caseε = 1, in which the dynamics of the network are simple. The equation is written as4

fn+1(x) = fn ◦ fn(x). (4)

3 The functionfn(x) is an abstraction of the network and is not directly a proposition satisfying this relation. The proposition is given as a
combination of articulated intervals [15].

4 The functional equation withε = 1 has some similarity with the renormalization group (RG) equation for the period-doubling bifurcation
[18] when we choose a quadratic function forf0(x). In contrast with the case of the RG equation, however, a scaling transformation is not
included in our model equation.
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Fig. 1. Time evolution of cyclic networks withM = 1, 2, . . . , 7. The network withM = 3 has period 2, that withM = 5 has period 4, and
that withM = 7 has period 3. The network withM = 4 is reduced to four disintegrated fixed points and that withM = 6 is reduced to two
disintegratedM = 3 networks. The algorithm to decide the period (see Appendix A) forM = 3 is given bya0 = 1, a1 = 2, a2 = 1, and the
period is thus 2. ForM = 5, the algorithm proceeds asa0 = 1, a1 = 2, a2 = 4, a3 = 3, a4 = 1, and the period is 4.

This iteration yields snapshots of 2n steps of the equationgn+1(x) = f0(gn(x)), g0(x) = x. If f0(x) is a map which
generates a chaotic orbit, Eq. (4) generates a chaotic sequence.

As a simple introduction, let us consider the ‘discrete mesh’ case, where the initial functionf0(x) takes onlyM
possible values (e.g., given byf (i) = j (i, j = 0, . . . , M − 1). We adopt the integer indexi for each element in
this discrete mesh, and we denote byf (i) the functional value ati. In this case, we can consider onlyM elements,
and the function is nothing but a network from [0, 1, . . . , M − 1] to the same set. Once a map, represented by a
finite mesh, is given, the model gives the dynamics of the network in which each element connects to itself or to
a different element. Each element is represented by a site indexi, while fn(i) gives the site index to whichi is
mapped.

In this equation, the functional map changes only the connection from the elementfn(i) to the element to which
the mapped elementfn(i) is mapped, i.e.,fn ◦ fn(i).

In this section we discuss only the special case thatM elements are arranged cyclically asf0(i) = i + 1 (mod
M) (for i = 0, . . . , M − 1). General properties of the network with a ‘discrete mesh’ are discussed in Appendix A.

The evolution of the network ofM elements is displayed in Fig. 1 forM = 1, 2, . . . , 7. We call the network
‘elementary’ if it does not disintegrate into parts upon iteration of the function. A one-element cyclic network (i.e.,
type-I fixed point) is obviously ‘elementary’. A cyclic network withM = 2 is reduced to two disintegrated fixed
points, and thus is not ‘elementary’. A cyclic network withM = 3 has a period-2 cycle without disintegration and
is an elementary network.

First, note that a network of 2m cyclic elements is reduced to anm-element network, since the first iterate of
the map leads to connection to the next nearest neighbor and produces two disintegrated networks ofm elements.
Repeating this process, cyclic networks of 2, 4, 8, . . . , 2n elements are finally reduced to fixed points. In the same
way, networks of 6, 12, . . . , 3 × 2n elements are reduced to elementary networks of three elements with period 2.
We thus see that a network consisting of an even number of elements cannot be ‘elementary’.

Contrastingly, a cyclic network of an odd number (M) elements is not reduced to disintegrated elements. Such a
network remains a cyclic one as a result of the first iterate. Therefore, the network does not disintegrate under the
next iteration, and this argument can be repeated ad infinitum. A network consisting ofM elements is rearranged
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Fig. 2. The periodP(M) plotted for elementary networks for oddn.

and returns to the original position after some numbern of iterations(n < M). Therefore cyclic networks of odd
numbers are elementary.

The periodP(M) is plotted for oddM in Fig. 2. For some values ofM the period assumes the maximal possible
valueM−1 (e.g., forM = 3, 5, 11, . . . ), while a sequence of some numbersM, satisfiesP(M) = (M−1)/2,M/3,
(M − 1)/4 and so forth, as shown in Fig. 2. The algorithm to determineP(M), as well as its upper bound, is given
in Appendix A, where it is also shown that any network is attracted into a combination of elementary networks.

For functional dynamics with a countably infinite number of mesh points, the points may not be attracted into
an elementary cycle within a finite number of time steps. However, the network structure described here for a finite
mesh exists in the case that element number is countably infinite. For a real numberx, a chaotic orbit can exist, as
mentioned at the beginning of this section. However, iff0(x) is a map with periodic attractors, the dynamics are
expected to be defined in terms of these elementary networks with fixed points and transient behavior exhibited in
the evolution toward these points.

Note, however, that the structure of an elementary network described here has no correspondence to the case with
ε < 1.

5. General properties

Now, we consider Eq. (3) withε 6= 1:

fn+1(x) = (1 − ε)fn(x) + εfn ◦ fn(x). (5)

In this paper, we consider only functions whose ranges are subsets of their domains. Such a function is bounded
from above and below by the above mapping off (x) with 0 ≤ ε ≤ 1. By rescalingx, we can choose the domain
of a function in 0≤ x ≤ 1 (which contains its range as a subset).

The evolution described by our model is characterized byε and the initial functionf0(x). Also, we note that
two points with the samef (x) at some time value exhibit identical evolution subsequently, since our model is
completely specified byf (x).

In the following study, it is useful to introduce the concept of the “self-contained section” (SCS). The SCS is
defined as a connected intervalI such thatf (I) ⊂ I , no connected intervalJ ⊂ I satisfiesf (J ) ⊂ J , andf (I +δ)
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Fig. 3. Time evolution offn(x) (n = 0, 1, 2) for r = 3.90,ε = 0.80. The number of type-I and type-II fixed points increases with time. Circles
indicate fixed points, while arrows indicate type-I fixed points, at whichfn(x) intersects the identity function. With theεfn(x) ◦ fn(x) term, the
function is distorted from the simple iteration of the logistic map.

does not satisfyf (I + δ) ⊂ I + δ for arbitrarily smallδ. The total interval [0, 1] may include several SCS. In each
SCS the functionfn(x

′) is mapped into the SCS. Thus,fn+1(x) remains in the SCS.
For a given functionfn(x), the domain can be divided into SCS intervals and points outside these intervals.

For an SCSI , the evolution offn(x) for any x ∈ I is determined completely by the evolution offn(x) within
this interval alone. Information regarding the evolution offn(x) in an SCS is self-contained. The evolution of
the remaining parts, on the other hand, is not self-contained but is affected byfn(x) in the SCS to whichx is
mapped.

This form of the functional map (5) has, of course, a fixed point solution withf (x) = f ◦ f (x). Even if this
solution may not be satisfied for all values ofx, the fixed point condition is often satisfied locally at some points
x. There are two types of such fixed points. (Note that this does not necessarily mean that the function is a fixed
function for the whole domain.)
1. A pointxI satisfyingf (xI) = xI (type-I).
2. A pointxII satisfyingf (xII ) = f ◦ f (xII ) (butf (xII ) 6= xII ) (type-II).
A type-I fixed pointxI is such thatxI is mapped toxI . A type-II fixed point, given by the conditionf (xII ) =

f ◦ f (xII ) but f (xII ) 6= xII depends on a type-I fixed point:f (xII ) = f ◦ f (xII ) implies thatf (xII ) is a type-I
fixed point. Thus, in reference to Fig. 3, the type-II fixed points are those with the same heights as the type-I fixed
points.

The type-II fixed pointxII is mapped tofn(x
II ), where it remains under subsequent evolutions, asfn(x

II ) is a
type-I fixed point. Asn increases the number of points at whichfn(x) intersects the identity function increases.
Thus, most points ofx are expected to converge to a fixed point, especially within a finite mesh simulation of a
functional map. Still, periodic points (or chaotic points) also exist. This point is investigated in Section 9 and in a
subsequent paper [15].

In the rest of the present section we study the simplest case, i.e., the evolution from an initial, continuous
monotonically increasing function (Fig. 4). In this case,fn(x) converges to a step function asn → ∞. Note first
that iffn(x) is continuous and monotonically increasing,fn+1(x) is too. Further, iffn(x

′) > x′,fn◦fn(x
′) ≥ fn(x

′)
also holds. Thusfn+1(x

′) ≥ fn(x
′). Sincefn+1(x) conserves the monotonically increasing property, a given initial

function intersects the identity function at some points. Let us denote byxi successive intersection points of an
initial functionf0(x) with xi < xi+1 (f0(xi) = xi). Thusfn(xi) is a type-I fixed point. Hence, the functionf0(x)
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Fig. 4. For an initial continuous monotonically increasing functionf0(x), the correspondingf∞(x) after the evolution is plotted (heref100(x) is
plotted withf0(x)). Once the initial function is given, the intervals in whichf0(x) > x or f0(x) < x are determined as encircled by the dotted
line. In each interval,f∞(x) takes the same value as type-II fixed points.

can be decomposed into some sections [xi, xi+1]. In these sections,f0(x) satisfies eitherf0(x) ≥ x or f0(x) ≤ x.
In the former case, a slightly smaller intervalI ≡ [xi + δ, xi+1] satisfiesf0(I ) ⊂ I , and we can choose a function
h0(x) so thath0(x) = γ0(x − xi+1)+ xi+1 andh0(x) ≤ f0(x) ≤ xi+1 with 0 < γ0 < 1 for x ∈ I . Lethn(x) be the
nth iterate of (5) withh0(x) as the initial function. Ifhn(x) ≤ fn(x), thenhn+1(x) ≤ fn+1(x) holds, sincehn(x)

andfn(x) are continuous, monotonically increasing functions. For arbitraryn, hn(x) = γn(x − xi+1) + xi+1 with
γn+1 = (1−ε)γn +εγ 2

n . Hence, limn→∞γn = 0, and thus limn→∞fn(x) = xi+1 (type-II fixed point) uniformly on
I . In the latter case, withf0(x) ≤ x, an intervalI ≡ [xi, xi+1 − δ] satisfiesf0(I ) ⊂ I and, by a similar argument,
limn→∞fn(x) = xi uniformly onI .

Hence, the functionfn(x) asn → ∞ converges to a step function consisting of fixed points, and it is articulated
into each interval in whichf (x) takes the same value (see Fig. 4). A domain in which limn→∞fn(x) assumes a
single value is given by the connected interval(xi, xi+1] or [xi, xi+1). The set of such domains is determined once
we choose an initial function.

It is clear that the approach to this step function is independent of the value ofε, which changes only the speed
of convergence.

The present example demonstrates the simplest evolution of our functional map. For a general initial function, it
is not easy to make analytic arguments to understand the qualitative nature of the evolution, and one has to resort to
numerical simulation. For a simulation we have to divide the interval [0.0, 1.0] into a finite number of mesh points.
This use of a finite mesh is equivalent to the use of a piecewise constant function whose valuesf (x) are restricted to
i/M(i = 0, 1, . . . , M) with a large integerM giving the mesh size 1/M. As an approximation of the evolution of
a smooth initial functionf (x), use of a finite mesh size may introduce an artificial effect. In particular, if a function
intersects the identity with a large slope|f ′(x)|, the corresponding type-I fixed point may be overlooked in the finite
mesh simulation. Another effect is seen near a tangent bifurcation with a type-I fixed point when the slopef ′(x)

is close to 1. In this case, instead of a single type-I fixed point, the finite mesh simulation may have a tendency
to produce a chain of type-I fixed points continuing over some interval. We treated such problems in a statistical
manner, increasing and decreasing the mesh size (e.g.,±5) and computed averaged quantities for such meshes, to
determine the mesh size dependence.
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6. Functional logistic map

As a non-trivial class of evolution, we choose a logistic map as an initial function. Indeed the behavior to be
discussed here is observed for any single-humped function. We study the logistic map as a representative of the
universality class of single-humped mapsf0(x). We choose the initial function

f0(x) = rx(1 − x), (6)

with x ∈ (0.0, 1.0), r ∈ (0.0, 4.0).
We have carried out extensive simulations of this model, by changing the parameterε and the configuration of

the initial network determined byr. With this type of the initial function, the functionfn(x) converges to fixed
functions for smallε andr. If ε andr are sufficiently large,fn(x) does not necessarily converge to a fixed function.
Some pointsx exhibit periodic behavior, while most of them converge to fixed points.

An example of the time evolutions is shown in Fig. 3. With the iterationfn ◦ fn(x) and the chaotic dynam-
ics in the logistic map, the function is folded repeatedly. Within the first few steps, the function forms several
mountains and valleys, with this folding mechanism. On the other hand, due to the weighted average offn(x)

and fn ◦ fn(x) composingfn+1(x), the function is distorted from the case withε = 1. This leads to relax-
ation to a fixed-point structure. With the time evolution, the number of type-I and type-II fixed points increases
with successive folding of the function. With this creation of fixed points, the folding leads to form many step
structures.

Functions to whichfn(x) converges asn → ∞ can be classified into some types. Typical such functions are
presented in Fig. 5 for different values ofε andr. In this plot offn(x), simulations are carried out with the mesh
size= 4096, where the function converges to a fixed point function at the time stepn on the order of 100. The
function consists of flat pieces and sharp steps. The flat pieces are derived from type-II fixed points. In contrast with
the case of a monotonically increasing function, there can be several separated domains ofx with the same value
f (x).

As shown in Fig. 5, fine step structures appear in Fig. 5(b) (aroundx = 0.0, 1.0) and infinitely fine step structures
appear in Fig. 5(c) and (d). There, finer and finer folding structures appear in time with the folding. The number
of fixed points increases with time, although the new structures become successively smaller. (Note, however, in a
finite mesh simulation, the function converges to a function with a finite number of steps.)

In Fig. 5(a) and (b),fn(x) converges to a fixed step function. In Fig. 5(b),fn(x) has localized fine structures in
addition to the steps, but as seen in the next section, the function finally converges to a step function. In Fig. 5(c)
and (d),fn(x) has infinitely small folds. Asε or r increases, regions with fine structures start to dominate as seen
in Fig. 5(c) and (d). Flat pieces remain for some intervals inx in Fig. 5(c), while almost all regions are non-flat in
Fig. 5(d).

According to overall results of the simulations, the functions to whichfn(x) converges can be classified into four
types.
• (S):Step phase(Fig. 5(a)). In this regionfn(x) has three or fewer values, and it converges to a step function with

a finite (few) number of discontinuous points.
• (FS):Folded step phase(Fig. 5(b)). For most intervals ofx, fn(x) assumes the form of a step function, as in the

case (S), but there are few pointsx (aroundx = 0.0, 1.0) around which a fine folding structure exists.
• (F): Fractal phase(Fig. 5(c)). The function has flat pieces and some areas with infinitely fine folding structures.

In these areas, the folding structure folds itself. The number of type-I fixed points increases with iteration.
• (R): Random phase(Fig. 5(d)). Flat pieces in the function vanish and are replaced by infinitely fine folding

structure.
In the next section, we discuss the origin of the changes of these phases.
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Fig. 5. Four typical results of numerical simulations of our functional map, withM = 4096, plotted at step 100, whenf (x) has converged to a
fixed function. (a)r = 3.9, ε = 0.60, (b)r = 3.9, ε = 0.76, (c)r = 3.9, ε = 0.80, (d)r = 3.9, ε = 0.96. By increasingr or ε, discontinuous
jumps spread all over the domain.

7. Mechanism of phase changes

Folding plays a central role in the phase change. In studying this folding structure, let us recall the concept of
SCS. There is a difference in the folding mechanism betweenf (x) within an SCS and outside of the SCS. A part of
f (x) within each SCS evolves by self-folding (fn ◦ fn(x)). The balance between self-folding and averaging with
fn(x) determines the shape of the function within the section. Whether the humped function grows into a sharp step
structure or a flat piece depends on this balance.

On the other hand, the points outside of the SCS are eventually mapped to valuesfn ◦ fn(x) in some SCS, where
they remain for all subsequent times. Following hump(s) in an SCS, the function in the remaining part can also be
folded, as shown in Fig. 6. The hump in the SCS can lead to a successive folding structure within itself and also in
the remaining part, whosef (x) is mapped to the SCS. This SCS plays an important role in classifying the types of
functions.

The limiting function limn→∞fn(x) is plotted as a function ofr andε in Fig. 10. Here, one dot in the figure
represents a value offn(x) in a flat piece or on a peak of the map. This figure looks similar to the bifurcation
diagram of the logistic map. In fact, this graph is identical to the bifurcation diagram of the logistic map for the case
ε = 1. Although the ‘bifurcation diagram’ is distorted because of the average by the weightε, we can detect some
similarity with the original bifurcation diagram.
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Fig. 6. The folding structure. An SCS folds the region outside it and itself. This is plotted at step 3, forr = 3.9, ε = 0.8. The dynamics of the
region outside the SCS are driven by the structure in the SCS.

In the plot, one can find structures corresponding to tangent bifurcations and other bifurcations. Also, there
is ‘bifurcation collapse’ corresponding to crisis [19]. Here, however, there is one significant difference. In strong
contrast to the case of crisis, ‘bifurcation collapse’ occurs at different parameter values, depending on each bifurcated
branch off (x) (see Fig. 10). Thus, there is a new regime in the ‘bifurcation diagram’ where one branch collapses
and the other remains stable.

To see what happens in this new regime, we plot two functionsf5(x) before and after a collapse of one bifurcation
branch. As is seen in Fig. 11(a), when bifurcated branches coexist, there are two closed SCS. Here each SCS
corresponds to a bifurcated branch. Any two branches evolve independently, because points in an SCS, plotted by
the dotted squares in the figure, remain within the same SCS. Regions outside the two SCS are eventually mapped
to these SCS. The folding structure in each SCS is folded by itself while the folding structures outside these SCS
are folded by these SCS.

As r or ε is increased, the bifurcation collapses. As shown in Fig. 11(b), one of the SCS (around 0.3 < x < 0.7)
collapses while the other remains. Some parts of the functionf (x) at the collapsed SCS are mapped to the SCS
aroundx ≈ 0.8. This is displayed in Fig. 11(b), where the function in the lower section ‘invades’ the upper area.
This parameter region is nothing but the region where only one bifurcated branch is collapsed.

With further increase ofr or ε, the SCS aroundx ≈ 0.8 also collapses and they form a single SCS. This parameter
regime corresponds to the region in which both the branches are collapsed.

The change of the four phases can be understood in terms of the folding and SCS as follows.
• (S) and (FS): As is seen in Fig. 7(a), the folding structure in an SCS continues to fold the rest of the map until it

converges asn → ∞. If the folding structure converges to a step function, the number of type-I fixed points no
longer increases for largen.
◦ (S): In the step phase, the folding structure in the each SCS converges to flat pieces. The points outside the

SCS are not folded by the SCS.
This phase is seen in the parameter region between the tangent bifurcation and the second bifurcation.

◦ (FS): In folded step phase, the folding mechanism stops at an SCS. Until the folding structure converges, a few
points, mapped to an SCS, continue to form foldings, due to step structures in the SCS. For most intervals of
x, fn(x) is a step function, as in the region (S), while a few intervals exhibit fine folded structure (with a finite
number of folds).



238 N. Kataoka, K. Kaneko / Physica D 138 (2000) 225–250

Fig. 7. The folding mechanism in the SCS and the remaining part. (a) Folding process at the center region stops to form steps, but it leads to fine
step structures at the edges of the map (nearx = 0.0 and 1.0) during the transient time, before the function (at the center) converges to a fixed
function with few steps. Here,r = 3.9, ε = 0.76. (b) The center structure folds itself and the part outside the SCS. This folding structure does
not converge asn → ∞ and forms finer and finer steps with time, leading to fractal steps. Here,r = 3.9, ε = 0.80.

This phase is observed in the parameter region between the second bifurcation and the first bifurcation
collapse.

• (F) and (R): The folding structure in an SCS folds itself whenr or ε is large. Here, asn increases, the function
fn(x) intersects the identity function an increasing number of times. Thus, the number of type-I fixed points
increases with iteration in the SCS.
◦ (F): In some regions of the remaining part, the folding does not continue. Here flat pieces are formed. This

process leads to a fractal phase.
This phase exists in the parameter region between the first and the last bifurcation collapses.

◦ (F)→ (R): With the increase ofr, the number of bifurcation branches as well as the number of collapsed
bifurcations increases. Infinite folding structure starts to cover the entire domain.

◦ (R): In the random phase, all bifurcation branches are collapsed, and no SCS smaller than the total interval
exists anymore. The entire domain forms a single SCS with self-folding structure. Hence no flat pieces remain
anymore. This phase corresponds to the region from the last bifurcation collapse.

8. Characterization of phases

In the present section we quantitatively characterize the four phases, considering the folding effects discussed in
Section 7. As statistical characteristics, we compute the number of discontinuous pointsD and the Euclidean
length L of the fixed point function to whichfn(x) converges after transient time steps. We then study the
length of the transient timeT before the function converges to an attractor. Discontinuous points are the edges
of the flat pieces of the map, i.e., the points wheref∞(x + 1/M) 6= f∞(x), while the length is given by∑

j

√
(1/M)2 + (f∞(xj + 1/M) − f∞(xj ))2.

For each simulation, we choose the mesh numberM, the function is iterated until it converges, and the numbers
D andL are determined. The dependence onM is studied as the number of mesh points is doubled.5

5 To avoid complicated dependence onM due to finite size effects, the number plotted for eachM is the value averaged over the results with
M − 2, M − 1, M, M + 1, M + 2 mesh points, as discussed above.
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Fig. 8. Log–log plot of the mesh number(M) dependence of the(L), (D) and(T ): (a) the length of the graph(L), (b) the discontinuous points
(D) and (c) the transient length(T ). The largest mesh size is 128 000. The length and discontinuous points are defined in the text, while the
transient is measured as the time steps before an initial function is attracted to a fixed point for a given mesh. Four examples from the four phases
are given, withr = 3.90, ε = 0.60(×); r = 3.90, ε = 0.76 (+); r = 3.90, ε = 0.80(∗); andr = 3.90, ε = 0.96(h). For (c),ε = 0.90 is
adopted for the plot with (h) instead of 0.96.

Fig. 9. Phase diagram of our functional map with the initial logistic maprx(1 − x). The phases (S), (FS), (F) and (R) are classified according
to the behavior ofL, D andT . The pointε = 1.0, r = 3.57 corresponds to the onset of chaos of the logistic map.

The log plots of these quantities are displayed as functions of the log of the number of mesh pointsM in Fig. 8.
According to the behavior of these quantities and the previous discussion on the folding structure, the four phases
in Section 7 are characterized as follows (see Fig. 9).
• (S): Step(Fig. 5(a)).D = const,L = const asM increases. Since the folding structure does not fold the part

outside the SCS,D andL do not change as the number of mesh points increases.
• (FS):Folded step(Fig. 5(b)).D ∝ Mα, L ∝ Mα′

(α, α′ < 1) for M < Mmax, while they approach constants
for largerM. The functionfn(x) undergoes a stretching and folding process under the iteration, until the folding
structure converges. This folding process leads to a successively finer structure, and brings about more discon-
tinuous points with the increase of mesh points. The existence ofMmax such that forM > Mmax, D = const
andL = const, is expected, because the folding structure converges. The folded region existing outside the SCS
intervals is localized in a narrow interval ofx, and the number of mesh points (Mmax) necessary to observe the
convergence is huge. Thus in Fig. 8(a) and (b),D andL increase with the number of mesh points, but we believe
that the increase stops with a further increase of mesh points. In this region, only a finite number of such folding
structures exists, and these regions are separated from other fixed points with a step function.
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Fig. 10. Bifurcation diagram. Values of limiting forms off (x′) for all x′ (i.e., the values of all fixed points off∞(x)) are plotted versusr with
fixedε for all x′. The valuesf (x′) for all x′ are overlaid after the function converges under the iteration of the functional map. (Thus, each point
gives a value of a fixed point.) (a)ε = 0.7, (b)ε = 0.8, (c)ε = 0.9. Bifurcation collapse occurs at the parameter value where the points start to
scatter. This gives the onset of phase (F).

• (F): Fractal (Fig. 5(c))6 . D ∝ M1, L ∝ Mβ (β < 1). The function has flat pieces and folded areas, where
the folding structure folds itself in each SCS. The number of type-I fixed points (thus possible values offn(x))
increases with iteration. Because of the folding of folding structure itself, there are some discontinuous points in
any neighborhood of a pointx in an SCS with the bifurcation collapse (Fig. 10 ). Thus,D ∝ M1 follows.

• (R): Random(Fig. 5(d)).D ∝ M1, L ∝ M1. Flat pieces in the function vanish, and they are replaced by folded
regions. In this area there are discontinuous points around any infinitesimal neighborhood ofx. Now, the statistical
behavior ofD andL is identical to that of a function with random values at each mesh point.
Of course, the number of type-I fixed points (possible values off (x)) is a basic quantity. This number does

not increase with the mesh numberM for (S) and (FS) phases, while it increases withM for (F) and (R) phases.
Roughly speaking, the increase is proportional toM, although there is a large variation around this, possibly due to
some number theoretic complication.

In addition to the characteristics of limiting functions limn→∞fn(x), we also study the transient process. In Fig.
8(c), the length of the transient(T ) before the function reaches a fixed point is plotted. The transient length stays
very small in (S) and (FS) phases. On the other hand, the length increases in proportion toMδ in (F) and (R) phases.
The exponentδ increases withr in the (F) phase, and it is approximately 1/2 in the (R) phase.

This divergence of the transient length implies that the function does not converge to a fixed point function in the
limit of infinite precision. The process in which a finer folding structure is formed continues forever. Note, however,
that our numerical results with a finite mesh can capture the behavior of the function. Even though the function does
not converge in the infinite precision limit, the dynamical change at a fine scale does not affect the larger structure.
As time increases, the change in the value offn(x) becomes smaller and smaller. Hence, the classification offn(x)

obtained with a finite-mesh simulation is valid.
Note that the phase diagram (in Fig. 9) plotted with the above characteristics agrees with that obtained earlier

using the bifurcation collapse (Fig. 11) and folding characteristics (see Fig. 15 for a summary). The phase transition
is also characterized by other ‘order parameters’. In Fig. 12, the quantity

∫
dx f∞(x) and the number of type-I fixed

points (the number of possible states) are plotted. From these figures, we can see the bifurcation of the phases as
the parameter value is changed.

6 A linear functional equation leading to a fractal function is discussed in terms of Weierstrass and Takagi functions (see [20]), while a nonlinear
functional equation (with the termf 2(x) rather thanf ◦ f (x)) has been discussed in [21,22] in relation with a fractal torus.
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Fig. 11. The functionf5(x) is plotted for (a)r = 3.80,ε = 0.90 and (b)r = 3.83,ε = 0.90. They correspond to parameter values before and
after the collapse of the lower bifurcation branch. In (a), there remain two self-contained sections indicated by the squares. In (b) the SCS at the
lower value is collapsed, while the upper SCS remains.

Fig. 12. The parameterr dependence of some characteristics. (a) The quantity
∫

dx f (x) versusr with fixed ε. (b) The number of type-I fixed
points versusr with fixed ε, with mesh size 4096. As mentioned, there are effects introduced by the finite size of the mesh: addition of pseudo
type-I fixed points near a tangent bifurcation, and missing type-I fixed points with a large slope in the random phase. To remove the former
effect, we count a series of three type-I fixed points (x = (i − 1)/M, i/M, and(i + 1)/M) as one fixed point.

The value
∫

dx f∞(x) is governed by a dominant step structure for smallr. At the first and second bifurcation
points, there are cusps in the integral. After the first bifurcation collapse, the integral does not change smoothly as
a function of the parameterr. Rather, it begins to exhibit sensitive dependence onr. At the last bifurcation leading
to the (R) phase, there is a large jump in the integral due to the collapse of the SCS.

Such bifurcation structure is also seen in the change of the number of type-I fixed points, plotted in Fig. 12(b)
(for M = 4096). The number remains small (three or fewer) up to the second bifurcation. At the second bifurcation
leading to (FS), it starts to increase slightly. After the first bifurcation collapse, the number jumps to a much larger
value.

In the present and last two sections we have discussed the function dynamics for the caseε 6= 1, starting from
a single-humped map. Forε = 1, our dynamics is nothing but normal iteration of the logistic map. In this case,
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‘bifurcation collapses’ occur at the same parameter. The functionfn(x) exhibits fixed, periodic and chaotic behavior,
as in the bifurcation of the logistic map. (In a finite-mesh computation, the number of type-I fixed points is much
larger than the caseε < 1, while periodic points are also frequently observed there.)

9. Periodic attractor

To this point, we have focused on the fixed point solutions in the caseε 6= 1. Although they are not so common,
periodic points offn(x) are also observed in the casef0(x) = rx(1− x). In fact, it is often the case that a function
with multiple humps evolves into a function possessing periodic points. Even in such case, the functionf (x) is
a fixed point for most points, and only at a few pointsx′, fn(x

′) changes periodically. Here we study how such
periodic points are constructed in the case that they depend on a finite number of type-II fixed points.7

The mechanism allowing for a periodic cycle forε 6= 1 is different from that for the case withε = 1, discussed
in Section 4. Here, we focus on the caseε 6= 1. Periodic attractors for a particularx′ with an arbitrary period are
constructed as follows. We note that as far as we have examined extensively, a periodic point moves successively
on type-II fixed points.

For example, let us design a period-2 solution withf2n(x
′) (feven(x

′)), f2n+1(x
′) (fodd(x

′)) andfm+2(x
′) =

fm(x′). Our purpose is to arrange the fixed points so thatfn(x
′) is mapped to two different fixed points by each

step. If fn(x
′) is mapped to a type-I fixed point,fn(x

′) becomes a type-II fixed point. Here, we treat such a
case thatx′ is mapped to a type-II fixed point. In this case, to have period-2 solution offn(x

′), two type-I fixed
points and two type-II fixed points must be chosen. We denote type-I fixed points asa1 (f (a1) = a1) anda2

(f (a2) = a2) and the correspondent type-II fixed points asa′
1 (f (a′

1) = a1) anda′
2 (f (a′

2) = a2). Now we consider
the situation shown in Fig. 13(a), where it is assumedfeven(x

′) = a′
1 andfodd(x

′) = a′
2. The condition for period-2 is

given by

fodd(x
′) = (1 − ε)feven(x

′) + εf ◦ feven(x
′), feven(x

′) = (1 − ε)fodd(x
′) + εf ◦ fodd(x

′), (7)

which is written as

a′
2 = (1 − ε)a′

1 + εa1, a′
1 = (1 − ε)a′

2 + εa2. (8)

From this equation,a1, a2 are determined bya′
1, a′

2 (or vice versa) as

(
a′

1
a′

2

)
= ε

1 − (1 − ε)2

(
(1 − ε) 1

1 (1 − ε)

) (
a1

a2

)
. (9)

If this condition is satisfied fora1, a2, a′
1 anda′

2, fn(x
′) = fn+2(x

′).
A function of an arbitrary period is constructed in the same way as one of period 2. To construct a solution

of periodN , we introduceN type-I fixed points denoted byai(i = 1, 2, . . . , N) andN corresponding type-II
fixed points denoted bya′

i (i = 1, 2, . . . , N) with fn(a
′
i ) = ai(i = 1, 2, . . . , N). Forfn(x

′) to change the values
a′
i (i = 1, 2, · · · , N) cyclically, the fixed points have to satisfy the condition

7 When there are an infinite number of type-II fixed points, the function dynamics can generate some dynamic rule, as exists in the systems
mentioned in the context of the third and fourth problems in Section 1. These dynamics have more variety, including chaos, or ‘meta-chaos’,
as will be reported in a subsequent paper [15]. ‘Meta-chaos’ consists of dynamics in which the evolution rule itself changes chaotically. These
dynamics have stronger orbital instability than chaos, in the sense exp(n2) or faster with timen.
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Fig. 13. Periodic structures. (a) and (b) are schematic representations to show how at a given pointx = x′ (a) orx = x′′ (b) shows a period-2
motion. In the representation,ai is a type-I fixed point, whilea′

i is a type-II fixed point mapped to it. The value offn(x
′) changes with period 2,

wherex′ is mapped toa′
i . In (b), the hierarchical configuration of periodic structure is shown, wherefn(x

′′) changes with period 2, mapping to
the periodic pointsx′

i . (c) An example off0(x) giving a period-3 cycle. By starting from a function given by solid line,a1 = 1 anda2, a3 = 0
are type-I fixed points, anda′

1, a
′
2, a

′
3 are type-II fixed points mapped toa1, a2, a3, respectively. Then, the function valuesfn(x) in our model

at small black points are mapped with period 3 asa′
1, a′

2 anda′
3, successively. As an example, the period 3 behavior is indicated by the white

points and the arrows. (d) A return map with startingf0(x) as (c) for all (fn(x
′), fn+1(x

′)) (n =1000–1010) withM = 8000. All fn(x
′) fall to

a fixed point or a period-3 attractor. In general, a map withk humps has the possibility to formk-periodic points.




a′
1

a′
2

...

a′
N


 = ε

1 − (1 − ε)N




(1 − ε)N−1 (1 − ε)N−2 (1 − ε)N−3 . . . 1
1 (1 − ε)N−1 (1 − ε)N−2 . . . (1 − ε)
...

...
...

. . .
...

(1 − ε)N−2 (1 − ε)N−3 (1 − ε)N−4 . . . (1 − ε)N−1







a1

a2
...

aN


 , (10)

which is obtained in the same way as in the period-2 case.
If an initial function is continuous and has the type-I and II fixed pointsai anda′

i for i = 1, . . . , N , there are
some pointsfn(x

′) which are periodN . An example of the shape of such af0(x) is displayed in Fig. 13(c) for the
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caseN = 3. The map has period-3 points plotted with small black points. If allaj except one are 0, the function
of periodN hasN hills andN valleys. Indeed, anN -humped initial function has the potential to possess period-N

points.8

We have carried out simulations starting from an initial function with many humps. As expected, the limiting
function consists of type-I and type-II fixed points, that form a step, folded step, fractal, and random phases,
depending onε and the height of the humps. Within these structures, periodic points are embedded. For several
values ofx′, the functionfn(x

′) falls on the same periodic cycle mapping the same type-II fixed points. In Fig.
13(d), the return map starting from Fig. 13(c) for all(fn(x

′), fn+1(x
′)) is displayed (n =1000–1010). This return

map was produced given by a computer simulation withM = 8000. All fn(x
′) fall onto a fixed point or onto a

period-3 attractor, andfn(x) is a period-3 function as a whole.
The values of the period-3 functionfn(x

′) for several pointsx′ often oscillate synchronously with the same phase.
Beforefn(x) falls onto a periodic point, the function often takes the samefn(x) value for several values ofx. Later,
the functionfn(x) is mapped to type-II fixed points, and starts to form a cycle. In this case, allfn(x) for thesex′

values oscillate synchronously.
Hierarchical organization of periodic points is also possible. Noting that for ak-periodic pointfn(x

′) takes the
same value everyk steps, we can construct a new periodic point by utilizing other periodic points. First, we select
one period-k point. If another pointfn(x

′′) is mapped to this point afterk steps, thek-periodicfn(x
′) acts as a fixed

point for fn(x
′′), and a consistent hierarchical equation can be constructed. For this, we have to prepare period-k

pointsx′
1, . . . , x′

k that are used to make a new period-k point, where eachk-periodic point acts as a fixed point for
x′′ perk steps. Thus, the required number ofk-periodic points to make a new one isk. If each period-k point acts as
a fixed point forfn(x

′′), fn(x
′′) will also have periodk. Thus, we can obtain a hierarchical periodic pointfn(x

′′)
depending on other periodic points.9

For example, we select two period-2 points (see schematic configuration Fig. 13(b)). Two period-2 points,
fn(x

′
1) andfn(x

′
2) are mapped to type-II fixed points asfeven(x

′
1) = a′

11, fodd(x
′
1) = a′

12, andfeven(x
′
2) = a′

21,
fodd(x

′
2) = a′

22, respectively. Iffn(x
′′) = x′

1 for evenn andfn(x
′′) = x′

2 for oddn, fn(x
′′) is mapped toa11 and

a22 alternatively. This condition is given by

fodd(x
′′) = (1 − ε)feven(x

′′) + εa′
11, feven(x

′′) = (1 − ε)fodd(x
′′) + εa′

22. (11)

The above equation has the same form as Eq. (9). Ifa11, . . . , a22 anda′
11, . . . , a′

22 support two period-2 points and
x′

1, x
′
2, a

′
11 anda′

22 satisfy the above condition,fn(x
′′) evolves by period-2.

In the same way period-k points which depend onk period-k points can be constructed. Also, hierarchical
construction for the next level periodic function can be carried out in the same manner.

In the fractal and random phases, the evolution leads to infinite type-I fixed points. In the present paper, how-
ever, we have discussed only the construction of periodic solutions using a finite number of type-I and type-II
fixed points. If there is a continuous interval consisting entirely of type-II or type-I fixed points, the evolution
of the function itself starts to be governed by some mapping generated by this interval of fixed points. Then,
quasi-periodic, chaotic, and ‘meta-chaotic’ evolutions of function are possible, as will be discussed in a subsequent
paper [15].

8 Even by starting from a single-humped initial function, a function with two humps can be formed at the next step ifε is not small. Hence, an
initial single-humped function also has potential to form periodic points, and in fact we have observed a few such cases in simulations.

9 Since periodic points discussed earlier are mapped to type-II fixed points, they may be regarded as type-III. In this hierarchy, the periodic
points that are constructed here may be regarded as type-IV. Such hierarchy will be discussed in a subsequent paper in detail.
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Fig. 14. Classification of the network. Once an initial network is given, it is separated into cyclic networks and lines.

10. Summary

In the present paper, we have introduced a simple functional map to consider a dynamical system in which rules
and variables (or objects) are not distinguished at the initial time. A simple (possibly the simplest) universal model
was introduced to study such a situation as a map describing the dynamics of a function.

As a first step, we studied the case in which the dynamics are given simply byf ◦ f (x), which can be thought of
as defining the way the network (Fig. 14) is reconnected. Its elementary cyclic structures were revealed. In Section
4, we illuminated some of the basic structures of our functional map. We found that the type-I and type-II fixed
points provide the elementary core structure. A type-I fixed point is mapped to itself underf (x) (xI = f (xI)) and
forms a basis of symbolization in the abstract language space (x). A type-II fixed pointxII is mapped to a type-I
fixed point underf (x) (xI = f (xII ). The concept of an SCS was also introduced as a region in which the functional
dynamics remain confined within the region in question.

The articulation process studied here is a process in which intervals ofx are classified according to howfn(x)

converges to divided intervals consisting of type-II fixed points, while each type-I fixed point corresponds to a
symbol for each articulated object. The function as a filter articulates the continuous worldx into a set of segments
on each of whichfn(x) assumes a distinct constant value.

Starting from a monotonic function, a piecewise constant solution is reached as a fixed function. Each step consists
of a continuous set of type-II fixed points mapped to the same type-I fixed point. This step function is the simplest
example for the articulation process. In Sections 5–8, we studied the evolution from a single humped map, where the
folding of the function to itself can lead to many type-I fixed points. Depending on the degree of folding, the limiting
forms offn(x), limn→∞fn(x) are classified as step (S), folded step (FD), fractal (F) and random (R) phases. These
phases are characterized by the mesh number dependence of the number of type-I fixed points and discontinuous
points and of the length of the function defined in Section 8 (see Fig. 15).

Fig. 15. Characteristics of the four phases.
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In the step and folded step phases, as in the case for a monotonic function, our functional dynamics lead to a
partition ofx into a continuous interval [xi, xi+1] in which f (x) assumes a constant value (consti). Rigid, fixed
articulation structure is formed there. The difference in the degree of folding distinguishes the (FS) and (S) phases. In
the fractal and random phases, the function successively forms smaller and smaller articulation structures (Sections
6 and 7). In the fractal phase, successive foldings are restricted within SCS andfn(x) outside the SCS is folded
by the SCS. In the random phase, the whole interval folds itself and forms successively smaller structures. In these
two phases, finer structures are formed successively, and a fixed point function is not reached in the limit of an
infinite number of mesh points. In Section 9, we constructed periodic functions using a finite number of fixed points.
Hierarchical periodic points were also constructed by assuming new periodic pointsx′′ mapped to a higher-level
periodic pointx′ (f (x′′) = x′).

11. Discussion

Note that the type-I and type-II fixed points provide a basis to have the five requisites discussed in Section 1.
These fixed points give a core structure to the network, obtained through the iteration process. One might say, in
some sense, that with the emergence of type-I and type-II fixed points, code and encoding become separated. Such
separation is not limited to these two types of fixed points. The distinction between SCS and the points outside these
provide a separation of self-referenced units and the structure mapped to them. Summing up, the evolution of our
dynamics can capture
• core structure (prototypes) as fixed points,
• folding structure (categories) in SCS, which leads to the articulation of the network and alters the folding structure

itself,
• the points outside SCS intervals that are mapped to some SCS (entailed categorization by categories).

Note that the above described structure of our model corresponds well with the separation of cognition and
notion in language. Out of an inarticulate and time-variant network, some invariant structures are separated as a
rigid structure through iterations. This rigid structure, at the lowest level, is given by fixed points, while a set of
SCS provides such rigid structure at a higher level. The configuration of fixed points can provide a base for periodic
motion of other points, while SCS have the role of controlling the remaining, vague part. With the rigid parts, some
structures are articulated. This rigid part provides a basis to describe the web of relationships or circulation of signs.

When an initial function (a single-humped map) is given, the SCS for the function is the whole domain. Through
iterations, time-invariant parts and time-variant parts can be separated. The dynamics of variant part (that lie outside
SCS intervals) is governed by that of the function within the invariant (SCS) part, while the invariant part also is
mapped to variant parts before it forms the SCS. During the transient process to form the invariant part, the dynamics
of the invariant part may depend on variant parts also. In addition to the above roles of the variant part, it can create
some relationships between elements within it.

The functionf (x) for points x outside the SCS intervals can form some relationships through the folding
mechanism before the function is mapped into SCS. For example, synchronizationfn(x

′) = fn(x
′′) can be reached

during the transient step before the function is mapped to a rigid part. Although the rigid invariant part governs
the dynamics offn(x) later, this synchronization relationship, which is invariant later, is determined only by the
dynamics within the variant part. We may say that the invariant part is the basis to describe the circulation of signs
(the rigid part being a ‘stable element’ in the sea of relations), and that the dynamics of the variant part is determined
by the invariant part. After some iterations, the synchronization is dealt as ‘social’ redundancy by the invariant part.

In fact, within this context, the term ‘prototype’ was introduced in cognitive linguistics [10]. For example, language
is constrained by the structure of the human body. The linguistic structure (prototype and category) suitable for
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the human body (which enables one to iterate language as symbols) is the foundation for the speech act. The basic
structure of the human body is common for all humankind, and for this reason we have common linguistic structure.
This common structure is rigid (invariant) with respect to the iteration, just like the fixed point of our model. This
rigidness provides the possibility of speech act that is common in a society. Of course, if the entire articulation is
common for all individuals, there is no novelty. The prototype gives only a foundation for language and the category
can be articulated in various ways.

Although the speech act is restricted by the condition of the body, there is some redundancy in the language
network with regard to describing something. In our system, such redundancy is seen in the points lying outside the
SCS intervals, where some ‘synchronization’ is generally observed, driven identically by a prototype structure in
SCS. Such ‘synchronization’ is attained through iteration of the functional mapping within the region outside the
SCS intervals, beforef (x) is mapped tox in an SCS.

With the change of the bifurcation parameter in our model, a section is no longer an SCS when a function value
in the section starts to be mapped to outside of the section. Then, a larger network structure with mutual reference is
formed, as is seen in the collapse of bifurcation in our model. Such collapse of prototype structure is also a concern
of cognitive linguistics.

In the fractal and random phases of our model, successively smaller core structures are formed through the folding
process. Novel core structures can be formed ceaselessly in principle. In these phases, the network exhibits a variety
of articulation structures, which have sensitive dependence on the initial network. This diversity in the network is
a consequence of our model, where, in contrast to typical artificial intelligence studies, rules and objects are not
separated in the beginning, and a table between the two is not given in advance.

It should be noted that the above described structure of prototype and category, as well as the capacity for novelty
and diversity, are a consequence of a dynamical system with a self-reference term and initial folding structure. Such
structure is universally observed as long as our dynamics includesf ◦ f and some folding structure, given, e.g.,
by a humped mapping. In this sense, we may hope that the present study gives a first step to understand dynamic
separation of prototype and category in language, although the model may be abstract and metaphorical at the
present stage.

As mentioned in Section 1, such separation is not limited to language, but is often seen in biology, e.g., in the
separation of function between DNA and protein. Since self-replication processes in life require a self-referential
structure,10 the present study may give some insight into biological organization [26].

With folding structure, a function does not always reach a fixed point for allx values. In Section 9, we explicitly
demonstrated the existence of periodic motion of a function value by choosing an initial function suitably. The
value is mapped to several type-II fixed points periodically. The connection defined byx → f (x) dynamically
moves over articulated type-II fixed points that are mapped to a ‘core symbol’ (type-I fixed point). Hence, a dynamic
syntax is formed in a hierarchy of periodic points. In Section 9, periodic points mapped to such periodic points are
also constructed. Thus, rules over rules can be formed in our model. As mentioned in Section 1, organization of
a meta-rule is important in biological problems, including development, cognition, and language. In a subsequent
paper we will report on how a rule of a one-dimensional map is formed within our functional dynamics, which
allows for periodic, quasi-periodic, chaotic dynamics. There it will be shown explicitly that a rule to change a
one-dimensional map itself can be embedded in our functional equation, which allows for ‘meta-chaotic’ dynamics,
where the rule itself changes chaotically, and the orbital instability is stronger than exponential in time. With these
dynamical structures, modalities of rule, meta-rule, meta–meta rule, etc., will be formed successively.

In this article, we have studied the case with only one functionfn(x). In other words, there is only one self-feedback
process for one agent. This use of a single function is, of course, not sufficient to discuss ‘social’ aspects of language.

10 For example, the action of DNA is applied to itself in replication.
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For this, functional dynamics with multiple functionsf i
n(x) (with the termf i

n ◦ f
j
n (x)) should be considered to see

the articulation and rule-generation process in a society of agents [23]. Note that the results in the present paper are
for a special case when the functions agree (f i

n(x) = f
j
n (x)) through iterations. Indeed, we have often observed such

agreement in some preliminary simulations of the multiple functional dynamics case, where the present argument
is valid.

Of course, some other extensions should be considered in the future, including the use of a space of higher-dimension
than the one-dimensional space used here, ‘sequential dynamics’ instead of ‘parallel dynamics’ applied tox, the
addition of noise to smoothf (x), and so forth. Indeed, some preliminary studies suggest that the basic structures
presented in this paper are valid for these extensions.

Finally, it should be mentioned that self-reference structure is mathematically studied as domain theory [24–26],
where consistent and non-trivial sets includingf ◦ f are constructed. Although there may be some relationship
between our fixed-point functions and domain theory (and the establishment of such a relationship will be an
important future study), the dynamics in the present approach are missing in domain theory. A bridge between
dynamical systems theory and domain theory may be required to construct a mathematical foundation of our
functional dynamics, in addition to the construction of a suitable functional space to support our function.
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Appendix A

In this appendix we investigate the Eq. (4) with a ‘discrete mesh’ (see Section 4). A simple network which
consists of elements arranged cyclically was introduced in Section 4. In general, an initial network is given as
f0(i) = j (i, j = 0, . . . , M −1). In this equation, the functional map changes only the connection from the element
f (i) to the element to which the mapped elementf (i) is mapped, i.e.,fn ◦ fn(i). Here we study the dynamics of
such a connection changing among a finite number of elements.

A fixed point is classified as either type-I or II, as mentioned in Section 3. The valuef (i) for these fixed points
remains unchanged through the iteration.

When an initial function (i.e., the connection in the graph) is given, the graph is separated into two parts (see Fig.
14):

(i) a cyclic network which consists ofM-elements (ifM = 1, it is type-I fixed point),
(ii) a line defined as anN -length line which does not belong to (i) but connects to either (i) or another (ii) line.
The initial network is represented by a combination of these restricted graphs that are drawn in one stroke, since

the number of elements is finite and each elementi has one valuef (i). The allowed graphs are only cyclic networks
and lines. A cyclic network is a set of elements in which a bijection exists. In other words,f0(i) (i = 1, 2, . . . , M)
takes a different value for eachi in the set, and there is one elementi in the set for eachj that satisfiesf n

0 (i) = j

(n = 1, 2, . . . , M). Hence, the elements of the set are arranged in a cyclic manner. Each elementi that belongs to
this network satisfiesf M

0 (i) = i, wheref n(x) is thenth iterate of the functionf . A line consists ofN elements,
while each elementi is mapped tof0(i) = i + 1 for i = 1, 2, . . . , N as displayed in Fig. 14. The last elementN

is, byf0(N), mapped to another line or a cyclic network.
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If a given initial network possesses some lines, as is easily understood, the network has at least one line that
is mapped to a cyclic network (including a type-I fixed point). With the time evolution, lines are attracted to the
structure to which elementN mapped. Finally, each element which belongs to this line is mapped to an element
that belongs to a cyclic network (i.e.,f n(i) belongs to a cyclic network). At this stage, elements on the same line
evolve in the same way as the elements in the limiting form of the cyclic network.

Hence, to discuss the behavior of the limiting form of the network (i.e.,f n(i) with largen), we need to consider
only the evolution of theM-element cyclic network. Under the iteration of the function, the network is either
reduced to disintegrated parts or remains a cyclic network. We call the network ‘elementary’ if it is not disintegrated
into parts under the iteration of the function. A one-element cyclic network (i.e., type-I fixed point) is obviously
‘elementary’.

We can always arrange theM elements on a circle, in a cyclic manner asi, f (i), f ◦ f (i), f ◦ f ◦ f (i), . . . .
Here we call thisf0(i) a ‘cyclic network’. The evolution of a cyclic network ofm elements is shown in Fig. 1 for
M = 1, 2, . . . , 7.

We can compute the period(P (M)) for each cyclic network. In this case, each elementi connects to its left-hand
neighbor at first. After the first iteration, the connection is changed to the next nearest neighbori + 2. With the next
iteration, the connection is changed toi + 4. In this way, aftern iterations, the connection has changed toi + 2n.
Since the element is mapped to 2n (modm) neighbor at thenth step, it is convenient to introduce thean given by

an+1 = 2an (modM) (A.1)

with a0 = 1.
Whenan reachesan = 1, theM elements form a cycle of periodn. On the other hand, ifan coincides with one

of previousai(i = 1, 2, . . . , n − 1), the network is reduced to a cycle with a period that is a divisor ofM.
As seen in Section 4, a cyclic network consisting of an even number of elements is reduced to disintegrated

elementary networks, while a cyclic network consisting of an odd number of elements is elementary. By simple
calculation, periods of some particular series can be obtained, such asP(2n − 1) = n andP(2n + 1) = 2n. It is
also found that there is a functionΦ(M) such thatP(M) ≤ Φ(M) from Euler’s theorem. Here, the functionΦ(M)

(M is odd) is defined as follows. Let us first decomposeM into factors of prime numbers as
∏m

k=1p
α(i)
i , where

pi is a prime number. ThenΦ(M) is defined as the least common multiple among the valuesp
α(i)−1
i (pi − 1) for

i = 1, 2, . . . , m. Φ(M) satisfies 2Φ(M) ≡ 1(modM), but it is not necessarily the smallest integer satisfying the
condition. Hence, the above inequalityP(M) ≤ Φ(M) is obtained.

Now let us consider the evolution of a network from a general initial condition. If there are cyclic networks in the
initial graph, the elements in the cyclic networks fall onto an elementary network, and they remain in this elementary
network. The cyclic network evolves only within the elements included in the initial network (i.e.,f k(x) belongs
to the network), while the elements belonging to a line are eventually attracted to the network that the last element
of the line is mapped to.

Now it is clear how the initialf0(i) is reduced to a combination of elementary networks. With the initial function,
its configuration has been classified into (i) and (ii). The final functionfn(i) with n → ∞ is given by elementary
networks (including type-I fixed points), and the elements that are connected to them. If the elementary network is
a type-I fixed point, elements on the line connected to it form type-II fixed points.
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