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Abstract

Functional dynamics, introduced in a previous paper [Physica D 138 (2000) 225-250] is analyzed, focusing on the formation
of a hierarchical rule to determine the dynamics of the functional value. To study the periodic (or non-fixed) solution, the
functional dynamics is separated into fixed and non-fixed parts. It is shown that the fixed parts generate a one-dimensional
map by which the dynamics of the functional values of some other parts are determined. Piecewise linear maps with multiple
branches are generally created, while an arbitrary one-dimensional map can be embedded into this functional dynamics if the
initial function coincides with the identity function over a finite interval. Next, the dynamics determined by the one-dimensional
map can again generate a ‘meta-map’, which determines the dynamics of the generated map. This hierarchy of meta-rules can
continue recursively. It is also shown that the dynamics can produce ‘meta-chaos’ with an orbital instability that is stronger
than exponential. The relevance of the generated hierarchy to biological and language systems is discussed, in relation with
the formation of syntax of a network. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a previous paper [1] (to be referred as 1), we introduced functional dynamics to investigate the articulation
process carried out on an initially inarticulate network. In the functional dynamics, objects and rules are not separated
in the beginning, and we study how objects and rules appear from an inarticulate network through iterations of
functions. The functional dynamics provides a simple universal model for this appearance.

In the general introduction of the paper |, we discuss five requisites for a biological system, while two of them
are explicitly studied. These are the following:

e Inseparability of rule and variablgf,, o f,,).
e The articulation process from a continuous world.
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In I, we investigate functional dynamics defined by

fn—i-l:(l_e)fn"f‘éfnofn- (1)

The evolution of the functiory,, has been studied with representing the iteration step ands a parameter. We
have shown that an articulation process is generated in this one-dimensional functional dynanfjcevéises,
first, type-l fixed points satisfying,.1(x') = f,(x') = x' are formed, and then type-Il fixed points satisfying
forr(x = £,(x"") = x' are formed [1]. The articulation process is studied as a classification process gf, how
converges to constant on distinct intervals consisting entirely of type-Il fixed points. For a give\alyg(x),
the inverse sef, = nfl(a) is given as an articulated class. This means that the filter articulates the continuous
world x into some segments according to the valyéx). For such setsl,, .1 2 I, holds, and the dynamics of
this system is determined completely by a set of relations among these intervals as. This reduction of the
degrees of freedom out of a continuous world is the articulation process. This articulation is most clearly seen in the
relation between type-1 and type-Il fixed points. Intervals of type-Il points corresponding to the same type-I fixed
points are generated from an initial continuous function.

As an articulation process, a structure independent®formed by the fixed points, while the functional values
of some points change periodically in time, taking the values of different type-Il fixed points successively (i.e.,
being mapped to the rigid structure constituted by fixed points). This periodic function provides an example of how
objects and rules depend on each other, based on a rigid structure unchanged under iteration.

In the present paper, we focus on a dynamical aspect of these functional dynamics, to study how rules for dynamic
change emerge through iteration of the functional mapping. With this approach, we investigate the third and forth
requisites mentioned in the general introduction of I:

e Formation of a rule to change the relation among objects.
e Formation of hierarchical rules.

From our viewpoint, objects and rules emerge from the same level in which code and encoding circulate dynam-
ically. For example, in natural language, there is a set of words and rules that forms sentences. When we assume
in the beginning that the objects and rules are already separated, the theory of language has to be based on formal
languages [4,5], since the structure of the language has to be studied without resorting to the objects. With the
separation of words and rules, one neglects the fact that the rules have to be described by using words, while the
meaning of a word has to be described by a sentence. This implies that a theory starting from a hierarchy in which
objects and rules are separated is not sufficient as a mathematical framework for natural language. Natural language
is described as an assembly of objects, rules, meta-rules, meta—meta-rules, and so forth, while this hierarchy is not
given in advance. Indeed, this process of emergence of hierarchical structure from pre-structured “something” is
a common characteristic of biological systems, as is seen, for example, in the hierarchy of cell, tissue, organism,
and so forth, starting from an assembly of chemical reactions. A mathematical formulation is required to study the
hierarchy of the successive formation of rules at successively higher levels [6,7].

By taking the same viewpoint as that in I, we study a network of input—output relationships (for example in the
language/objects) as a functional form. With the evolution of the functional dynamics, some structure is constructed
step by step. In particular, we study how a hierarchy of rules and meta-rules emerges through the iteration. Here, a
structure is formed first by the configuration of fixed points, while a rule for the dynamic change of the structure is
organized according to an ‘orbit’ of the functional dynamical system, and then a meta-rule is formed governing the
dynamic structure generated by the orbit.

This implies that once we get a rigid (fixed-point) structure, unchanged under repeated mapping, as the el-
ementary part of the dynamical network, hierarchical structure appears under some restrictions. Here, the rigid
structure and hierarchical structure correspond to the articulated objects and the operations acting on the objects,
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respectively. This separation of objects and rules emerges, since we extract the rigid structure out of the functional
dynamics.

The present paper is organized as follows. In Section 2, we explain the basic properties of the functional dynamics
again to facilitate its representation by the introduction of a ‘generated map’. With the generated map, itis shown in
Section 3.1 that a one-dimensional map is embedded in the functional dynamics. This map works as a rule governing
the change of the functional values over some intervals. In Sections 3.1 and 3.2, piecewise linear maps called the
Nagumo-Sato map and the ‘multi-branch Nagumo—Sato map’ are naturally embedded in the functional dynamics.
In Section 3.3 a larger class of one-dimensional maps is embedded into our functional map. This implies that chaotic
functional dynamics is possible in our system. By choosing a suitable initial condition, it is shown in Section 4 that
the functional dynamics can form a hierarchical structure. A meta-rule for the change of the functional values is
formed which changes according to the (chaotic) dynamics generated by the one-dimensional map. The maps can
be nested recursively and generate higher level meta-maps successively. In Section 5, we discuss syntactic structure
derived from this functional dynamics, and the relevance of our results to the third and fourth requisites of biological
systems mentioned above.

2. Model

The functional map Eq. (1) has the form

Jnr1=F(fu, fuo fu) (2)

Here we study some characteristics of this functional equation with a one-dimengjohaktonnection with our
motivation for biological systems and language structure, the fungligmconsidered to represent an abstraction of
the input—output relation network, whilg o f,, provides a self-referential term. Since we are interested in modeling
the situation in which code and encoding are not separdteepresents a projection from a set into itself.

First, we discuss two characteristic properties of this equation:

o Ifimages ofx’ andx” by the functionf,, have the same valug (x') = f,(x”) atn, the subsequent evolutions of
fn(x) and f,, (x”) (with m > n) are identical, because dynamics are determined completely by thefgle
e Eq. (2) can be splitas

Jnr1(x) = g (fu(x)), gn(x) = F(x, fu(x)). ©)

The first property above implies the ability of articulation of this system. Ofyddentifiesx” andx” as the same

thing, the two points evolve in the same way. The second property provides a novel viewpoint to study this model.
With this separation, one can say that a pgintx’) evolves undeg,, which is determined frony,, itself. This is

a characteristic property of this functional equation. Giygna mapg, is determined. The functioif, evolves

to f,+1 under the map ang, 1 is determined. In this paper, the term ‘function’ is used to repreggnhile a
‘generated map’ is used in referencegtp The “value ofx”” indicates f;, (x”) in the present paper.

If f,(x) is a fixed point fom atx’ (which does not mean a fixed function as a whole), the generated map of
fx(x") is a fixed generated map at the paint To study the functional dynamics, we first study a fixed generated
mapg, (x’) and see how other points’ evolve under this generated map (Section 3). Second, we study the case in
which g, (x’) itself changes in time, by taking a suitable initial configuratiorf@fThere, a hierarchical structure
(meta-map) is considered (Section 4).

For simplicity, we impose one more restriction on (2) following I. We assume that if the relAtiaf) is fixed,
it satisfies the relatiorf,, (x") = f, o f,(x). This condition implies that the change ff(x’) vanishes when the
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self-reference of a function agrees with the function itself. One of the simplest models of this type is (1), obtained
by choosing the form

Fx,y)=(Q—¢)x +ey (4)

with 0 < € < 1. (The case with a general form fBi(x, y) is briefly discussed in Appendix A and will be discussed
in a future paper.)
For the type of model we study, the dynamics relax toward the self-consistent refgiiOn= f o f(x’). For
the remainder part of this paper, we focus on the functional dynamics (1). In this case, the generated map is given
by g, (x) = (1 — €)x + €/ (x).
Now we obtain two useful properties:

e Avalue f, (x") which satisfies the conditiofj, (x") = f, o f,(x) is a fixed point fom, i.e., f+1(x") = f,(x) =
f(x"). Here we denote fixed function hyinstead off,, and fixed point for by f (x’) without the suffix.

e There is a transformatiofi (R — R) which satisfies the conditioA(T (x), T(y)) = T o F(x, y). (The explicit
form of T is discussed below.)

Here, all the points' which satisfy f(x') = x' are fixed points for of the functional equation (1). Since all
pointsx with an identical valuef (x) evolve identically, all the points' that satisfyf (x") = x' are again fixed
points forn. For convenience, we have classified (see I) these fixed points as follows:

e x'is atype-I fixed point withf (x') = x'. We denote the s¢k'} by 71.
o x''is a type-Il fixed point withf (x"") € 1%, and satisfying:" ¢ 1. We denote the sét"} by 7.

A type-I fixed point is a point at which the graph @f intersects the identity function. This ‘type’ is extended to
arbitrary typeA'. We define a typeV pointas a point which satisfies the conditigyix™) e 1¥-1,xV e I\UN 7117,
after the transient in the functional dynamics has died away. Hémrepresents a typa- point and/ " represents a
set of typed points{x"} (type-N interval).l Although type-I and type-Il points are fixed points, tyNe(tN > 2)
points cannot be fixed points. In factyifs a fixed pointangd = f(x), the fixed point condition is written = f(y),
which meansy is a type-I fixed point and is a type-I or type-Il fixed point. For convenience, we call a partial
function defined on a set of typE-points (f,|;v = {f,(x)|x € IV}) atypeN function.

In I, we introduced the concept of a ‘self-contained section’ (SCS), which is defined as a connected Interval
such thatf,, (1) c I, while no connected interval C I satisfiesf,,(J) C J, andf,(I +§) C I + § for arbitrary
small s, either. Here, we extend this definition to introduce the ‘closed section’ (CS) and ‘closed generated map
(CGM). A CS is defined as a sétsuch thatf, (/) c I (wherel is not necessarily connected), while a CGM is
defined as a part of a generated ngafy such thag, (J) C J (whereJ is not necessarily connected). In Eq. (1), if
foI) C I,thenf,(x) € I foralln, and!l is a CS. If a CY is connected, the partial generated ngafy becomes
CGM.

Now let us return to the transformatidh From Eq. (4), it is straightforward th@t(7 (x), T (y)) = T o F(x, y)
is satisfied by choosing the linear transformation

T(x) = ax+ b. (5)

In fact, Eq. (1) assumes the form of an operation of taking a weighted averggéx6fand f,, o f,(x’). Thus, the
functional dynamics are invariant under a scaling transformation in whahdy = f(x) are multiplied by the
same factor and shifted by the same value.

1 Note that a type of a point is defined at each time step
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The above invariancg (T (x), T(y)) = T o F(x, y) means thal" andF commute. Under this transformation, a
connected C%x1, x2) is shifted to(ax; + b, ax + b) giving a new CS. The above invariance will be used to embed
a one-dimensional map into this functional dynamics in Section 3 and to construct a meta-map in Section 4.

3. One-dimensional map in functional dynamics
3.1. General properties

In I, we found that the functiorf,, does not converge to a fixed functionas> oo for some initial functions.
For example, for the initial functiorfp(x) = rx(1 — x), f, does not converge to a fixed function for some range
of parameter referred to as the R (random) phase in |, where the number of discontinuous poftamd the
length of f,, increases in proportion t&, the number of mesh points adopted for the numerical calculation.

Recalling that thef, for largen looks almost random in the R phase, we have also compfitéicbm Eq. (1)
using random initial conditions, as an extreme case. For such initial conditions, we divide the intetyah{0
M intervals aq[i/(M — 1), (i + 1)/(M — 1)]) and choose the value gf,(i) € [0, 1] randomly. An example of
foo(x) for an intervalx and the return mapf, (x), f,+1(x)) for the interval are displayed in Fig. 1. Herg,(x)
mainly consists of many flat intervals with the same value, while for some pdinfs(x’) changes periodically in
time. As plotted by the return map, it is found that the periodic dynamics obey a certain rule. As shown in the inset
of Fig. 1(b), a clear piecewise linear structure is visible in the return map. In this section, we study how this type
of return maps is generated (Section 3.2) and investigate the class of maps that can appear with these functional
dynamics (Section 3.3).

A fixed generated map can be constructed from type-I and type-lIl fixed points. This fixed generated map acts as a
one-dimensional mag, |;1,;2. To extract the temporal change of othggoints, it is useful to think of the intervdl
as the union of three parts:= ImapU IdrivenU Irest 2 Here,Imapis a set such thaf, | Imap is a fixed function/griven 1S
asetsuchthaf|;y, e, C Imapandlrestis the restliest = I \ {ImapU Idriven}- The fixed functionf|1rnap determines a
fixed generated mag ., which determines the time evolution | 1,e, = fu+1l 1grven(fr-+1lgiven = 8 (fal Iiven))-

First, we assume there exists only one type-I fixed poldf (x') = x') and one type-ll fixed point' and
that £ (x") = x'. The generated map at= x" is g(x'") = (1 — e)x"" + ex!, which can be rewritten ag(x) =
(1—¢€)(x —x") + x' by insertingr = x'"'.

Next, we assume that there is an interfdp consisting entirely of a single type-| fixed point and corresponding
type-Il fixed points, which satisfyf (x”) = x' for x”" € Imap Assuming the existence of such an interval, the
generated map is given by(x) = (1 — €)(x — x') 4 x! for this interval(x € Imap). The graph of|y,,, is a line
with a slope 1- ¢ that intersects the type-I fixed point. This line that is used as generated map is determined by the
configuration of type-Il fixed points. If the intervihapis connected fox € Igrivenall £, (x) evolve to foo (x) = x'.

Now consider the more general case in which an intefygl consisting of several type-I fixed points and several
subintervals of type-Il points that are mapped to one of the type-I fixed points. In this case, the generated map
is determined by the arrangement of type-I and type-Il fixed points. This map is a piecewise linear function with
slope 1- ¢, which intersects the type-I fixed points (see Fig. 2). Here, we consider the following two cases for the
configuration of type-I fixed points:

e There exist a finité number of type-I fixed points (Section 3.2).
e There exist a finite number of type-I fixed intervals (Section 3.3).

2 As will be shown, the evolution of;, (x') for x’ € Igriven is determined byg(x)} with x € Imap In this sense, we call this interval ‘driven’
by the intervallymap.
3t is not difficult to extend the following argument to the case with a countable number of type-I fixed points.
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Fig. 1. (a) The graph of thgspooo(x) (0.4 < x < 0.5) for random initial fop with M = 6000 ance = 0.02. It consists of type-I fixed points,
type-Il fixed intervals and some periodic points. (b) A part of the return map of (a) for,alk), f,+1(x)) (n = 50 000-50 050). The return
map consists of some points and lines that have glbpee) (in the inset).

A type-I fixed interval is a connected interval, [p] on which f(x) = x for all x € [a, b]. A type-I fixed point is
the limiting case of a type-I fixed interval (i.e., in whiah= b).

In the first case, let us denote elementsg bby x;, wherei < j impliesx; < x;. The type-| fixed intervals are
ordered in the same way as the fixed pointsigady. ..., I;;_;, wherei < j implies maxi}! < min ;.

Depending on the configuration of type-I and type-Il fixed points, a one-dimensional map is determgngg, If
is a CGM, f| 1., €VOlves under the one-dimensional map. In the next section, we study the case with isolated
type-I fixed points, while in Section 3.3 we discuss the case with type-I fixed intervals.

3.2. Case with finite type-I fixed points

In this section, we consider the case with finite type-I fixed points. As shown in I, the fungtioften tends
to approach a piecewise constant function, consisting of a discrete set of type-I fixed points and several intervals
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X . @(X)

Fig. 2. An example of three type-I fixed poirits) < x1 < x2) andf (x) for x € 1. The mapg(x) is represented by the dotted lingx)’ = (1—¢)
and is constant. Dynamics of another paojjtx’) € I is determined by (x).

of type-II fixed points at whichf (x) assumes the same value. Thus the existence of such type-I fixed points and
type-ll intervals is common in our model ([1] and Fig. 1(a)).

Corresponding to type-l fixed points;, we define sets of type-Il fixed pointﬁ2 to be those satisfying
f(Il.Z) =X, WhereIl.2 is not necessarily connected and consists of several connected intervals in generg}, Bince
a single-valued function, there is no intersection amghgnd L. Now, the intervall is the union off, 72, Igiven
andles(! = 1Y UIZUIZU---UI2 | U IgivenU Iresp. Following the argument in the last section, the generated
map on the intervalmap = 11 U 12 has the form

g[0](x) = (1—e€)(x —xg) +x0 for x e 12, where f(12) = xo,
g[1](x) = 1-e)(x—x1)+x1 for x € 112, where f(Ilz) = x1,
g(x) =1 : : : (6)
glm—1(x) = A-e)(x —xp-1)+xm_1 for xe Inzz—l’ where f(Ifl_l) = Xp_1,
g(x) = X for x e I%,

where [] denotes a line corresponding to the type-I fixed pajnEachg[i] is referred to as an:branch’.

As discussed above, this generated map acts as the evolution rule forjdimas are mapped to one of the
type-ll fixed points [i.e. f, (x) € Iiz, or, in other wordsf;,, 1 1(x") = g(f,(x")) = (1—¢) f(x) + €x; (see Fig. 2)].

The combination of some type-I fixed points and an set of type-Il fixed intervals satisfying certain conditions
can give a CGM. Here we assume there exidlype-| fixed points o < x1 < -+ < x,,—1), and the points in
the interval(xo, x,,—1) are assumed to be mapped to one of the type-I fixed points. Then, according to (6), for
i=01....m—-1, g[i]|,l_2 C [x0, xm—1], because ofig < (1 — €)x + ex; < xp—1(x € (x0, xm—-1)). AS a
total, gl,10,2 € 11 U 12, and theg| ;1,2 becomes a CGM. Thus, faf € Igriven, the evolution off, (x') € 12 is
determined by the CGM. Thig, (x’) is included in a type-II fixed interval, and thuscan be called type-IIl. The
pre-imagef,1(12) is denoted a$3(= Iqriven). Now, the intervall can be written ag! U 12U I3 U e Here we
call this type of configuration of f (x)} that determines a closed one-dimensional generated map as ‘unit-I'. The
situation is drawn schematically in Fig. 3.

For example, we assume that there are two type-| fixed poigndx1 (11 = {xo, x1}). We divide the interval
I = [xo,x1] into 1%, 12, IZ, I® and Irest. Since f (x) has a valuexg or x1, in 12, g|;1,;2 has a ‘0-branch’ and a
‘1-branch’. The mag|,1;2 has the same slogé — ¢) on 71 U I2. This class of map includes the Nagumo—Sato
map [8].
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3.0
evolves under[} ", generated
1-dimensional 111 ¢ map
map

Fig. 3. The schema of the generated map. The configuration of type-l and type-II fixed points determine the map, while the evolution of the
type-Ill points are determined by the generated map.

The Nagumo-Sato map is given by the equation
Xnp1=Kkx, +w (mod D (1)

with0 < k < 1 and O< w < 1. This map has two branches with the same slofa the interval [Q (1 — w) /]
(the first branch) and(L — w)/k, 1] (the second branch) (see Fig. 4). To have these two branches, we need two
intervals of type-Il fixed points. With the aid of transformation (5), the domaif), @ restricted to [01], where two
type-I fixed points are located at 0 and 1, without loss of generality. Our purpose here is to show that the generated
map at the type-II fixed intervals oﬁg andIl2 has the form of Eq. (7).

With the transformation (5), the slope= 1 — ¢ is conserved. Transforming (7) by multiplying byand shifting
by 1— w alongx andy = f,(x)-directions, we can embed the Nagumo—-Sato map (of the intervad)sizi® g (x).
The required condition i%2 = [(1 — w)/(1—€), 1+ € —w]and I} = [1 — w, (1 — w)/(1 — €)] (see Fig. 4). This
mapgl1—w,1-w+e] DECOmes a CGM. Note that this situation can generally arise without choosing a very special
initial function. This is why the functional dynamics from arbitrary initial conditions often lead to a periodic cycle
governed by the Nagumo—Sato map as in Fig. 1.

An example of our simulation is displayed fer= 0.2 andw = 0.44 in Fig. 5, where the discontinuous point
(a = (1 —w)/(1 - ¢)) of the Nagumo—Sato map is located at 0.7. In the simulation, the initial configuration of
fn(x) was given by

__2 x_(l_—e)a , xel0,1—-e)a),
(1-¢€)a 2
Jor) =191, x e[(l—e)a,a)U {1}, ®)
0, x €la, 1.
........... 121 Xl
g1l .~ o
—I;I-;gumo-Sato Map X

Fig. 4. An embedding of the Nagumo-Sato map. A transformation multipkyiagd moving(1 — w) along thex-andy = f, (x)-directions
embeds a map intg(x) fore = 1 — k.
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Fig. 5. Time evolution off,,. The functiony,, is divided into two parts, the map area and the rest. Here, fixed intervals produce the Nagumo—Sato
map, and the dynamics of, (x) which is mapped to the square is determined by the map. Hete 0.7, ande = 0.2. At the square, the
generated map|;,,,, has the same properties as the map = 0.8x, + 0.44. (a) The graph offp and f1 are plotted. Herel? and Igriven

for n = 0 are displayedfy is chosen as described in the text. The dynamics of the function mapped to the square region is determined by the

generated map, while the remaining part converges to a type-Il fixed point.ogaind f101 are plotted. All points converge to fixed or periodic
points. The periodic points are determined by the Nagumo—Sato map. Each point is period-3, and asfa islagberiod-3 function.

With the evolution of our functional dynamics, the functigii> ;> determines the Nagumo-Sato map. The re-
maining part(/esp of the interval (i.e., which is mapped according to a distorted tent map) folds by itself (see I)
and if it is mapped to a value ug or I2, it subsequently evolves under the generated Nagumo—Sato map. Fig. 5(b)
shows snapshots of the functigjp(x) for n = 100, 101. The function converges to a periodic function as a whole.
The period of the cycle is derived from the generated map. The functional values of two differentp@nts

x” having the common periodic cycle changes synchronay§lx’) = f,,(x”)), because the difference jfy (x)

values decreases during the transient process bgfaré and f,, (x”) are attracted to the periodic motion, and also
the Nagumo—-Sato map has a contraction property (with slope less than 1) in each braneh. &s the points in

the intervall are contained in eithdrt, 72 or I3, and /e vanishes.

In general, anf,, with (at least) two type-I fixed points has a potential to possess a Nagumo—-Sato map as a
generated map. To consider a general situation with multiple type-1 points with several type-Il intervals, we define
the ‘multi-branch Nagumo—-Sato map’ by (6). In this case, the graph qf las the same slofgé — ¢) < 1 for all
x. This type of map can be generated generally from random initial conditions. In fact, in the inset in Fig. 1(b), the
graph ofg consists of several branches with the same slope1

With the multi-branch Nagumo—-Sato map, a functj@rperiodic inn with an arbitrary period can exist for all
We denote a value of a type-IIl poirfi, (x') asay . If gl1,,,, with a periodm attractor is given, the set of values of the
type-lll point is determined ai;|a;+1 = g(a;), i modm}. Then a new attractor with periog: + 1) is obtained
by choosing an initial function to have two new branches properly. We can arrange braija@res[j] to satisfy
the conditions thag,[i](an—1) = a, andg,[j](an) = ao for an arbitrary periodic orbit:

By choosing initial functions suitably, we can have rather complex dynamics based on the multi-branch Nagumo—
Sato map. In Appendix B, the coexistence of multiple attractors is demonstrated, while it is also shown that

8l map CAN have countably infinite attractors by suitably choosing the initial conditions to generate the multi-branch
Nagumo-Sato map.

4 There is some restriction ar, so thatx; andx; cannot be the same.
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In the argument above, the functigns defined at a countable number of pointscdfi.e., the attractor of the
generated map, 1 = g(x,) has ameasure zero basin). However, if all type-Il fixed points are in a connected type-I|
fixed interval, each attractor has a finite measure basin. Whéna random function, such connected intervals
are formed. In fact, a multi-branch Nagumo-Sato map is often generated from random or other initial functions.
In general, the width of each branch is not identical, and a complicated combination of branches is generated. As
shown in |, intervals of type-Il fixed points form a fractal structure. Hence, branches in the generated map have an
infinite number of segments with a fractal configuration in general. Th(s) can evolve with a complicated cycle
that may be of infinite period.

3.3. Case with finite type-I fixed intervals

In the cases considered to this point, the generated map in the functional dynamics (1) cannot exhibit chaotic
instability, in the sense that the slope of the map is less than 1 for almost all points. Except for a set of discontinuous
points, all generated maps have a slope &. Here we study how a generated map can have a larger class of
one-dimensional maps that allow for chaotic instability.

To study this class of functional dynamics, we extend our consideration to the case with a connected interval of
type-I fixed points, i.e., with an interval of type-I fixed points(¢’) = x’ for all x” € Il.l). The existence of such
an interval is exceptional in this functional map system, in the sense that it is almost impossible to produce such an
interval by the evolution (1) unless the initial function does not include such an interval. Indeed, a monotonically
increasing function converges to a step function, and a single-humped function tends to converge to a function
consisting of isolated type-I fixed points and connected intervals of type-Il fixed points [1].

Although an initial function evolving into a function possessing type-I fixed intervals is rather rare in functional
space, there are some reasons to study the situation: (1) such an initial function may have some meaning in our
model (see the discussion in Section 5) and (2) choice of type-I fixed intervals is convenient to study the hierarchy
of meta-maps, to be discussed in the next section. Accordingly, we assume the existence of type-I fixed intervals.

Then, we define sets of type-Il fixed points in the same way as in the last section. The type-I fixed intervals are
labeled ag}, 12, ..., 1 . Now, 12 is defined as an interval wherd 2 C 1} (see Fig. 6). Although in the last

type-1I
fixed interval

type-IT
fixed intervgl

' I

Fig. 6. The closed one-dimensional map. Using two type-| fixed intervals, we can obtain a larger class of a one-dimensional map. The type-I|
fixed function f (x) is represented by[0](x) (for x € I}) and f[1](x) (for x € I}). I? is a domain of the type-Il fixed functiofi(x). The
generated map(x) is given byg[0](x) = (1 — €)x + efo(x) (for x € 1(}) andg[1](x) = (1 — e)x + ef1(x) (for x € Ill). We call this type

CGM a ‘unit-I'. In this figuree = 0.5.
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section, we considered the case in whighis a constant function over an intervl;ﬂ, in the present case, each
f1,2(x) can have various values in the intervél Let us write f 1,2 as f[i]. The generated map corresponding to
the fixed functionf[i](x) has the form '

8200 = glil(®) = A= )(x — fli) + fli (), x € 12, flUP) C 1M ©)

This functiong[i](x) is bounded both from above and below, becayi§d(x) has a possible minimum value
min I} = a and possible maximum value mak = b, (1 — e€)(x —a) +a < gli](x) < 1 —e)(x —b) +b
(see Fig. 6). It is natural to call this functi@ifi](x) within this bounded area thé-branch’, in analogy to the last
section. For each type-I fixed point, the generated map is given by — €)(x — x;) + x;, althoughx; here can
change continuously.

Consider the union of: type-| fixed intervalg® = 11U 12 U--- U I, . If type-Il fixed intervals are within an
interval(min 7%, max/%) and the conditiog| ;1,2 ¢ I*UI?is satisfied, the generated map on the interval 12 is
a CGM (the corresponding| ;1,2 is unit-1). Here, in a type-Il fixed interval corresponding to a type-I fixed interval,
the generated magx) = (1—e)x +¢f (x) nolonger has a constant slope. Rather the 6@ = (1—¢)+¢f/(x)
varies withx.

Following the argument in the last section, we start from the case with two type-I intervals. Now, we divide the
interval I into a type-l fixed interval’* and a type-Il fixed interval2. Then, the interval! is divided into two
parts,I3 and 7. Without loss of generality, we can take nifh= 0 and max; = 1. The fixed partial function
consisting of type-ll fixed points is determined A9](x) € I} for x € 12 or f[1](x) € I} for x € I?. Then the
generated map(x) is given by

X, X € Il,
g(x) = 1 gl0](x) = A —x +€f[0](x), x € I, (10)
gll](x) = L —e)x +ef[1](x), x e I?

The area where the graph of the generated map can exist is denoted by the dotted area in Fig. 6. Any one-dimensional
map included within the dotted area can be embedded into our functional map by choosing the configuration of
the type-ll fixed function within the shadowed area. Since any function can be embedded in the dotted area, it
is possible to have a case wilf (x)| > 1. Indeed, we will give an explicit example satisfying(x)| > 1 in

Eq. (14).

In Fig. 6, there are intervals wheggx) < I*. If the generated map exists in such a region, a point evolving as
a type-lll point may be absorbed into this region and become a type-Il point. Indeed, when the point is mapped
into this region,f,,1(x") € I is satisfied, and the point becomes a type-II fixed point. On the other hand, if
g(x) e I?, atype-lll point remains a type-Ill during the entire evolution, and it never becomes a type-Il fixed
point.

Is there some restriction on the possible form of a generated map allowed by the present functional dynamics?
As discussed in Appendix C, there is some restriction according to the present embedding of the generated map.
However, as is also discussed in that appendix, an arbitrary one-dimensional map can be embedded as a generated
map by considering a two-step iteration, i.e., as a map to deterfiingx) from f, (x).

4. Meta-map in functional dynamics

In Section 3, we have shown how a one-dimensional generated map is formed by a suitable configuration of
type-1 and type-Il fixed points. In the example, the one-dimensional map is explicitly constructed with the condition
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g71u72 C 11U I%. We call the partial functiorf|;1,,,2 = f1y1 @ ‘unit-I'. In this case the generated mgy ;1,2 is

fixed in time. However, the CGM conditiaig, (/) C J) does not necessarily impose the condition for the ‘unit-I'.
Then, g,|; is not necessarily a fixed function. In this section, we consider such case in which a generated map
changes dynamically in time.

In the situation discussed in Section 3, in order for there to exists a generated map to determine the dynamics
of the type-lll points, it is essential that the map stays within a bounded area. The type-I fixed intervals determine
where type-Il fixed points can exist, from which the type-II fixed function never leaves. The configuration of type-I
and type-Il fixed points determines bounded areas in which the generated map remains as a branch. The type-ll
fixed function determines a generated map within the bounded areas (see Fig. 6).

In the last section, we considered the situation in which the dynamics of the type-Ill point determigigd lpy
evolves within the intervall U 12, according to the type-Il and corresponding type-I fixed points. This process can
be extended hierarchically. In this section, we consider a unit-1 instead of a type-I fixed interval and a type-Ill point
instead of a type-Il point, to see the dynamicsfpfx) determined by the type-I1ll point.

The unit-1 (f|,1) determines an interval where type-Il and type-Ill points can exist. The domain of the partial
function f|,1 is I* U I2. Thus, f,|,2,;3 € U? consists entirely of type-Il fixed points and type-IlI points. Here,
the dynamics of the type-Ill points are determined by a CGM, and their motion is confined within this region.
Thus, we replace the type-I fixed interval with unit-1 by the transformation (5) (see Fig. 10(a) and (b)). In case
considered in the last section, the configuration of type-I fixed intervals determines where the branches exist. Here,
the arrangement of unit-1 determines where the branches of the generated map exist.

First, we elucidate the branch structure determined by a unit-I (see Fig. 7). These branches are derived from type-|
and type-Il points. As noted at the branch derived from a type-I point, a one-dimensional map is given according to
the configuration of the type-Il fixed function. In the same way, at a branch derived from type-Il points, a bounded
map g, (x) exists according to the configuration of the type-IIl function. Sirfegs, consisting of the type-Ili

1.1 2
i type-II points

type-II points

Fig. 7. The hierarchical arrangement of a ‘meta-map’. The shaded area is a region where type-Ill points can exist and the dotted branch indicates
a region where the generated map derived from type-Ill points can exist. A generated Fdgaimam-dependenceg,|;s).
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Fig. 8. (a) Another close up of the return map of Fig. 1(a). At the poihtadicated by arrowsg, (x") has two values. (b) Time evolution of
fn(x") for 10000< n < 10300, which is determined by the meta-map and has a period 111. The fufjatidnis a type-1V point at the steps
n plotted with squares, while it is type-Ill otherwise.

points, depends om, the generated map, (x) = (1 — ¢)x + €f,(x), also depends om:

flaoe®),  f&x) el

gl = 1 —ox +ef (x),

falp(0) = g(faca(x)),  fulx) € I,

gnlp(x) = (L= )x + efn(x). (11)

Here, g, (x) is determined from the type-lil function and change with time stePhe pointf, (x') € I° evolves
according tog, (x)(fn+1(x") = g.(f(x"))). Sinceg,(x) is not a fixed function, it represents a change of rules.
Accordingly, we call this type of map a ‘meta-map’. By using these branches, we can construct a new CGM
consisting ofg(x) andg, (x). The type of point;, which evolves under the CGM can change in time. The interval

I can be writter/* U 12 U I3 U I# U Irest. Now, 12 and/* have the suffix.

When the dynamics of type-Ill points are periodic, determined by a (multi-branch) Nagumo—Sato map, the
dynamics of a type-IV point determined by the type-IIl points is also periodic. Indeed, this hierarchical structure is
often formed starting from a random initial function, since a generated map of the Nagumo—Sato type is commonly
formed as mentioned in Section 3. In Fig. 8(a), an example of a meta-map (return map) is plotted. These data were
obtained with a numerical simulation starting from a random initial function (see Sectiorfg3.Edr the points
indicated by arrows, the return map has two values. Hence the dynamics of the points are not determined by a fixed
generated map, but by a time-dependent generated map. In this case, the ‘type’ ofxaigaiotlonger fixed, but
can change between type-1V and type-Ill, depending on the intervals in whigh is located, ag changes. The
evolution of the ‘type’ of a particulat’ is plotted in Fig. 8(b).

A simple example of the ‘type’ change is displayed in Fig. 9. Here, fixed points in the right-hand part determine
gl 2, which determines the dynamics of type-Ill points with period-2. The type-Ill points determine a time-dependent
map that switches betwe@gqq|;3 and geverl;3. The fixed points on the left-hand side determij@](x), which
determines the dynamics of the type-lll points. Here, the fixed map consistig[§]ot) andgeven ;3 generates a
period-2 orbit. If the evolution of th¢, (x”) is determined byeven ;3 at everm andg[0] (x) at oddr, f,(x") changes
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Fig. 9. One of the simplest configurations for ‘type’ change. Type-I fixed paints, and two type-Il points determine a period-2 map (as
in the upper-right square). A period-2 motion driven by the generated map determines a period-2 bgaiich @hen,g[0](x) andgeven(x)
produce a period-2 orbit (as in the lower left square). If the evolution of a girl) is determined by [0](x) (Or geven(x)), f(x') is a type-llI
point (or type-1V point, respectively). The sequence of the ‘typefof’) is IIl, IV, 11, IV, I, ... .

cyclically with period-2 as

feven(x/) = g[o](fodd(x/))» fodd(x/) = gever(feven(x/))a (12)

and the ‘type’ of the point’ also changes cyclically with period-2 as IlI, IV, Ill, 1V, .. On the other hand, if the
evolution of £, (x") is determined byever(x) at oddn or g[0](x) at everw, f, (x') is a type-Il fixed point.

When a type-Ill point possesses a chaotic orbit, as given in Section 3.3, the nature of the functional dynamics
determined by this type-lll point is more interesting. Let us study the case with a chaotic generated map by
constructing an example. By choosing a suitable initial function, one can embed a one-dimensional map to construct
a meta-map explicitly. For example, we adopt the following one-dimensional map to be embedded:

Xn+1 =21 —€)x, +€ (modD. (13)

This map has chaotic orbits fer< % Indeed, the initial functioryo,

x, xel0, 31—l [31+e),10],
1- -1
foy =1 —x+ = xeda-o.dl 14
1—¢ 1—¢
e xe (3,340,

determines this map. In Fig. 10(a), the graph of thés plotted fore = % The dotted line represents the graph of
the go that has exactly the form, 1 = 2(1 — €)x, + €.

To constructa meta-map, we replace the type-I fixed interval in Fig. 10(b) witfitfusit-1) by the transformation
(5). With this nested structure, there are intervals where a type-Ill function exists, and the function determines an
n-dependeng, (x) (CGM). This CGM acts as the map for a point that satisfige’) € 11 U 12 U I3. For this
configuration, the dynamics of a part of a CGM are determined by type-Ill points. In this case, a point which satisfies
fa(x") c I® behaves as a type-IV point under the iteration.

In Fig. 11(a)—(e), the evolutions ‘ﬁ'|ui3=11f and the meta-map are plotted, where the mg?:lli is plotted
as a dotted line. Type-lll points evolve accordingfia1(x") = 2(1 — €) f,(x") + €. In the present example, the
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Fig. 10. (a) A configuration (indicated by the solid line) which determines a generated,map- 2(1 — €)x, + e(mod ) (indicated by the
dotted line) in the center square £ %). (b) An initial function fy leading to a hierarchical configuration of the map (a).

slopeg’(x) = 2(1 — ¢) is constant, and the slope of the type-IIl functi@ifi;s is easily calculated asf, (x) =
((1—¢€)/€)2"(1—¢)". The gradient of the generated map is determineg} @ = (1—¢€) + €/, (x), and it has the

form g, (x) = (1 —e){1+ 2"(1 — €)"}. Hence, this meta-map has a part where its gradient increases exponentially
with n.

This implies that our functional dynamics can have stronger orbital instability than deterministic chaos: a tiny
deviations from a point mapped to this type-Ill points grows BE_; |¢/,(x)|. Since[[{_,o* = a"*D/2 the
leading order of the exponent of the orbital instabilitys Hence, the orbital instability is such that a tiny deviation
grows as exfronst x n?) rather than exonst x n) as is the case in conventional chaos. Due to this strong
instability based on chaotic dynamics in the generated map, we call this dynamics ‘meta-chaos’. In Fig. 11(f), an
example of the orbits for meta-chaos is displayed. This evolution is determingd by The ‘type’ of the point
changes between IIl and IV according to the mngapr).

For a numerical simulation with this meta-chaos, the required mesh size increagedHasn&, a simulation
quickly becomes invalid as increases.

Inthe example mentioned above, we have constructed a meta-map by choosing special initial conditions. However,
we note again that a meta-map configuration itself is not special and can be reached, for example, from a random
initial function. Still, itis very rare to obtain a connected type-I fixed interval from random initial conditions. Hence,
in most simulations from arbitrarily chosen initial functions, we mostly observe generated maps of the Nagumo—-Sato
type, where magnitude of the slopg, (x)|, is always less than 1.

The nesting process of the meta-map can be continued hierarchically, since the configuration of type-I, type-II
and type-lll points, discussed above, can be a CS, in which the generated map becomes a CGM as a whole. This
arrangement of; |2 = f,,|U3 i is called a ‘unit-1I'. One can replace a unit-I in the above construction by such a
unit-1l. In such a situation, type IV points determine a generated map, and with an appropriate configuration, the
generated map can be a CGM. Now we can call the partial funglign = f,,|u4 i 2 ‘unit-1lI'. This hierarchy
to form a ‘unit-N’ can be continued foN — oo (see Fig. 12). To continue this nesting process, we define the

‘unit- N’ and theNth level meta-map as follows.

A unit-N is a partial functionf, |, ~. UV consists of type-l, Il,.., N + 1 points and satisfies the condition

gnlyy € UN. A point f,(x") € UN (with x” ¢ UN) evolves by the unity and has a ‘type’ from Il taV + 2. We
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Fig. 11. Time evolution off,,lua i andgn\ug i 1 (a) f1|U3 i (solid line) andgl\ug i (dotted line); (b = 2; (c)n = 3; (d)n = 10; (e)
n= 11f,1|u3 i consists of the type IIfunctlon and the type Il function. The type IV function has a shape H in{dhde). (f) Time evolution

of one pomtf(x’) xel\ ulel determined by the generated meta-map, at the center square (0 200). The ‘type’ of the functiory, (x")

changes between Il (driven by the piecewise linear pagt(®§) and IV (driven by time dependeg}, (x) (H, +)) in time. Squares indicate that

the ‘type’ of f,,(x") is IV atn. Since the mesh size required for the computation is extremely large, the plotted orbit is not precise. It is expected,
however, that the statistical properties are conserved with this numerical computation.
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Fig. 12. The schema of the meta-map. A one-dimensional map can be determined from the configuration of type-lI and type-Il fixed points
(unit-1). The functionf, (x) iterated by this map is a type-IIl point which determines a meta-map (unit-11). The meta-map is determined by the
map determined from a type-II fixed function and determines a dynamics of a type-IV point. The type-IV points and unit-1l determine a higher
level meta-map. This process can be continued recursively.

denote a function defined on an interval of tyNepoints asf.” (x) and the generated map determinedff¥(x) as
gY (x) (afixed function is written by (x) instead off" (x)). The functional equation rewritten in a recursive form
with respect to the ‘type’ has the form

M =gV Ny, xer), fierd o =A-ox+efNw), xer. (15)

TheNth level meta-map is defined as a CGM consisting|pf 2, g lj3s -+ gN*2|, n+2, where a one-dimensional
map determined from type-l and type-Il points is called the ‘Oth level’ meta-map. All meta-maps depend on the
fixed function f1;1,,2 and are constructed recursively fis: 2, f," |3, - .. f, |;n. The whole interval can be

written 71U 12U I,f’ U---UINU--.. Here note that a ‘type’ greater than 2 can change in time, although each point
has a finite maximal value of its ‘type’, depending on the initial configuration.

The Nth level meta-map is determined by the configuration of type-I,.ll, N + 2 points. It is important that
each unitiy and each branch are bounded. We can arbitrarily arrange anywamd type-lIll, 1V,. .., N + 2 points
according to the branches. The configuration producing a meta-map characterizes a ‘syntax’ foEeath has
a time evolution as a type. The ‘type’ of a point that is of type-IIl or higher changes in time. For a meta-map higher
than second level, there is a sequence, for example, 11, Il IV, V, Ill, There is a transition relation among tyjye-
(N > 2) points. Each point evolves under a hierarchy of meta-maps. In the above representation, the dynamics of
the Nth level meta-map is independent of that of the tyype- 3. This means that if noise is added fo(x"), the
effect of the noise spreads from the lower-level u¥ite the higher-level unitd (M > N).°

In a high level meta-map with the type-I fixed intervals, the orbital instability is stronger than the exponential
instability of conventional chaos. ff (x) ~ a(|a| > 1) andfi”' (x) is not a constant function (i.e., has a gradient
B # 0), thenf"' (x) ~ B[Ti_;a ~ ", andg"'(x) ~ . Now, the leading order of the slope of the first-level

n

5In this section, we have constructed the initial functitnexplicitly and studied the possibility of the existence of the meta-map. Here the
hierarchy of unit¥ is constructed step by step and the change of the types of aypairg restricted by the hierarchical combination of uMit-
In the general case, the dynamics of the is not always described as the evolution of points following a hierarchy of meta-maps, even if the
type of each point is defined. There is a change of types which breaks the hierarchy of meta-map. In such case, a partig| ffurestdves
under a partial generated mgp|z determined by a partial functiofi, |5, then at the next ste, 1|5 evolves undeg, 1|4 even after the
transients are decayed out (i.e..> 00). In other words, there is a set of initial function to be divided into partial functions which determine
the dynamics each other in turns. Such a ‘dynamical change of types’ will be studied in our future paper.
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meta-map isx" as is mentioned above. A type-IV functiof¥ (x) evolves under this first level meta-map. If
fV(x) is not a constant function and has a gradignt 0, fIV'(x) is calculated ay []j_;oa* ~ o, and
gV (x) ~ a"’. Hence,fY' (x) ~ o andgY'(x) ~ o"°. Repeating this argument, the leading order of the slope
of the Nth level meta-map is given WN. Thus a tiny deviation from a point, which evolves under the meta-map,
is amplified by|a|”N at eachn step. Because of this, avith level meta-map has an orbital instability that behaves
as exgeonst x nV*1). The level of the orbital instability increases with the level as(eapst x nV*1). In other
words, an exponerit corresponding to the Lyapunov exponent of conventional chaos increases as’ asn
increases for th&/th level meta-map.

5. Summary and discussion

In the present paper, we have studied functional dynamics, focusing on the generation of rules (mappings) for
the dynamics representing change of a function, and on the hierarchy of meta-rules.

As a first step, we introduced a new concept, the ‘generated gaapvhich is given fromf, and determines
the dynamics off,,. The dynamics of some other partsxoéire determined by this generated map, while a CGM is
defined as one that maps a region into itself. Functional values on some intervals were shown to change according
to the generated map. This leads to a one-dimensional map or a ‘meta-map’ that changes the map itself.

In Section 3, we explicitly showed that some classes of one-dimensional maps are embedded into this functional
dynamics. In Sections 3.1 and 3.2, a piecewise linear map with two intervals of the slopavére shown to be
generated from two type-I fixed points and two intervals of corresponding type-I1l fixed points. Next, this construction
was generalized to cover the case with several isolated type-I fixed points and the corresponding type-Il intervals.
There, a piecewise linear map with several intervals with slopeelwere found to be generated. This map,
called a ‘multi-branch Nagumo—Sato map’ exhibits periodic cycles. Hence, the dynamics of the functional values
determined by this generated map display a periodic cycle, which explains why periodic cycles are often generated
in our functional dynamics.

In Section 3.3, generated maps with type-I fixed intervals and type-Il points were discussed. In this case, a
one-dimensional map with an arbitrary slope can be embedded. Now, the functional dynamics determined by this
generated map can also exhibit chaotic dynamics.

As shown in Section 4, this construction of generated maps can continue hierarchically. The dynamics determined
by a generated map forms a higher-level generated map that determines the dynamics of other regions. Since this
map is changed by the first generated map, it is regarded as a ‘meta-map’, a map determined by another map. This
procedure can be continued ad infinitum, leading to meta—metaaps. When a generated map exhibits chaotic
dynamics, as discussed in Section 3.3, the dynamics by meta-map can exhibit ‘meta-chaos’, in the sense that the
evolution rule itself changes chaotically in time. It was shown that this meta-chaos has a stronger orbital instability
than in chaos, in the sense that a small deviation is amplified asangt x n*1) for the Mth level meta-map,
rather than exfronst x n).

Now, we discuss some relevance of our results for the target problems listed in Section 1. Eq. (1) represents
a process of iterating a function by referring the function itself. This iteration is introduced to study the change
of abstract input—output network. Our cognition process to generate language is thought to depend on iteration
of input—output relationships, and dynamic change of such relationships. External inputs that are inarticulated are
processed in our cognitive process recursively, and some symbols and rules to process them are formed. Hence
it is important to study a minimal model that captures iterative process to change input—output relationship. Our
functional dynamics give such model and we can extract a minimal mechanism to separate rules and objects from
inarticulated closed system. Although our model may not directly correspond to some specific cognitive process in
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our brain, it can capture the essence of how the articulation and rule generation are generally possible in a feedback
process of input—output relationship.

The basic structure of the functional dynamics is provided by two types of fixed points. They are invariant under
iterations and determine a fixed generated map.

The invariant parts of the function consists of type-l and type-Il functions, where the self-reference relation
f(x) = f o f(x) is satisfied. In generalfp has some points that fall on to fixed points of the iteration. Then,
type-1 points and type-Il functions are formed through the iteration process (see also I). Through the iteration of the
functional dynamics, the invariant part grows. This process is called articulation process in |.

The invariant part determines a fixed generated map which drives type-Ill points. This means thatif the fixed points
are removed by perturbing the initial function slightly 6hu 72, the dynamics of type-Ill points are influenced.

On the other hand, even if a type-IIl point is removed, there is no influence to the dynamics of the invariant part.

Hence, we can regard that the invariant part is elementary thamype? points. In the problem of language,
the invariant part corresponds to ‘nouns’ or basic substances. A type-I point is a point of the filter where accepts an
input as itis(f (x) = x) and the type-Il point is a point identifying an object with a type-I point. A type-IIl point is
determined from the invariant part and indicates a{;ﬁ,é't(x)} atn — oo. The setis determined from the invariant
part and has type-Il points as elements. At the same time the orbit of the type-Ill point determines a sequence
of type-Il points. By focusing on the aspect of a set to classify type-Il points, the type-Ill points are regarded to
represent a categorization (of type-Il points), while by noting the aspect of type-Ill points as an orbit of a sequence
of type-Il points, they are regarded as an operation over words. In the former viewpoint, the categorization means a
noun representing a set of nouns, while in the latter, the operation means an action to connect verbs with nouns to
form a sentence.

Similarly, the first-level meta-map determines a set of type-1l and type-Ill points and an orbit consisting of type-Ill
and type-IV points, as an operation on a set of type-ll and type-Ill points. In this hierarchical configuration, each
orbit is characterized by a sequence of types and a sequence of yaluesA point, which evolves under thgth
level meta-map, changes its ‘types’ among type-lll,.I\,, N + 3. This hierarchy of types means the hierarchical
categorization in classification, in one sense, while the sequence of ‘types’ provides a basis for the hierarchical
structure in grammar, seen, for example in a noun phrase or a relative pronoun.

A map and a meta-map determine an orbit, which evolves following a lower level structure in the hierarchy. In
our system, a higher-level structure is formed based on the lower-level structure, which we believe is an important
characteristic in language. For example, the cognitive language theory [9] captures the language as a network of
words where some words, called prototype, are elementary and other words are arranged in connection with the
prototypes. It is important that ‘stability of words’ against external perturbations is discussed there. The prototype
is derived from the restriction of our own body, or from a common feature in our society. For other words that
are not a prototype, similar words in a different society can have a different representation in the network. In our
functional dynamics, the fixed points appear as the invariant part and plays a central role to construct a network (in
fact, if the fixed points for the invariant part are removed, the network is broken). Although the cognitive language
theory does not focus dynamical aspects and has studied the static structure of language yet, the method which can
deal a structure as the categorization and operation at the same time will be needed. We believe that the present
study will provide a tool to study the cognitive process in language, even though the study at present is rather
preliminary.

In our system, a hierarchical structure is formed through iterations. As mentioned, this hierarchy is also a charac-
teristic of language, and it is important to note that a simple class of functional dynamics with recursive structure can
provide such hierarchy in general. The hierarchical structure in our functional dynamics has strong dependence on
the lower-level structure, since the higher-level structure is determined according to which branch of the generated
map is taken by the orbit.
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The form of the generated map depends on the configuration of type-I fixed points. If they are discrete, the
slope ofg,, is smaller than 1. When there exists a connected interval of type-I fixed pgintsn have a slope
larger than 1, and the meta-map can have a more complex orbit than in chaos. A connected type-I fixed interval
is generated by an identity function over some interval, which corresponds to a filter with which an agent acts
in response to the world without interpretation. In other words, chaotic functional dynamics and meta-chaos are
generated by adding a continuous input from the external world to the ‘closed’ world of functional dynamics only
with self-reference. In the present model only with self-reference, such an interval with partial identity function is
rare to be formed unless we put it as in initial condition, since in the model all the information is given in initial
function and no external input is added during the iterations. Here the information of external inputs is restricted
only within the initial function, to study how the articulation/rule-formation process continues fgoffrom the
study, we can identify what class of initial functions is required to have a certain class of dynamical behavior in
function, or to attain a certain class of cognitive structure when the present interpretation of the functional dynamics
as cognitive process is possible. Existence of type-I fixed interval as initial condition is one requirement to have
meta-chaos, while the hierarchy in types is a general feature of the functional dynamics observed in most initial
conditions.

To close our discussion on the language, we make a final speculation. As shown in I, a continuous non-decreasing
initial function converges to a fixed function. To have type-Ill poimisneeds to have at least two type-I points and
two type-Il points. If fp is a continuous function, there must be at least points satisfigod) = fo(x”) # fo(x”)
for x’ < x” < x”. In other words, two distinct parts of are assumed to take the same value initially. This
initial arrangement corresponds to identifying two distinct objects. Starting from such ‘cognitive confusion’, the
function increases complexity to have a higher-type points, through the iteration. The language may have acquired
its complexity starting from such cognitive confusion to identify distinct objects, which probably originates in some
restrictions of our body.

Possible extensions of the present study will be discussed in the future. In a two-dimensional version of
the functional dynamics, an arbitrary two-dimensional map can be embedded in the same way as in Section
3.3. Because of this, we can embed a Turing machine into this system [10] (see also Appendix B), where the
search for a relationship between the generalized shift [10] and meta-dynamics (meta-chaos) will be impor-
tant.

Non-trivial sets of functions over functions are studied in domain theory [6,7,11]. The most important difference
between systems studied in domain theory and our model lies in the dynamical aspects of functions treated only in
our approach. However, our meta-map is restricted within some intervals and is not extended over the whole domain.
Indeed, in our system the size of theh level meta-map decreases with ord&r However, such a contraction can
be removed in a more general functional dynamics. This will be important to obtain functional dynamics allowing
for a hierarchy of the meta-map over the whole domain.

Another extension required for language will be the inclusion of dialogue [2,3]. To this point, we have only
considered one agent whose function changes recursively. To study the social structure of language, functional
dynamics with several agents is necessary.
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Appendix A. Some properties ofF(x, y)

In this appendix, we investigate a general class of functional maps with the form

Jn+1 = F(fu, fuo fn). (A.l)

We study a fixed point condition and properties of the generated map.

This type of functional equation has fixed points (fixed functions). First, we déefine from F(x, y). Here,
Z(x) is the solution ofc = F(x, Z(x)). The fixed point condition is defined fro@xx). If the conditionf o f (x") =
Z(f (x))is satisfied f (x') is afixed point. IfF (x, y) = (1—€)x +€y, thenZ(x) = x, and the fixed point condition
is nothing butf o f(x’) = f(x"). The fixed point condition in the present general case is determined as follows.
(We give the correspondent equation for the case With, y) = (1 — ¢)x + €y in the square bracket [.] for
reference.)

1. If Z(x) isasingle-valued functiory,(x) = Z(x) is afixed function over the entire intervgl¢ 1 (x') = Z(f (x")).
[f(x) = x is afixed function.]

2. The point whereZ (x) intersects the identity functiotxr’ = Z(x") = f(x)) is a fixed point(f o f(x') =
f(&x) =Zx") = Z(f(x))). [Type-l fixed point condition.]

3. Ifapoint(x’, f(x")) is a fixed point( f (x") = Z(x')), a point(x”, f(x”)) which satisfiesf (x") = Z(x") = x’
is also a fixed pointf o f(x”) = f(x') = Z(x") = Z(f(x"))). [There is no such fixed point corresponding to
this case.]

4. If a point(x’, f(x)) is a fixed point, a point” with f(x") = f(x) is also a fixed point. [Type-Il fixed point.]

The most noteworthy difference from the case wittx, y) = (1 — ¢)x + ¢y is seen in (3). For a point(x”) =
Z(x"), the fixed point condition is tha o Z(x’) is a fixed point. ThereZ (x) decides a fixed point condition as an
orbit of a one-dimensional map. In other words, the ‘attractoZ 6f) is a fixed point of Eq. (15), and a sequence
{(f(X)), Zo f(x') = f(f(x), Z%0 f(xX)) = f(Zo f(x)),..., Z® o f(x') € attracto} consists of fixed points.

The functional equation can be divided into

Sfor1(x) = gn o fu(x), gn(x) = F(x, fu(x)), (A.2)

asin the casé'(x, y) = (1 — €)x + €y. The generated map viewpoint is also effective in this general case.

However, for a generdl (x, y), the transformation (5) cannot be adopted, bec#i(se y) is not linear. However,
the use of a generated map to construct a meta-map remains valid in a ge@erg) case, and a hierarchical
configuration can exist for a particular configuration.

Appendix B. Multi-branch Nagumo—Sato map

In general, f, with (at least) two type-I fixed points has the potential of possessing a Nagumo—Sato map as a
generated map. To consider the general situation, we define the ‘multi-branch Nagumo—-Sato map’ by (6), restricted
within aregion/ = [xg, x,—1], while xg, x1, .. ., x,—1 can be arranged arbitrarily. This type of map can be generated
from random initial conditions.

In this map, we can choose a function which determines a map producing cycle of any length of period. To
illustrate this property, we study the case with some special configurations.

First, two type-I fixed points are assumed to be 0 and 1. For the sake of symmetry, we che@él’hen, the
two branches are given by

g0l =3x, xel? fud=0 gl =3x+3 xel? fup=1 (B.1)
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{001}

{011} {101} {111}

{000} {010} {100} {110}

Fig. 13. A multi-branch Nagumo—Sato mafx(x). Two period-3 attractors coexist.

We represent a rational numbeiby the binary form Quyazas - - -, with eacha; = 0, 1 (herea = 332 ax27%).

In this representatiorgp(x) acts as a right-shift, which acts asifhizaz - - - — 0.0a1aza3- - -, andgi(x) acts as a
right-shift and inserts 1 into the head of the sequence@ga#fhiz - - - — 0.lajazasz - - - . Hence these two branches
act as 0, 1-inserter for a binary sequence.

Here we denote(a; = a;n) a8S{a1az - - - an }, While the set ofn-length sequencédaiaz - - - a,, } is denoted bys,,, .
The number of elements which belongsp is 2”1, and the values af(e S,,) takei /2”1 =0,1,...,2" D).

If {a1az---am} € Sm, {am, araz - - - am—1} € Sp. Because of this, wheg({a1az - - - a}) = g4, {a1a2 - - - an}), the
mapg(x) is a bijectionS,, — S,,. We defineM,, (x) = g(x) oversS,,.

M, (x) U M, (x) is a single-valued function for arbitrary, n. The condition that a point € S,, N S,,(m < n)
exists is thain is a divisor ofz. In such a case; has the form{aiaz - - - an} € Sp, and{aiaz - - - au}"/™ € §,,.
These two representations determine the samg Then, M (x) defined asJp? ; My (x) has an infinite period.

The functionM,, (x) is defined at 21 points. With an appropriate arrangement, it is possiblg @) generated
by the attractor of our functional dynamics to be made equaf td@x) for all x. As an example, we defingx)
asgo( for aninterval [/2"=1,i +1/2"=1) (i =0,1,...,2"~1 — 1). Here, @i) = O for eveni and i) = 1 for
oddi. In Fig. 13, we can take a sectidn/2" 1, (i +1)/2" 1) x [g(i/2" 1), g(i/2"~ 1) + 1/2"~1) within the
region whereg(x) is defined. The mag(x) determines the bijection sectior> sectiory. In each sectiong(x)
has a slope} (<1), and all orbits converge to attractors which are determineffhyx). Thus we can embed a
multi-branch Nagumo-Sato map which has multiple attractors.

In the same way, we can constructratbranch Nagumo—Sato map. We assume-i/n,i =0,1,...,n — 1.

If ¢ = (m — 1)/n, each branch has the form

i

el = Txt - (x eI?, fU?) = 5) : (B.2)
n n n

Each branclg[i](x) indicates a right-shift and insertiondt the head of the-digit sequence. Using these branches,
we can embed am-periodic point for am-digit representatiofug, as, ..., an—1}(@; =0,1,...,n —1).
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fn+2(x,) —
fa(x)

fm- l(x,)

Fig. 14. An example with an arbitrary one-dimensional map embedded. Once the map is determined as in thisfigurehich takes a value
in this region, evolves according t6,+1(x") = a(f2,(x")) and f2,+2(x") = b(fon+1(x")) = b o a(f2,(x")). If b(x) is the identity function,
Sont2(x") = a(f2,(x")). An arbitrary one-dimensional map can be embedded by observing the dynamics of the function every two steps.

Appendix C. Embedding a general one-dimensional map as a generated map

Let us examine closely the configuration of the type-| fixed intervals adopted to embed a one-dimensional
map. The area in which a one-dimensional map is embedded has to be on the intersection between each branch of
type-Il intervals and x I_i1 (see Fig. 6). This implies that we cannot embed a map which is continuous around the
identity function. However, one can embed an arbitrary one-dimensional map by considering a two-step iteration,
i.e., as a map to generafg;2(x) from f,(x). As shown in Fig. 14, let us take two maps in the dotted areas of
Fig. 6. As shown in the figure, the generated mg®(x) andg[1] (x) are put in two regular square sections. Here,

fa(x") which is mapped t@[0](x) evolves asf,+1(x") = g[0](f,(x")) and fur2(x") = g[1] o g[0](fu(x")). If
g[0](x) is the identity function, the time evolution ¢f,(x) atn = 2i (i is an integer) isf,+2(x") = g[1](fn (x")),
Frra(x)) = g[A)(fur2(x)) fur2i = a'(fo(x")). Hence an arbitrary one-dimensional map can be embedded as a
rule for the two-step iteration of the functional dynamics.
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