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Abstract

Functional dynamics, introduced in a previous paper [Physica D 138 (2000) 225–250] is analyzed, focusing on the formation
of a hierarchical rule to determine the dynamics of the functional value. To study the periodic (or non-fixed) solution, the
functional dynamics is separated into fixed and non-fixed parts. It is shown that the fixed parts generate a one-dimensional
map by which the dynamics of the functional values of some other parts are determined. Piecewise linear maps with multiple
branches are generally created, while an arbitrary one-dimensional map can be embedded into this functional dynamics if the
initial function coincides with the identity function over a finite interval. Next, the dynamics determined by the one-dimensional
map can again generate a ‘meta-map’, which determines the dynamics of the generated map. This hierarchy of meta-rules can
continue recursively. It is also shown that the dynamics can produce ‘meta-chaos’ with an orbital instability that is stronger
than exponential. The relevance of the generated hierarchy to biological and language systems is discussed, in relation with
the formation of syntax of a network. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a previous paper [1] (to be referred as I), we introduced functional dynamics to investigate the articulation
process carried out on an initially inarticulate network. In the functional dynamics, objects and rules are not separated
in the beginning, and we study how objects and rules appear from an inarticulate network through iterations of
functions. The functional dynamics provides a simple universal model for this appearance.

In the general introduction of the paper I, we discuss five requisites for a biological system, while two of them
are explicitly studied. These are the following:

• Inseparability of rule and variable(fn ◦ fn).
• The articulation process from a continuous world.
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In I, we investigate functional dynamics defined by

fn+1 = (1 − ε)fn + εfn ◦ fn. (1)

The evolution of the functionfn has been studied withn representing the iteration step andε as a parameter. We
have shown that an articulation process is generated in this one-dimensional functional dynamics. Asfn evolves,
first, type-I fixed points satisfyingfn+1(x

I) = fn(x
I) = xI are formed, and then type-II fixed points satisfying

fn+1(x
II ) = fn(x

II ) = xI are formed [1]. The articulation process is studied as a classification process of howfn

converges to constant on distinct intervals consisting entirely of type-II fixed points. For a given valuea = fn(x),
the inverse setIn = f −1

n (a) is given as an articulated class. This means that the filter articulates the continuous
world x into some segments according to the valuefn(x). For such sets,In+1 ⊇ In holds, and the dynamics of
this system is determined completely by a set of relations among these intervals asn → ∞. This reduction of the
degrees of freedom out of a continuous world is the articulation process. This articulation is most clearly seen in the
relation between type-I and type-II fixed points. Intervals of type-II points corresponding to the same type-I fixed
points are generated from an initial continuous function.

As an articulation process, a structure independent ofn is formed by the fixed points, while the functional values
of some points change periodically in time, taking the values of different type-II fixed points successively (i.e.,
being mapped to the rigid structure constituted by fixed points). This periodic function provides an example of how
objects and rules depend on each other, based on a rigid structure unchanged under iteration.

In the present paper, we focus on a dynamical aspect of these functional dynamics, to study how rules for dynamic
change emerge through iteration of the functional mapping. With this approach, we investigate the third and forth
requisites mentioned in the general introduction of I:

• Formation of a rule to change the relation among objects.
• Formation of hierarchical rules.

From our viewpoint, objects and rules emerge from the same level in which code and encoding circulate dynam-
ically. For example, in natural language, there is a set of words and rules that forms sentences. When we assume
in the beginning that the objects and rules are already separated, the theory of language has to be based on formal
languages [4,5], since the structure of the language has to be studied without resorting to the objects. With the
separation of words and rules, one neglects the fact that the rules have to be described by using words, while the
meaning of a word has to be described by a sentence. This implies that a theory starting from a hierarchy in which
objects and rules are separated is not sufficient as a mathematical framework for natural language. Natural language
is described as an assembly of objects, rules, meta-rules, meta–meta-rules, and so forth, while this hierarchy is not
given in advance. Indeed, this process of emergence of hierarchical structure from pre-structured “something” is
a common characteristic of biological systems, as is seen, for example, in the hierarchy of cell, tissue, organism,
and so forth, starting from an assembly of chemical reactions. A mathematical formulation is required to study the
hierarchy of the successive formation of rules at successively higher levels [6,7].

By taking the same viewpoint as that in I, we study a network of input–output relationships (for example in the
language/objects) as a functional form. With the evolution of the functional dynamics, some structure is constructed
step by step. In particular, we study how a hierarchy of rules and meta-rules emerges through the iteration. Here, a
structure is formed first by the configuration of fixed points, while a rule for the dynamic change of the structure is
organized according to an ‘orbit’ of the functional dynamical system, and then a meta-rule is formed governing the
dynamic structure generated by the orbit.

This implies that once we get a rigid (fixed-point) structure, unchanged under repeated mapping, as the el-
ementary part of the dynamical network, hierarchical structure appears under some restrictions. Here, the rigid
structure and hierarchical structure correspond to the articulated objects and the operations acting on the objects,
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respectively. This separation of objects and rules emerges, since we extract the rigid structure out of the functional
dynamics.

The present paper is organized as follows. In Section 2, we explain the basic properties of the functional dynamics
again to facilitate its representation by the introduction of a ‘generated map’. With the generated map, it is shown in
Section 3.1 that a one-dimensional map is embedded in the functional dynamics. This map works as a rule governing
the change of the functional values over some intervals. In Sections 3.1 and 3.2, piecewise linear maps called the
Nagumo–Sato map and the ‘multi-branch Nagumo–Sato map’ are naturally embedded in the functional dynamics.
In Section 3.3 a larger class of one-dimensional maps is embedded into our functional map. This implies that chaotic
functional dynamics is possible in our system. By choosing a suitable initial condition, it is shown in Section 4 that
the functional dynamics can form a hierarchical structure. A meta-rule for the change of the functional values is
formed which changes according to the (chaotic) dynamics generated by the one-dimensional map. The maps can
be nested recursively and generate higher level meta-maps successively. In Section 5, we discuss syntactic structure
derived from this functional dynamics, and the relevance of our results to the third and fourth requisites of biological
systems mentioned above.

2. Model

The functional map Eq. (1) has the form

fn+1 = F(fn, fn ◦ fn). (2)

Here we study some characteristics of this functional equation with a one-dimensionalfn. In connection with our
motivation for biological systems and language structure, the functionfn is considered to represent an abstraction of
the input–output relation network, whilefn ◦fn provides a self-referential term. Since we are interested in modeling
the situation in which code and encoding are not separated,fn represents a projection from a set into itself.

First, we discuss two characteristic properties of this equation:

• If images ofx′ andx′′ by the functionfn have the same valuefn(x
′) = fn(x

′′) atn, the subsequent evolutions of
fm(x′) andfm(x′′) (with m > n) are identical, because dynamics are determined completely by the valuefn(x).

• Eq. (2) can be split as

fn+1(x) = gn(fn(x)), gn(x) = F(x, fn(x)). (3)

The first property above implies the ability of articulation of this system. Oncefn identifiesx′ andx′′ as the same
thing, the two points evolve in the same way. The second property provides a novel viewpoint to study this model.
With this separation, one can say that a pointfn(x

′) evolves undergn, which is determined fromfn itself. This is
a characteristic property of this functional equation. Givenfn, a mapgn is determined. The functionfn evolves
to fn+1 under the map andgn+1 is determined. In this paper, the term ‘function’ is used to representfn, while a
‘generated map’ is used in reference togn. The “value ofx′” indicatesfn(x

′) in the present paper.
If fn(x

′) is a fixed point forn at x′ (which does not mean a fixed function as a whole), the generated map of
fn(x

′) is a fixed generated map at the pointx′. To study the functional dynamics, we first study a fixed generated
mapgn(x

′) and see how other pointsx′′ evolve under this generated map (Section 3). Second, we study the case in
which gn(x

′) itself changes in time, by taking a suitable initial configuration off0. There, a hierarchical structure
(meta-map) is considered (Section 4).

For simplicity, we impose one more restriction on (2) following I. We assume that if the relationfn(x
′) is fixed,

it satisfies the relationfn(x
′) = fn ◦ fn(x

′). This condition implies that the change offn(x
′) vanishes when the
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self-reference of a function agrees with the function itself. One of the simplest models of this type is (1), obtained
by choosing the form

F(x, y) = (1 − ε)x + εy (4)

with 0 < ε < 1. (The case with a general form forF(x, y) is briefly discussed in Appendix A and will be discussed
in a future paper.)

For the type of model we study, the dynamics relax toward the self-consistent relationf (x′) = f ◦ f (x′). For
the remainder part of this paper, we focus on the functional dynamics (1). In this case, the generated map is given
by gn(x) = (1 − ε)x + εfn(x).

Now we obtain two useful properties:

• A valuefn(x
′) which satisfies the conditionfn(x

′) = fn ◦fn(x
′) is a fixed point forn, i.e.,fn+1(x

′) = fn(x
′) ≡

f (x′). Here we denote fixed function byf instead offn, and fixed point forn by f (x′) without the suffixn.
• There is a transformationT (R → R) which satisfies the conditionF(T (x), T (y)) = T ◦ F(x, y). (The explicit

form of T is discussed below.)

Here, all the pointsxI which satisfyf (xI) = xI are fixed points forn of the functional equation (1). Since all
pointsx with an identical valuef (x) evolve identically, all the pointsxII that satisfyf (xII ) = xI are again fixed
points forn. For convenience, we have classified (see I) these fixed points as follows:

• xI is a type-I fixed point withf (xI) = xI . We denote the set{xI} by I1.
• xII is a type-II fixed point withf (xII ) ∈ I1, and satisfyingxII /∈ I1. We denote the set{xII } by I2.

A type-I fixed point is a point at which the graph offn intersects the identity function. This ‘type’ is extended to
arbitrary type-N . We define a type-N point as a point which satisfies the conditionfn(x

N) ∈ IN−1,xN ∈ I \∪N−1
i=1 I i ,

after the transient in the functional dynamics has died away. HerexN represents a type-N point andIN represents a
set of type-N points{xN } (type-N interval).1 Although type-I and type-II points are fixed points, type-N (N > 2)
points cannot be fixed points. In fact, ifx is a fixed point andy = f (x), the fixed point condition is writteny = f (y),
which meansy is a type-I fixed point andx is a type-I or type-II fixed point. For convenience, we call a partial
function defined on a set of type-N points (fn|IN ≡ {fn(x)|x ∈ IN }) a type-N function.

In I, we introduced the concept of a ‘self-contained section’ (SCS), which is defined as a connected intervalI

such thatfn(I ) ⊂ I , while no connected intervalJ ⊂ I satisfiesfn(J ) ⊂ J , andfn(I + δ) ⊂ I + δ for arbitrary
smallδ, either. Here, we extend this definition to introduce the ‘closed section’ (CS) and ‘closed generated map’
(CGM). A CS is defined as a setI such thatfn(I ) ⊂ I (whereI is not necessarily connected), while a CGM is
defined as a part of a generated mapgn|J such thatgn(J ) ⊂ J (whereJ is not necessarily connected). In Eq. (1), if
f0(I ) ⊂ I , thenfn(x) ∈ I for all n, andI is a CS. If a CSI is connected, the partial generated mapgn|I becomes
CGM.

Now let us return to the transformationT . From Eq. (4), it is straightforward thatF(T (x), T (y)) = T ◦ F(x, y)

is satisfied by choosing the linear transformation

T (x) = ax+ b. (5)

In fact, Eq. (1) assumes the form of an operation of taking a weighted average offn(x
′) andfn ◦ fn(x

′). Thus, the
functional dynamics are invariant under a scaling transformation in whichx andy = f (x) are multiplied by the
same factor and shifted by the same value.

1 Note that a type of a point is defined at each time stepn.
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The above invarianceF(T (x), T (y)) = T ◦ F(x, y) means thatT andF commute. Under this transformation, a
connected CS(x1, x2) is shifted to(ax1 + b, ax2 + b) giving a new CS. The above invariance will be used to embed
a one-dimensional map into this functional dynamics in Section 3 and to construct a meta-map in Section 4.

3. One-dimensional map in functional dynamics

3.1. General properties

In I, we found that the functionfn does not converge to a fixed function asn → ∞ for some initial functions.
For example, for the initial functionf0(x) = rx(1 − x), fn does not converge to a fixed function for some range
of parameterr referred to as the R (random) phase in I, where the number of discontinuous points offn and the
length offn increases in proportion toM, the number of mesh points adopted for the numerical calculation.

Recalling that thefn for largen looks almost random in the R phase, we have also computedfn from Eq. (1)
using random initial conditions, as an extreme case. For such initial conditions, we divide the interval [0, 1] into
M intervals as([i/(M − 1), (i + 1)/(M − 1)]) and choose the value offn(i) ∈ [0, 1] randomly. An example of
f∞(x) for an intervalx and the return map(fn(x), fn+1(x)) for the interval are displayed in Fig. 1. Here,fn(x)

mainly consists of many flat intervals with the same value, while for some pointsx′, fn(x
′) changes periodically in

time. As plotted by the return map, it is found that the periodic dynamics obey a certain rule. As shown in the inset
of Fig. 1(b), a clear piecewise linear structure is visible in the return map. In this section, we study how this type
of return maps is generated (Section 3.2) and investigate the class of maps that can appear with these functional
dynamics (Section 3.3).

A fixed generated map can be constructed from type-I and type-II fixed points. This fixed generated map acts as a
one-dimensional mapgn|I1∪I2. To extract the temporal change of otherx points, it is useful to think of the intervalI

as the union of three parts:I = Imap∪Idriven∪Irest. 2 Here,Imapis a set such thatfn|Imap is a fixed function,Idriven is
a set such thatf |Idriven ⊂ ImapandIrest is the rest:Irest = I \ {Imap∪ Idriven}. The fixed functionf |Imap determines a
fixed generated mapg|Imap which determines the time evolutionfn|Idriven → fn+1|Idriven(fn+1|Idriven = g(fn|Idriven)).

First, we assume there exists only one type-I fixed pointxI(f (xI) = xI) and one type-II fixed pointxII and
thatf (xII ) = xI . The generated map atx = xII is g(xII ) = (1 − ε)xII + εxI , which can be rewritten asg(x) =
(1 − ε)(x − xI) + xI by insertingx = xII .

Next, we assume that there is an intervalImapconsisting entirely of a single type-I fixed point and corresponding
type-II fixed points, which satisfyf (x′′) = xI for x′′ ∈ Imap. Assuming the existence of such an interval, the
generated map is given byg(x) = (1 − ε)(x − xI) + xI for this interval(x ∈ Imap). The graph ofg|Imap is a line
with a slope 1− ε that intersects the type-I fixed point. This line that is used as generated map is determined by the
configuration of type-II fixed points. If the intervalImapis connected forx ∈ Idriven all fn(x) evolve tof∞(x) = xI .

Now consider the more general case in which an intervalImapconsisting of several type-I fixed points and several
subintervals of type-II points that are mapped to one of the type-I fixed points. In this case, the generated map
is determined by the arrangement of type-I and type-II fixed points. This map is a piecewise linear function with
slope 1− ε, which intersects the type-I fixed points (see Fig. 2). Here, we consider the following two cases for the
configuration of type-I fixed points:

• There exist a finite3 number of type-I fixed points (Section 3.2).
• There exist a finite number of type-I fixed intervals (Section 3.3).

2 As will be shown, the evolution offn(x
′) for x′ ∈ Idriven is determined by{g(x)} with x ∈ Imap. In this sense, we call this interval ‘driven’

by the intervalImap.
3 It is not difficult to extend the following argument to the case with a countable number of type-I fixed points.
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Fig. 1. (a) The graph of thef50 000(x) (0.4 < x < 0.5) for random initialf0 with M = 6000 andε = 0.02. It consists of type-I fixed points,
type-II fixed intervals and some periodic points. (b) A part of the return map of (a) for all(fn(x), fn+1(x)) (n = 50 000–50 050). The return
map consists of some points and lines that have slope(1 − ε) (in the inset).

A type-I fixed interval is a connected interval [a, b] on whichf (x) = x for all x ∈ [a, b]. A type-I fixed point is
the limiting case of a type-I fixed interval (i.e., in whicha = b).

In the first case, let us denote elements ofI1 by xi , wherei < j impliesxi < xj . The type-I fixed intervals are
ordered in the same way as the fixed points, asI1

0 , I1
1 , . . . , I1

m−1, wherei < j implies maxI1
i < min I1

j .
Depending on the configuration of type-I and type-II fixed points, a one-dimensional map is determined. Ifg|Imap

is a CGM,f |Idriven evolves under the one-dimensional map. In the next section, we study the case with isolated
type-I fixed points, while in Section 3.3 we discuss the case with type-I fixed intervals.

3.2. Case with finite type-I fixed points

In this section, we consider the case with finite type-I fixed points. As shown in I, the functionfn often tends
to approach a piecewise constant function, consisting of a discrete set of type-I fixed points and several intervals
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Fig. 2. An example of three type-I fixed points(x0 < x1 < x2) andf (x) for x ∈ I . The mapg(x) is represented by the dotted line.g(x)′ = (1−ε)

and is constant. Dynamics of another pointfn(x
′) ∈ I is determined byg(x).

of type-II fixed points at whichf (x) assumes the same value. Thus the existence of such type-I fixed points and
type-II intervals is common in our model ([1] and Fig. 1(a)).

Corresponding to type-I fixed pointsxi , we define sets of type-II fixed pointsI2
i to be those satisfying

f (I2
i ) = xi , whereI2

i is not necessarily connected and consists of several connected intervals in general. Sincefn is
a single-valued function, there is no intersection amongI2

i andI1. Now, the intervalI is the union ofI1, I2, Idriven

andIrest(I = I1 ∪ I2
0 ∪ I2

1 ∪ · · · ∪ I2
m−1 ∪ Idriven ∪ Irest). Following the argument in the last section, the generated

map on the intervalImap = I1 ∪ I2 has the form

g(x) =




g[0](x) = (1 − ε)(x − x0) + x0 for x ∈ I2
0 , where f (I2

0 ) = x0,

g[1](x) = (1 − ε)(x − x1) + x1 for x ∈ I2
1 , where f (I2

1 ) = x1,

...
...

...
...

g[m − 1](x) = (1 − ε)(x − xm−1) + xm−1 for x ∈ I2
m−1, where f (I2

m−1) = xm−1,

g(x) = xi for x ∈ I1,

(6)

where [i] denotes a line corresponding to the type-I fixed pointxi . Eachg[i] is referred to as an ‘i-branch’.
As discussed above, this generated map acts as the evolution rule for pointsx′ that are mapped to one of the

type-II fixed points [i.e.,fn(x
′) ∈ I2

i , or, in other words,fn+1(x
′) = g(fn(x

′)) = (1− ε)fn(x
′)+ εxi (see Fig. 2)].

The combination of some type-I fixed points and an set of type-II fixed intervals satisfying certain conditions
can give a CGM. Here we assume there existm type-I fixed points (x0 < x1 < · · · < xm−1), and the points in
the interval(x0, xm−1) are assumed to be mapped to one of the type-I fixed points. Then, according to (6), for
i = 0, 1, . . . , m − 1, g[i]|I2

i
⊂ [x0, xm−1], because ofx0 ≤ (1 − ε)x + εxi ≤ xm−1(x ∈ (x0, xm−1)). As a

total,g|I1∪I2 ⊂ I1 ∪ I2, and theg|I1∪I2 becomes a CGM. Thus, forx′ ∈ Idriven, the evolution offn(x
′) ∈ I2

i is
determined by the CGM. Thisfn(x

′) is included in a type-II fixed interval, and thusx′ can be called type-III. The
pre-imagef −1

n (I2
i ) is denoted asI3(= Idriven). Now, the intervalI can be written asI1 ∪ I2 ∪ I3 ∪ Irest. Here we

call this type of configuration of{f (x)} that determines a closed one-dimensional generated map as ‘unit-I’. The
situation is drawn schematically in Fig. 3.

For example, we assume that there are two type-I fixed points,x0 andx1(I
1 = {x0, x1}). We divide the interval

I = [x0, x1] into I1, I2
0 , I2

1 , I3 andIrest. Sincef (x) has a valuex0 or x1, in I2, g|I1∪I2 has a ‘0-branch’ and a
‘1-branch’. The mapg|I1∪I2 has the same slope(1 − ε) on I1 ∪ I2. This class of map includes the Nagumo–Sato
map [8].
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Fig. 3. The schema of the generated map. The configuration of type-I and type-II fixed points determine the map, while the evolution of the
type-III points are determined by the generated map.

The Nagumo–Sato map is given by the equation

xn+1 = kxn + w (mod 1) (7)

with 0 < k < 1 and 0< w < 1. This map has two branches with the same slopek for the interval [0, (1 − w)/k]
(the first branch) and [(1 − w)/k, 1] (the second branch) (see Fig. 4). To have these two branches, we need two
intervals of type-II fixed points. With the aid of transformation (5), the domain offn is restricted to [0, 1], where two
type-I fixed points are located at 0 and 1, without loss of generality. Our purpose here is to show that the generated
map at the type-II fixed intervals onI2

0 andI2
1 has the form of Eq. (7).

With the transformation (5), the slopek = 1− ε is conserved. Transforming (7) by multiplying byε and shifting
by 1−w alongx andy = fn(x)-directions, we can embed the Nagumo–Sato map (of the interval sizeε) into g(x).
The required condition isI2

0 = [(1− w)/(1− ε), 1+ ε − w] andI2
1 = [1 − w, (1− w)/(1− ε)] (see Fig. 4). This

mapg|[1−w,1−w+ε] becomes a CGM. Note that this situation can generally arise without choosing a very special
initial function. This is why the functional dynamics from arbitrary initial conditions often lead to a periodic cycle
governed by the Nagumo–Sato map as in Fig. 1.

An example of our simulation is displayed forε = 0.2 andw = 0.44 in Fig. 5, where the discontinuous point
(a = (1 − w)/(1 − ε)) of the Nagumo–Sato map is located at 0.7. In the simulation, the initial configuration of
fn(x) was given by

f0(x) =




1 − 2

(1 − ε)a

∣∣∣∣x − (1 − ε)a

2

∣∣∣∣ , x ∈ [0, (1 − ε)a),

1, x ∈ [(1 − ε)a, a) ∪ {1},
0, x ∈ [a, 1).

(8)

Fig. 4. An embedding of the Nagumo–Sato map. A transformation multiplyingε and moving(1 − w) along thex- andy = fn(x)-directions
embeds a map intog(x) for ε = 1 − k.
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Fig. 5. Time evolution offn. The functionfn is divided into two parts, the map area and the rest. Here, fixed intervals produce the Nagumo–Sato
map, and the dynamics offn(x) which is mapped to the square is determined by the map. Here,a = 0.7, andε = 0.2. At the square, the
generated mapg|Imap has the same properties as the mapxn+1 = 0.8xn + 0.44. (a) The graph off0 andf1 are plotted. Here,I2 andIdriven

for n = 0 are displayed.f0 is chosen as described in the text. The dynamics of the function mapped to the square region is determined by the
generated map, while the remaining part converges to a type-II fixed point. (b)f100 andf101 are plotted. All points converge to fixed or periodic
points. The periodic points are determined by the Nagumo–Sato map. Each point is period-3, and as a wholefn is a period-3 function.

With the evolution of our functional dynamics, the functionf |I2
0 ∪I2

1
determines the Nagumo–Sato map. The re-

maining part(Irest) of the interval (i.e., which is mapped according to a distorted tent map) folds by itself (see I)
and if it is mapped to a value inI2

0 or I2
1 , it subsequently evolves under the generated Nagumo–Sato map. Fig. 5(b)

shows snapshots of the functionfn(x) for n = 100, 101. The function converges to a periodic function as a whole.
The period of the cycle is derived from the generated map. The functional values of two different pointsx′ and
x ′′ having the common periodic cycle changes synchronously(fn(x

′) = fn(x
′′)), because the difference infn(x)

values decreases during the transient process beforefn(x
′) andfn(x

′′) are attracted to the periodic motion, and also
the Nagumo–Sato map has a contraction property (with slope less than 1) in each branch. Asn → ∞, the points in
the intervalI are contained in eitherI1, I2 or I3, andIrest vanishes.

In general, anfn with (at least) two type-I fixed points has a potential to possess a Nagumo–Sato map as a
generated map. To consider a general situation with multiple type-I points with several type-II intervals, we define
the ‘multi-branch Nagumo–Sato map’ by (6). In this case, the graph of theg has the same slope(1− ε) < 1 for all
x. This type of map can be generated generally from random initial conditions. In fact, in the inset in Fig. 1(b), the
graph ofg consists of several branches with the same slope 1− ε.

With the multi-branch Nagumo–Sato map, a functionfn periodic inn with an arbitrary period can exist for allε.
We denote a value of a type-III pointfn(x

′) asan. If g|Imap with a period-m attractor is given, the set of values of the
type-III point is determined as{ai |ai+1 = g(ai), i modm}. Then a new attractor with period-(m + 1) is obtained
by choosing an initial function to have two new branches properly. We can arrange branches [i] and [j ] to satisfy
the conditions thatgn[i](am−1) = am andgn[j ](am) = a0 for an arbitrary periodic orbit.4

By choosing initial functions suitably, we can have rather complex dynamics based on the multi-branch Nagumo–
Sato map. In Appendix B, the coexistence of multiple attractors is demonstrated, while it is also shown that
g|Imap can have countably infinite attractors by suitably choosing the initial conditions to generate the multi-branch
Nagumo–Sato map.

4 There is some restriction onam so thatxi andxj cannot be the same.
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In the argument above, the functiong is defined at a countable number of points ofx (i.e., the attractor of the
generated mapxn+1 = g(xn) has a measure zero basin). However, if all type-II fixed points are in a connected type-II
fixed interval, each attractor has a finite measure basin. Whenf0 is a random function, such connected intervals
are formed. In fact, a multi-branch Nagumo–Sato map is often generated from random or other initial functions.
In general, the width of each branch is not identical, and a complicated combination of branches is generated. As
shown in I, intervals of type-II fixed points form a fractal structure. Hence, branches in the generated map have an
infinite number of segments with a fractal configuration in general. Thusfn(x) can evolve with a complicated cycle
that may be of infinite period.

3.3. Case with finite type-I fixed intervals

In the cases considered to this point, the generated map in the functional dynamics (1) cannot exhibit chaotic
instability, in the sense that the slope of the map is less than 1 for almost all points. Except for a set of discontinuous
points, all generated maps have a slope 1− ε. Here we study how a generated map can have a larger class of
one-dimensional maps that allow for chaotic instability.

To study this class of functional dynamics, we extend our consideration to the case with a connected interval of
type-I fixed points, i.e., with an interval of type-I fixed points (f (x′) = x′ for all x′ ∈ I1

i ). The existence of such
an interval is exceptional in this functional map system, in the sense that it is almost impossible to produce such an
interval by the evolution (1) unless the initial function does not include such an interval. Indeed, a monotonically
increasing function converges to a step function, and a single-humped function tends to converge to a function
consisting of isolated type-I fixed points and connected intervals of type-II fixed points [1].

Although an initial function evolving into a function possessing type-I fixed intervals is rather rare in functional
space, there are some reasons to study the situation: (1) such an initial function may have some meaning in our
model (see the discussion in Section 5) and (2) choice of type-I fixed intervals is convenient to study the hierarchy
of meta-maps, to be discussed in the next section. Accordingly, we assume the existence of type-I fixed intervals.

Then, we define sets of type-II fixed points in the same way as in the last section. The type-I fixed intervals are
labeled asI1

0 , I1
2 , . . . , I1

m−1. Now, I2
i is defined as an interval wheref |I2

i
⊂ I1

i (see Fig. 6). Although in the last

Fig. 6. The closed one-dimensional map. Using two type-I fixed intervals, we can obtain a larger class of a one-dimensional map. The type-II
fixed functionf (x) is represented byf [0](x) (for x ∈ I1

0 ) andf [1](x) (for x ∈ I1
1 ). I2 is a domain of the type-II fixed functionf (x). The

generated mapg(x) is given byg[0](x) = (1 − ε)x + εf0(x) (for x ∈ I1
0 ) andg[1](x) = (1 − ε)x + εf1(x) (for x ∈ I1

1 ). We call this type
CGM a ‘unit-I’. In this figureε = 0.5.
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section, we considered the case in whichfn is a constant function over an intervalI2
i , in the present case, each

f |I2
i
(x) can have various values in the intervalI1

i . Let us writef |I2
i

asf [i]. The generated map corresponding to
the fixed functionf [i](x) has the form

g|I2
i
(x) ≡ g[i](x) = (1 − ε)(x − f [i](x)) + f [i](x), x ∈ I2

i , f [i](I2
i ) ⊂ I1

i . (9)

This functiong[i](x) is bounded both from above and below, becausef [i](x) has a possible minimum value
min I1

i = a and possible maximum value maxI1
i = b, (1 − ε)(x − a) + a ≤ g[i](x) ≤ (1 − ε)(x − b) + b

(see Fig. 6). It is natural to call this functiong[i](x) within this bounded area the ‘i-branch’, in analogy to the last
section. For each type-I fixed pointxi , the generated map is given by(1 − ε)(x − xi) + xi , althoughxi here can
change continuously.

Consider the union ofm type-I fixed intervalsI1 = I1
0 ∪ I1

2 ∪ · · · ∪ I1
m−1. If type-II fixed intervals are within an

interval(min I1, maxI1) and the conditiong|I1∪I2 ⊂ I1∪I2 is satisfied, the generated map on the intervalI1∪I2 is
a CGM (the correspondingf |I1∪I2 is unit-I). Here, in a type-II fixed interval corresponding to a type-I fixed interval,
the generated mapg(x) = (1−ε)x+εf (x) no longer has a constant slope. Rather the slopeg′(x) = (1−ε)+εf ′(x)

varies withx.
Following the argument in the last section, we start from the case with two type-I intervals. Now, we divide the

interval I into a type-I fixed intervalI1 and a type-II fixed intervalI2. Then, the intervalI1 is divided into two
parts,I1

0 andI1
1 . Without loss of generality, we can take minI1

0 = 0 and maxI1
1 = 1. The fixed partial function

consisting of type-II fixed points is determined asf [0](x) ∈ I1
0 for x ∈ I2

0 or f [1](x) ∈ I1
1 for x ∈ I2

1 . Then the
generated mapg(x) is given by

g(x) =




x, x ∈ I1,

g[0](x) = (1 − ε)x + εf [0](x), x ∈ I2
0 ,

g[1](x) = (1 − ε)x + εf [1](x), x ∈ I2
1 .

(10)

The area where the graph of the generated map can exist is denoted by the dotted area in Fig. 6. Any one-dimensional
map included within the dotted area can be embedded into our functional map by choosing the configuration of
the type-II fixed function within the shadowed area. Since any function can be embedded in the dotted area, it
is possible to have a case with|g′(x)| > 1. Indeed, we will give an explicit example satisfying|g′(x)| > 1 in
Eq. (14).

In Fig. 6, there are intervals whereg(x) ∈ I1. If the generated map exists in such a region, a point evolving as
a type-III point may be absorbed into this region and become a type-II point. Indeed, when the point is mapped
into this region,fn+1(x

′) ∈ I1 is satisfied, and the pointx′ becomes a type-II fixed point. On the other hand, if
g(x) ∈ I2, a type-III point remains a type-III during the entire evolution, and it never becomes a type-II fixed
point.

Is there some restriction on the possible form of a generated map allowed by the present functional dynamics?
As discussed in Appendix C, there is some restriction according to the present embedding of the generated map.
However, as is also discussed in that appendix, an arbitrary one-dimensional map can be embedded as a generated
map by considering a two-step iteration, i.e., as a map to determinefn+2(x) from fn(x).

4. Meta-map in functional dynamics

In Section 3, we have shown how a one-dimensional generated map is formed by a suitable configuration of
type-I and type-II fixed points. In the example, the one-dimensional map is explicitly constructed with the condition
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gI1∪I2 ⊂ I1 ∪ I2. We call the partial functionf |I1∪I2 ≡ f |U1 a ‘unit-I’. In this case the generated mapgn|I1∪I2 is
fixed in time. However, the CGM condition(gn(J ) ⊂ J ) does not necessarily impose the condition for the ‘unit-I’.
Then,gn|J is not necessarily a fixed function. In this section, we consider such case in which a generated map
changes dynamically in time.

In the situation discussed in Section 3, in order for there to exists a generated map to determine the dynamics
of the type-III points, it is essential that the map stays within a bounded area. The type-I fixed intervals determine
where type-II fixed points can exist, from which the type-II fixed function never leaves. The configuration of type-I
and type-II fixed points determines bounded areas in which the generated map remains as a branch. The type-II
fixed function determines a generated map within the bounded areas (see Fig. 6).

In the last section, we considered the situation in which the dynamics of the type-III point determined byg|I1∪I2

evolves within the intervalI1 ∪ I2, according to the type-II and corresponding type-I fixed points. This process can
be extended hierarchically. In this section, we consider a unit-I instead of a type-I fixed interval and a type-III point
instead of a type-II point, to see the dynamics offn(x) determined by the type-III point.

The unit-I (f |U1) determines an interval where type-II and type-III points can exist. The domain of the partial
functionf |U1 is I1 ∪ I2. Thus,fn|I2∪I3 ⊂ U1 consists entirely of type-II fixed points and type-III points. Here,
the dynamics of the type-III points are determined by a CGM, and their motion is confined within this region.
Thus, we replace the type-I fixed interval with unit-I by the transformation (5) (see Fig. 10(a) and (b)). In case
considered in the last section, the configuration of type-I fixed intervals determines where the branches exist. Here,
the arrangement of unit-I determines where the branches of the generated map exist.

First, we elucidate the branch structure determined by a unit-I (see Fig. 7). These branches are derived from type-I
and type-II points. As noted at the branch derived from a type-I point, a one-dimensional map is given according to
the configuration of the type-II fixed function. In the same way, at a branch derived from type-II points, a bounded
mapgn(x) exists according to the configuration of the type-III function. Sincefn|I3, consisting of the type-III

Fig. 7. The hierarchical arrangement of a ‘meta-map’. The shaded area is a region where type-III points can exist and the dotted branch indicates
a region where the generated map derived from type-III points can exist. A generated map inI3 has ann-dependence(gn|I3).
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Fig. 8. (a) Another close up of the return map of Fig. 1(a). At the pointsx′ indicated by arrows,gn(x
′) has two values. (b) Time evolution of

fn(x
′) for 10 000< n < 10 300, which is determined by the meta-map and has a period 111. The functionfn(x

′) is a type-IV point at the steps
n plotted with squares, while it is type-III otherwise.

points, depends onn, the generated map,gn(x) = (1 − ε)x + εfn(x), also depends onn:

f |I1∪I2(x), f (x) ∈ I1,

g|I1∪I2(x) = (1 − ε)x + εf (x),

fn|I3(x) = g(fn−1(x)), fn(x) ∈ I2,

gn|I3(x) = (1 − ε)x + εfn(x). (11)

Here,gn(x) is determined from the type-III function and change with time stepn. The pointfn(x
′) ∈ I3 evolves

according togn(x)(fn+1(x
′) = gn(fn(x

′))). Sincegn(x) is not a fixed function, it represents a change of rules.
Accordingly, we call this type of map a ‘meta-map’. By using these branches, we can construct a new CGM
consisting ofg(x) andgn(x). The type of pointx, which evolves under the CGM can change in time. The interval
I can be writtenI1 ∪ I2 ∪ I3

n ∪ I4
n ∪ Irest. Now, I3 andI4 have the suffixn.

When the dynamics of type-III points are periodic, determined by a (multi-branch) Nagumo–Sato map, the
dynamics of a type-IV point determined by the type-III points is also periodic. Indeed, this hierarchical structure is
often formed starting from a random initial function, since a generated map of the Nagumo–Sato type is commonly
formed as mentioned in Section 3. In Fig. 8(a), an example of a meta-map (return map) is plotted. These data were
obtained with a numerical simulation starting from a random initial function (see Section 3.1)f0. For the points
indicated by arrows, the return map has two values. Hence the dynamics of the points are not determined by a fixed
generated map, but by a time-dependent generated map. In this case, the ‘type’ of a pointx′ is no longer fixed, but
can change between type-IV and type-III, depending on the intervals in whichfn(x

′) is located, asn changes. The
evolution of the ‘type’ of a particularx′ is plotted in Fig. 8(b).

A simple example of the ‘type’ change is displayed in Fig. 9. Here, fixed points in the right-hand part determine
g|I2, which determines the dynamics of type-III points with period-2. The type-III points determine a time-dependent
map that switches betweengodd|I3 andgeven|I3. The fixed points on the left-hand side determineg[0](x), which
determines the dynamics of the type-III points. Here, the fixed map consisting ofg[0](x) andgeven|I3 generates a
period-2 orbit. If the evolution of thefn(x

′) is determined bygeven|I3 at evenn andg[0](x) at oddn, fn(x
′) changes
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Fig. 9. One of the simplest configurations for ‘type’ change. Type-I fixed pointsx1, x2 and two type-II points determine a period-2 map (as
in the upper-right square). A period-2 motion driven by the generated map determines a period-2 branch ofgn(x). Then,g[0](x) andgeven(x)

produce a period-2 orbit (as in the lower left square). If the evolution of a pointf (x′) is determined byg[0](x) (or geven(x)), f (x′) is a type-III
point (or type-IV point, respectively). The sequence of the ‘type’ off (x′) is III, IV, III, IV, III, . . . .

cyclically with period-2 as

feven(x
′) = g[0](fodd(x

′)), fodd(x
′) = geven(feven(x

′)), (12)

and the ‘type’ of the pointx′ also changes cyclically with period-2 as III, IV, III, IV,. . . . On the other hand, if the
evolution offn(x

′) is determined bygeven(x) at oddn or g[0](x) at evenn, fn(x
′) is a type-II fixed point.

When a type-III point possesses a chaotic orbit, as given in Section 3.3, the nature of the functional dynamics
determined by this type-III point is more interesting. Let us study the case with a chaotic generated map by
constructing an example. By choosing a suitable initial function, one can embed a one-dimensional map to construct
a meta-map explicitly. For example, we adopt the following one-dimensional map to be embedded:

xn+1 = 2(1 − ε)xn + ε (mod 1). (13)

This map has chaotic orbits forε < 1
2. Indeed, the initial functionf0,

f0(x) =




x, x ∈ [0, 1
2(1 − ε)], [ 1

2(1 + ε), 1.0],

1 − ε

ε
x + 3ε − 1

2ε
, x ∈ (1

2(1 − ε), 1
2],

1 − ε

ε
x − 1 − ε

2ε
, x ∈ (1

2, 1
2(1 + ε)),

(14)

determines this map. In Fig. 10(a), the graph of thef0 is plotted forε = 1
3. The dotted line represents the graph of

theg0 that has exactly the formxn+1 = 2(1 − ε)xn + ε.
To construct a meta-map, we replace the type-I fixed interval in Fig. 10(b) with thisf0 (unit-I) by the transformation

(5). With this nested structure, there are intervals where a type-III function exists, and the function determines an
n-dependentgn(x) (CGM). This CGM acts as the map for a point that satisfiesfn(x

′) ∈ I1 ∪ I2 ∪ I3. For this
configuration, the dynamics of a part of a CGM are determined by type-III points. In this case, a point which satisfies
fn(x

′) ⊂ I3 behaves as a type-IV point under the iteration.
In Fig. 11(a)–(e), the evolutions offn|∪3

i=1I
i and the meta-map are plotted, where the mapgn|∪3

i=1I
i is plotted

as a dotted line. Type-III points evolve according tofn+1(x
′) = 2(1 − ε)fn(x

′) + ε. In the present example, the
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Fig. 10. (a) A configuration (indicated by the solid line) which determines a generated mapxn+1 = 2(1 − ε)xn + ε(mod 1) (indicated by the
dotted line) in the center square (ε = 1

3). (b) An initial functionf0 leading to a hierarchical configuration of the map (a).

slopeg′(x) = 2(1 − ε) is constant, and the slope of the type-III functionfn|I3 is easily calculated as:f ′
n(x) =

((1− ε)/ε)2n(1− ε)n. The gradient of the generated map is determined asg′
n(x) = (1− ε)+ εf ′

n(x), and it has the
form g′

n(x) = (1− ε){1+ 2n(1− ε)n}. Hence, this meta-map has a part where its gradient increases exponentially
with n.

This implies that our functional dynamics can have stronger orbital instability than deterministic chaos: a tiny
deviationδ from a point mapped to this type-III points grows as

∏N
n=i |g′

n(x)|. Since
∏n

k=1α
k = αn(n+1)/2, the

leading order of the exponent of the orbital instability isn2. Hence, the orbital instability is such that a tiny deviation
grows as exp(const. × n2) rather than exp(const. × n) as is the case in conventional chaos. Due to this strong
instability based on chaotic dynamics in the generated map, we call this dynamics ‘meta-chaos’. In Fig. 11(f), an
example of the orbits for meta-chaos is displayed. This evolution is determined bygn(x). The ‘type’ of the point
changes between III and IV according to the mapgn(x).

For a numerical simulation with this meta-chaos, the required mesh size increases as 2n. Hence, a simulation
quickly becomes invalid asn increases.

In the example mentioned above, we have constructed a meta-map by choosing special initial conditions. However,
we note again that a meta-map configuration itself is not special and can be reached, for example, from a random
initial function. Still, it is very rare to obtain a connected type-I fixed interval from random initial conditions. Hence,
in most simulations from arbitrarily chosen initial functions, we mostly observe generated maps of the Nagumo–Sato
type, where magnitude of the slope,|g′

n(x)|, is always less than 1.
The nesting process of the meta-map can be continued hierarchically, since the configuration of type-I, type-II

and type-III points, discussed above, can be a CS, in which the generated map becomes a CGM as a whole. This
arrangement offn|U2 ≡ fn|∪3

i=1I
i is called a ‘unit-II’. One can replace a unit-I in the above construction by such a

unit-II. In such a situation, type-IV points determine a generated map, and with an appropriate configuration, the
generated map can be a CGM. Now we can call the partial functionfn|U3 ≡ fn|∪4

i=1I
i a ‘unit-III’. This hierarchy

to form a ‘unit-N ’ can be continued forN → ∞ (see Fig. 12). To continue this nesting process, we define the
‘unit-N ’ and theN th level meta-map as follows.

A unit-N is a partial functionfn|UN . UN consists of type-I, II,. . . , N + 1 points and satisfies the condition
gn|UN ⊂ UN . A point fn(x

′) ∈ UN (with x′ /∈ UN ) evolves by the unit-N and has a ‘type’ from II toN + 2. We
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Fig. 11. Time evolution offn|∪3
i=1Ii

andgn|∪3
i=1Ii

: (a) f1|∪3
i=1Ii

(solid line) andg1|∪3
i=1Ii

(dotted line); (b)n = 2; (c) n = 3; (d) n = 10; (e)

n = 11fn|∪3
i=1Ii

consists of the type-II function and the type-III function. The type-IV function has a shape H in (d) or+ in (e). (f) Time evolution

of one pointf (x′), x ∈ I \∪3
i=1Ii determined by the generated meta-map, at the center square (0< n < 200). The ‘type’ of the functionfn(x

′)
changes between III (driven by the piecewise linear part ofg(x)) and IV (driven by time dependentgn(x) (H, +)) in time. Squares indicate that
the ‘type’ offn(x

′) is IV at n. Since the mesh size required for the computation is extremely large, the plotted orbit is not precise. It is expected,
however, that the statistical properties are conserved with this numerical computation.
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Fig. 12. The schema of the meta-map. A one-dimensional map can be determined from the configuration of type-I and type-II fixed points
(unit-I). The functionfn(x) iterated by this map is a type-III point which determines a meta-map (unit-II). The meta-map is determined by the
map determined from a type-II fixed function and determines a dynamics of a type-IV point. The type-IV points and unit-II determine a higher
level meta-map. This process can be continued recursively.

denote a function defined on an interval of type-N points asf N
n (x) and the generated map determined byf N

n (x) as
gN

n (x) (a fixed function is written byf (x) instead off II (x)). The functional equation rewritten in a recursive form
with respect to the ‘type’ has the form

f M
n+1(x) = gN−1

n (f N
n (x)), x ∈ IN

n , fn(x) ∈ IN−1
n , gN

n (x) = (1 − ε)x + εf N
n (x), x ∈ IN

n . (15)

TheN th level meta-map is defined as a CGM consisting ofg|I1∪I2, gIII
n |I3

n
, . . . , gN+2

n |
IN+2
n

, where a one-dimensional
map determined from type-I and type-II points is called the ‘0th level’ meta-map. All meta-maps depend on the
fixed functionf |I1∪I2 and are constructed recursively asf |I1∪I2, f III

n |I3
n
, . . . , f N

n |IN
n

. The whole intervalI can be

writtenI1 ∪ I2 ∪ I3
n ∪ · · · ∪ IN

n ∪ · · · . Here note that a ‘type’ greater than 2 can change in time, although each point
has a finite maximal value of its ‘type’, depending on the initial configuration.

TheN th level meta-map is determined by the configuration of type-I, II,. . . , N + 2 points. It is important that
each unit-N and each branch are bounded. We can arbitrarily arrange any unit-N and type-III, IV,. . . , N +2 points
according to the branches. The configuration producing a meta-map characterizes a ‘syntax’ for eachx. Eachx has
a time evolution as a type. The ‘type’ of a point that is of type-III or higher changes in time. For a meta-map higher
than second level, there is a sequence, for example, III, III, IV, V, III,. . . . There is a transition relation among type-N

(N > 2) points. Each point evolves under a hierarchy of meta-maps. In the above representation, the dynamics of
theN th level meta-map is independent of that of the type-N + 3. This means that if noise is added tofn(x

′), the
effect of the noise spreads from the lower-level unit-N to the higher-level unit-M(M > N). 5

In a high level meta-map with the type-I fixed intervals, the orbital instability is stronger than the exponential
instability of conventional chaos. Ifg′(x) ∼ α(|α| > 1) andf III

i (x) is not a constant function (i.e., has a gradient
β 6= 0), thenf III ′

n (x) ∼ β
∏n

k=iα ∼ αn, andgIII ′
n (x) ∼ αn. Now, the leading order of the slope of the first-level

5 In this section, we have constructed the initial functionf0 explicitly and studied the possibility of the existence of the meta-map. Here the
hierarchy of unit-N is constructed step by step and the change of the types of a pointx′ are restricted by the hierarchical combination of unit-N .
In the general case, the dynamics of thef∞ is not always described as the evolution of points following a hierarchy of meta-maps, even if the
type of each point is defined. There is a change of types which breaks the hierarchy of meta-map. In such case, a partial functionfn|A evolves
under a partial generated mapgn|B determined by a partial functionfn|B , then at the next stepfn+1|B evolves undergn+1|A even after the
transients are decayed out (i.e.,n → ∞). In other words, there is a set of initial function to be divided into partial functions which determine
the dynamics each other in turns. Such a ‘dynamical change of types’ will be studied in our future paper.
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meta-map isαn as is mentioned above. A type-IV functionf IV
n (x) evolves under this first level meta-map. If

f IV
i (x) is not a constant function and has a gradientγ 6= 0, f IV ′

n (x) is calculated asγ
∏n

k=iα
k ∼ αn2

, and

gIV ′
n (x) ∼ αn2

. Hence,f V′
n (x) ∼ αn3

andgV′
n (x) ∼ αn3

. Repeating this argument, the leading order of the slope

of theN th level meta-map is given byαnN
. Thus a tiny deviation from a point, which evolves under the meta-map,

is amplified by|α|nN
at eachn step. Because of this, anN th level meta-map has an orbital instability that behaves

as exp(const. × nN+1). The level of the orbital instability increases with the level as exp(const. × nN+1). In other
words, an exponentλ corresponding to the Lyapunov exponent of conventional chaos increases asλ ∼ nN asn

increases for theN th level meta-map.

5. Summary and discussion

In the present paper, we have studied functional dynamics, focusing on the generation of rules (mappings) for
the dynamics representing change of a function, and on the hierarchy of meta-rules.

As a first step, we introduced a new concept, the ‘generated map’gn, which is given fromfn and determines
the dynamics offn. The dynamics of some other parts ofx are determined by this generated map, while a CGM is
defined as one that maps a region into itself. Functional values on some intervals were shown to change according
to the generated map. This leads to a one-dimensional map or a ‘meta-map’ that changes the map itself.

In Section 3, we explicitly showed that some classes of one-dimensional maps are embedded into this functional
dynamics. In Sections 3.1 and 3.2, a piecewise linear map with two intervals of the slope 1− ε were shown to be
generated from two type-I fixed points and two intervals of corresponding type-II fixed points. Next, this construction
was generalized to cover the case with several isolated type-I fixed points and the corresponding type-II intervals.
There, a piecewise linear map with several intervals with slope 1− ε were found to be generated. This map,
called a ‘multi-branch Nagumo–Sato map’ exhibits periodic cycles. Hence, the dynamics of the functional values
determined by this generated map display a periodic cycle, which explains why periodic cycles are often generated
in our functional dynamics.

In Section 3.3, generated maps with type-I fixed intervals and type-II points were discussed. In this case, a
one-dimensional map with an arbitrary slope can be embedded. Now, the functional dynamics determined by this
generated map can also exhibit chaotic dynamics.

As shown in Section 4, this construction of generated maps can continue hierarchically. The dynamics determined
by a generated map forms a higher-level generated map that determines the dynamics of other regions. Since this
map is changed by the first generated map, it is regarded as a ‘meta-map’, a map determined by another map. This
procedure can be continued ad infinitum, leading to meta–meta. . . maps. When a generated map exhibits chaotic
dynamics, as discussed in Section 3.3, the dynamics by meta-map can exhibit ‘meta-chaos’, in the sense that the
evolution rule itself changes chaotically in time. It was shown that this meta-chaos has a stronger orbital instability
than in chaos, in the sense that a small deviation is amplified as exp(const. × nM+1) for theMth level meta-map,
rather than exp(const. × n).

Now, we discuss some relevance of our results for the target problems listed in Section 1. Eq. (1) represents
a process of iterating a function by referring the function itself. This iteration is introduced to study the change
of abstract input–output network. Our cognition process to generate language is thought to depend on iteration
of input–output relationships, and dynamic change of such relationships. External inputs that are inarticulated are
processed in our cognitive process recursively, and some symbols and rules to process them are formed. Hence
it is important to study a minimal model that captures iterative process to change input–output relationship. Our
functional dynamics give such model and we can extract a minimal mechanism to separate rules and objects from
inarticulated closed system. Although our model may not directly correspond to some specific cognitive process in
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our brain, it can capture the essence of how the articulation and rule generation are generally possible in a feedback
process of input–output relationship.

The basic structure of the functional dynamics is provided by two types of fixed points. They are invariant under
iterations and determine a fixed generated map.

The invariant parts of the function consists of type-I and type-II functions, where the self-reference relation
f (x) = f ◦ f (x) is satisfied. In general,f0 has some points that fall on to fixed points of the iteration. Then,
type-I points and type-II functions are formed through the iteration process (see also I). Through the iteration of the
functional dynamics, the invariant part grows. This process is called articulation process in I.

The invariant part determines a fixed generated map which drives type-III points. This means that if the fixed points
are removed by perturbing the initial function slightly onI1 ∪ I2, the dynamics of type-III points are influenced.
On the other hand, even if a type-III point is removed, there is no influence to the dynamics of the invariant part.

Hence, we can regard that the invariant part is elementary than type-N > 2 points. In the problem of language,
the invariant part corresponds to ‘nouns’ or basic substances. A type-I point is a point of the filter where accepts an
input as it is(f (x) = x) and the type-II point is a point identifying an object with a type-I point. A type-III point is
determined from the invariant part and indicates a set{f III

n (x)} atn → ∞. The set is determined from the invariant
part and has type-II points as elements. At the same time the orbit of the type-III point determines a sequence
of type-II points. By focusing on the aspect of a set to classify type-II points, the type-III points are regarded to
represent a categorization (of type-II points), while by noting the aspect of type-III points as an orbit of a sequence
of type-II points, they are regarded as an operation over words. In the former viewpoint, the categorization means a
noun representing a set of nouns, while in the latter, the operation means an action to connect verbs with nouns to
form a sentence.

Similarly, the first-level meta-map determines a set of type-II and type-III points and an orbit consisting of type-III
and type-IV points, as an operation on a set of type-II and type-III points. In this hierarchical configuration, each
orbit is characterized by a sequence of types and a sequence of valuesfn(x). A point, which evolves under theN th
level meta-map, changes its ‘types’ among type-III, IV,. . . , N + 3. This hierarchy of types means the hierarchical
categorization in classification, in one sense, while the sequence of ‘types’ provides a basis for the hierarchical
structure in grammar, seen, for example in a noun phrase or a relative pronoun.

A map and a meta-map determine an orbit, which evolves following a lower level structure in the hierarchy. In
our system, a higher-level structure is formed based on the lower-level structure, which we believe is an important
characteristic in language. For example, the cognitive language theory [9] captures the language as a network of
words where some words, called prototype, are elementary and other words are arranged in connection with the
prototypes. It is important that ‘stability of words’ against external perturbations is discussed there. The prototype
is derived from the restriction of our own body, or from a common feature in our society. For other words that
are not a prototype, similar words in a different society can have a different representation in the network. In our
functional dynamics, the fixed points appear as the invariant part and plays a central role to construct a network (in
fact, if the fixed points for the invariant part are removed, the network is broken). Although the cognitive language
theory does not focus dynamical aspects and has studied the static structure of language yet, the method which can
deal a structure as the categorization and operation at the same time will be needed. We believe that the present
study will provide a tool to study the cognitive process in language, even though the study at present is rather
preliminary.

In our system, a hierarchical structure is formed through iterations. As mentioned, this hierarchy is also a charac-
teristic of language, and it is important to note that a simple class of functional dynamics with recursive structure can
provide such hierarchy in general. The hierarchical structure in our functional dynamics has strong dependence on
the lower-level structure, since the higher-level structure is determined according to which branch of the generated
map is taken by the orbit.
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The form of the generated mapgn depends on the configuration of type-I fixed points. If they are discrete, the
slope ofgn is smaller than 1. When there exists a connected interval of type-I fixed points,gn can have a slope
larger than 1, and the meta-map can have a more complex orbit than in chaos. A connected type-I fixed interval
is generated by an identity function over some interval, which corresponds to a filter with which an agent acts
in response to the world without interpretation. In other words, chaotic functional dynamics and meta-chaos are
generated by adding a continuous input from the external world to the ‘closed’ world of functional dynamics only
with self-reference. In the present model only with self-reference, such an interval with partial identity function is
rare to be formed unless we put it as in initial condition, since in the model all the information is given in initial
function and no external input is added during the iterations. Here the information of external inputs is restricted
only within the initial function, to study how the articulation/rule-formation process continues fromf0. From the
study, we can identify what class of initial functions is required to have a certain class of dynamical behavior in
function, or to attain a certain class of cognitive structure when the present interpretation of the functional dynamics
as cognitive process is possible. Existence of type-I fixed interval as initial condition is one requirement to have
meta-chaos, while the hierarchy in types is a general feature of the functional dynamics observed in most initial
conditions.

To close our discussion on the language, we make a final speculation. As shown in I, a continuous non-decreasing
initial function converges to a fixed function. To have type-III points,fn needs to have at least two type-I points and
two type-II points. Iff0 is a continuous function, there must be at least points satisfyingf0(x

′) = f0(x
′′) 6= f0(x

′′′)
for x ′ < x′′′ < x′′. In other words, two distinct parts ofx are assumed to take the same value initially. This
initial arrangement corresponds to identifying two distinct objects. Starting from such ‘cognitive confusion’, the
function increases complexity to have a higher-type points, through the iteration. The language may have acquired
its complexity starting from such cognitive confusion to identify distinct objects, which probably originates in some
restrictions of our body.

Possible extensions of the present study will be discussed in the future. In a two-dimensional version of
the functional dynamics, an arbitrary two-dimensional map can be embedded in the same way as in Section
3.3. Because of this, we can embed a Turing machine into this system [10] (see also Appendix B), where the
search for a relationship between the generalized shift [10] and meta-dynamics (meta-chaos) will be impor-
tant.

Non-trivial sets of functions over functions are studied in domain theory [6,7,11]. The most important difference
between systems studied in domain theory and our model lies in the dynamical aspects of functions treated only in
our approach. However, our meta-map is restricted within some intervals and is not extended over the whole domain.
Indeed, in our system the size of theN th level meta-map decreases with orderεN . However, such a contraction can
be removed in a more general functional dynamics. This will be important to obtain functional dynamics allowing
for a hierarchy of the meta-map over the whole domain.

Another extension required for language will be the inclusion of dialogue [2,3]. To this point, we have only
considered one agent whose function changes recursively. To study the social structure of language, functional
dynamics with several agents is necessary.
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Appendix A. Some properties ofF(x, y)F (x, y)F (x, y)

In this appendix, we investigate a general class of functional maps with the form

fn+1 = F(fn, fn ◦ fn). (A.1)

We study a fixed point condition and properties of the generated map.
This type of functional equation has fixed points (fixed functions). First, we defineZ(x) from F(x, y). Here,

Z(x) is the solution ofx = F(x, Z(x)). The fixed point condition is defined fromZ(x). If the conditionf ◦f (x′) =
Z(f (x′)) is satisfied,f (x′) is a fixed point. IfF(x, y) = (1−ε)x+εy, thenZ(x) = x, and the fixed point condition
is nothing butf ◦ f (x′) = f (x′). The fixed point condition in the present general case is determined as follows.
(We give the correspondent equation for the case withF(x, y) = (1 − ε)x + εy in the square bracket [. . . ] for
reference.)

1. If Z(x) is a single-valued function,f (x) = Z(x) is a fixed function over the entire interval (f ◦f (x′) = Z(f (x′)).
[f (x) = x is a fixed function.]

2. The point whereZ(x) intersects the identity function(x′ = Z(x′) = f (x′)) is a fixed point(f ◦ f (x′) =
f (x′) = Z(x′) = Z(f (x′))). [Type-I fixed point condition.]

3. If a point(x′, f (x′)) is a fixed point(f (x′) = Z(x′)), a point(x′′, f (x′′)) which satisfiesf (x′′) = Z(x′′) = x′

is also a fixed point(f ◦ f (x′′) = f (x′) = Z(x′) = Z(f (x′′))). [There is no such fixed point corresponding to
this case.]

4. If a point(x′, f (x′)) is a fixed point, a pointx′′ with f (x′′) = f (x′) is also a fixed point. [Type-II fixed point.]

The most noteworthy difference from the case withF(x, y) = (1− ε)x + εy is seen in (3). For a pointf (x′′) =
Z(x′′), the fixed point condition is thatZ ◦ Z(x′) is a fixed point. There,Z(x) decides a fixed point condition as an
orbit of a one-dimensional map. In other words, the ‘attractor’ ofZ(x) is a fixed point of Eq. (15), and a sequence
{f (x′), Z ◦ f (x′) = f (f (x′)), Z2 ◦ f (x′) = f (Z ◦ f (x′)), . . . , Z∞ ◦ f (x′) ∈ attractor} consists of fixed points.

The functional equation can be divided into

fn+1(x) = gn ◦ fn(x), gn(x) = F(x, fn(x)), (A.2)

as in the caseF(x, y) = (1 − ε)x + εy. The generated map viewpoint is also effective in this general case.
However, for a generalF(x, y), the transformation (5) cannot be adopted, becauseF(x, y) is not linear. However,

the use of a generated map to construct a meta-map remains valid in a generalF(x, y) case, and a hierarchical
configuration can exist for a particular configuration.

Appendix B. Multi-branch Nagumo–Sato map

In general,fn with (at least) two type-I fixed points has the potential of possessing a Nagumo–Sato map as a
generated map. To consider the general situation, we define the ‘multi-branch Nagumo–Sato map’ by (6), restricted
within a regionI = [x0, xn−1], whilex0, x1, . . . , xn−1 can be arranged arbitrarily. This type of map can be generated
from random initial conditions.

In this map, we can choose a function which determines a map producing cycle of any length of period. To
illustrate this property, we study the case with some special configurations.

First, two type-I fixed points are assumed to be 0 and 1. For the sake of symmetry, we chooseε = 1
2. Then, the

two branches are given by

g[0](x) = 1
2x, x ∈ I2

0 , f (I2
0 ) = 0, g[1](x) = 1

2x + 1
2, x ∈ I2

1 , f (I2
1 ) = 1. (B.1)
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Fig. 13. A multi-branch Nagumo–Sato mapM3(x). Two period-3 attractors coexist.

We represent a rational numbera by the binary form 0.a1a2a3 · · · , with eachai = 0, 1 (herea = ∑∞
k=1ak2−k).

In this representation,g0(x) acts as a right-shift, which acts as 0.a1a2a3 · · · → 0.0a1a2a3 · · · , andg1(x) acts as a
right-shift and inserts 1 into the head of the sequence as 0.a1a2a3 · · · → 0.1a1a2a3 · · · . Hence these two branches
act as 0, 1-inserter for a binary sequence.

Here we denotea(ai = ai+m) as{a1a2 · · · am}, while the set ofm-length sequences{a1a2 · · · am} is denoted bySm.
The number of elements which belong toSm is 2m−1, and the values ofa(∈ Sm) takei/2m−1(i = 0, 1, . . . , 2m−1).
If {a1a2 · · · am} ∈ Sm, {am, a1a2 · · · am−1} ∈ Sm. Because of this, wheng({a1a2 · · · am}) ≡ gam({a1a2 · · · am}), the
mapg(x) is a bijectionSm → Sm. We defineMm(x) = g(x) overSm.

Mm(x) ∪ Mn(x) is a single-valued function for arbitrarym, n. The condition that a pointa ∈ Sm ∩ Sn(m < n)

exists is thatm is a divisor ofn. In such a case,a has the form{a1a2 · · · am} ∈ Sm, and{a1a2 · · · am}n/m ∈ Sn.
These two representations determine the sameg(a). Then,M∞(x) defined as∪∞

k=1Mk(x) has an infinite period.
The functionMm(x) is defined at 2m−1 points. With an appropriate arrangement, it is possible forg(x) generated

by the attractor of our functional dynamics to be made equal toMm(x) for all x. As an example, we defineg(x)

asgo(i) for an interval [i/2m−1, i + 1/2m−1) (i = 0, 1, . . . , 2m−1 − 1). Here, o(i) = 0 for eveni and o(i) = 1 for
odd i. In Fig. 13, we can take a sectioni [i/2m−1, (i + 1)/2m−1) × [g(i/2m−1), g(i/2m−1) + 1/2m−1) within the
region whereg(x) is defined. The mapg(x) determines the bijection sectioni → sectionj . In each section,g(x)

has a slope12 (<1), and all orbits converge to attractors which are determined byMm(x). Thus we can embed a
multi-branch Nagumo–Sato map which has multiple attractors.

In the same way, we can construct ann-branch Nagumo–Sato map. We assumexi = i/n, i = 0, 1, . . . , n − 1.
If ε = (n − 1)/n, each branch has the form

g[i](x) = 1

n
x + i

n

(
x ∈ I2

i , f (I2
i ) = i

n

)
. (B.2)

Each branchg[i](x) indicates a right-shift and insertion ofi at the head of then-digit sequence. Using these branches,
we can embed anm-periodic point for ann-digit representation{a0, a1, . . . , am−1}(ai = 0, 1, . . . , n − 1).
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Fig. 14. An example with an arbitrary one-dimensional map embedded. Once the map is determined as in this figure,fn(x
′), which takes a value

in this region, evolves according tof2n+1(x
′) = a(f2n(x

′)) andf2n+2(x
′) = b(f2n+1(x

′)) = b ◦ a(f2n(x
′)). If b(x) is the identity function,

f2n+2(x
′) = a(f2n(x

′)). An arbitrary one-dimensional map can be embedded by observing the dynamics of the function every two steps.

Appendix C. Embedding a general one-dimensional map as a generated map

Let us examine closely the configuration of the type-I fixed intervals adopted to embed a one-dimensional
map. The area in which a one-dimensional map is embedded has to be on the intersection between each branch of
type-II intervals andI × Ī1

i (see Fig. 6). This implies that we cannot embed a map which is continuous around the
identity function. However, one can embed an arbitrary one-dimensional map by considering a two-step iteration,
i.e., as a map to generatefn+2(x) from fn(x). As shown in Fig. 14, let us take two maps in the dotted areas of
Fig. 6. As shown in the figure, the generated mapsg[0](x) andg[1](x) are put in two regular square sections. Here,
fn(x

′) which is mapped tog[0](x) evolves asfn+1(x
′) = g[0](fn(x

′)) andfn+2(x
′) = g[1] ◦ g[0](fn(x

′)). If
g[0](x) is the identity function, the time evolution offn(x

′) atn = 2i (i is an integer) isfn+2(x
′) = g[1](fn(x

′)),
fn+4(x

′) = g[1](fn+2(x
′))fn+2i = ai(fn(x

′)). Hence an arbitrary one-dimensional map can be embedded as a
rule for the two-step iteration of the functional dynamics.
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