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Abstract

As a first step toward realizing a dynamical system that evolves while spontaneously determining its own rule for time
evolution, function dynamics (FD) is analyzed. FD consists of a functional equation with a self-referential term, given as
a dynamical system of a one-dimensional map. Through the time evolution of this system, a dynamical graph (a network)
emerges. This graph has three interesting properties: (i) vertices appear as stable elements, (ii) the terminals of directed edges
change in time, and (iii) some vertices determine the dynamics of edges, and edges determine the stability of the vertices,
complementarily. Two aspects of FD are studied, the generation of a graph (network) structure and the dynamics of this graph
(network) in the system.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In studying biological, linguistic, and social sys-
tems, one is generally interested in understanding how
a rule for the temporal evolution of a system is orga-
nized through the dynamics of the system itself. To
construct a model of such a system as a dynamical
system or to simulate it using a computer, however,
we need to supply a rule for the temporal evolution of
the system. It would thus seem that the goal of under-
standing the spontaneous emergence of such a rule in
biological systems through such modeling is difficult
to achieve.

∗ Corresponding author.
E-mail addresses:kataoka@kurims.kyoto-u.ac.jp (N. Kataoka),
kaneko@cyber.c.u-tokyo.ac.jp (K. Kaneko).

For example, in a dynamical systems approach to
the modeling of such a system, a rule governing the
evolution of a set of variables takes the form of a
set of equations. Then, in a naive attempt to realize
the goal stated above, we may introduce a dynamical
system describing the evolution of these equations,
as a ‘rule forming’ dynamics. However, the resulting
‘dynamical dynamical system’ would be nothing but
a high-dimensional dynamical system. With the same
goal in mind, then, we would need to introduce another
dynamical system to describe the change undergone
by this high-dimensional system. We thus see how a
naive attempt to realize the spontaneous emergence
of a fundamental dynamics-governing rule results in
an infinite hierarchy of systems and necessarily meets
with failure.

In this paper, we consider a model with the po-
tentiality to form such a hierarchy spontaneously
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within an infinite-dimensional dynamical system. We
will show that low-dimensional dynamical systems
are generated from the original infinite-dimensional
dynamical system. The generation of such low-
dimensional systems constitutes the generation of a
dynamic-governing rule. We elucidate the mechanism
for this rule generation.

To serve the present purpose of studying biological
systems, the function dynamics (FD) that we previ-
ously introduced[1–3] is reformulated inSection 2.
In this FD, we adopt a functional equation having
a ‘self-reference’ term, i.e., a term including com-
position of a function (sayf ◦ f ). With this term,
it is shown that a rule governing the dynamics of
partial functions restricted to certain intervals is gen-
erated. This rule is determined by partial functions on
other intervals. With this relationship among partial
functions, low-dimensional dynamical systems are
formed from the original infinite dimensional dynam-
ical system. Accordingly, the function dynamics of
the original system can be interpreted as dynamics
over partial functions. From this point of view, the
partial functions can be considered as elements in a
self-organized, low-dimensional system that evolves
together while mutually generating rules that govern
each other’s dynamics. We first demonstrate that func-
tion dynamics generates rules hierarchically among
partial functions. Then, we find that the relationships
among partial functions are sometimes entangled, in
the sense that one partial function gives a rule for
some other partial functions, which give a rule for
the original partial function. The formation of suc-
cessive rules for low-dimensional systems and this
entanglement of rules is analyzed.

In Section 3, formation of low-dimensional dynam-
ical systems is studied, and inSection 4, the dynamics
of the low-dimensional system are investigated. Sum-
mary and discussion are given inSection 5.

2. The model and its basic features

Let f be a one-dimensional map,I → I. We de-
fine a map from the one-dimensional mapf to a new
one-dimensional map asΨε(f) = (1−ε)id+εf . Here

id is an identity function andε is a constant (0< ε <

1). This map is well defined iff(I) ⊆ I is satisfied.
We define an FD system employing suchf andΨ as
follows:

fn+1 = Ψε(fn) ◦ fn = (1 − ε)fn + εfn ◦ fn. (1)

This equation determines the evolution of the func-
tion fn. If the initial functionf0 satisfiesf0(I) ⊆ I,
the temporal evolution, i.e.fn (n = 1,2, . . . ), is de-
termined.

The evolution equation of a function is generally
an infinite-dimensional dynamical system. Among the
class of systems consisting of such function dynam-
ics, the existence of the ‘self-referential’ termfn ◦ fn

is the distinguishing feature that characterizes the sys-
tem(1). This composition termfn ◦fn determines the
temporal evolution offn, and it is an operation in the
functional space. With this term, the rule governing
the evolution of a functional value at a particular value
of its argument depends on the values of the function
taken at other values of the argument.

Next, we give an example of the temporal evolution
of fn determined by(1). Here we set the initial func-
tion f0(x) = sin2(1.5πx) andε = 0.55. InFig. 1, the
graph offn for certain values ofn are displayed. We
find that after a transient,fn exhibits a temporal oscil-
lation with a period of two time steps. In this example,
the total function falls on a period-2 attractor in the
functional space. However, for some other values of
ε, more complicated behavior appears. In general, it is
not easy to fully explore all the phenomena displayed
by our model by computer simulation alone.

To carry out a numerical computation for the
above FD, it is necessary to divide an interval into
a finite number,M, of mesh points. For example,
I = [0,1) could be divided into subintervals as
Ii = [i/M, (i+ 1)/M) (i = 0, . . . ,M − 1). However,
the composition term often causes a folding of the
graph of the function at each time step, as shown in
Fig. 1(a) and (b). For an initial function with a single
hump, the number of foldings can increase approx-
imately in proportion to 2n. Hence, finer and finer
structures can be generated in the graph offn, and
as a result the outcome of the simulation can have a
strong dependence on the mesh sizeM. Because the
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Fig. 1. An example of the time evolution described by(1) with f0(x) = sin2(1.5πx) and ε = 0.55. Graphed here are (a)f0 and f1, (b)
f2, (c) f1000 and (d)f1001. The mesh size isM = 4000. In this examplef∞ is on a period-2 attractor in the functional space. The arrows
in (c) and (d) are included to make the period-2 oscillation easily recognizable. Later, the graph offn oscillates between the forms shown
in (c) (for evenn) and (d) (for oddn).

folding effect generates infinitesimal (Cantor-set-like)
structures[4] with a variety of scales, it is difficult to
study this system by direct computer simulation.

In general, the following relations are fundamental
for the study of FD:

• If fn(x
′) = fn(x

′′) is satisfied at somen, then
fm(x′) = fm(x′′) for all m > n.

• fn|{q} for q such thatfn(q) = q is n-independent.
Herefl|{q′} is defined asn-independent, iffm(q′) =
fl(q

′) for all m > l.

We denote the set of fixed points of a one-dimensional
mapf by Fix(f). Note thatfn|{x′} for x′ /∈ Fix(fn)

satisfyingfn(x
′) = q ∈ Fix(fn) is alson-independent

in the FD. In other words, if the value offn at a
point is equal to a fixed point, then this partial func-
tion is alson-independent. The entire domain of all
n-independent partial functions (including all points
in Fix(f )) is denotedΩ(f).

3. Network structure

In Fig. 1(c) and (d), eachfn seems to be a piece-
wise constant function (that is, the graph offn con-
sists of flat pieces). This property is not peculiar to
this initial function, but is rather general. Although
we have simulatedEq. (1) using a variety of initial
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functions, in all cases, the functionfn for sufficiently
largen consists of a set of constant partial functions.
(Strictly speaking,fn approaches such a form asymp-
totically asn → ∞.) Thus we find through our com-
puter simulations that the number of elements of the
set1 {fn(i/(M−1))} (i = 0, . . . ,M−1, withn fixed),
|{fn(i/(M − 1))}|, satisfies|{fn(i/(M − 1))}| � M

for largen, in the computer simulation[1].
In this section the generation of flat pieces in the

graph offn is studied. Because FD consists of dy-
namics of a one-dimensional map, to avoid confusion
between the function on the intervalI and that on the
functional space, we define some useful notation.

(3-i) A “partial functionfn|A” is a function defined
on an intervalA (A ⊂ I), andfn|A(x) = fn(x)

for x ∈ A.
(3-ii) A “fixed point of fn” means a fixed point of

the one-dimensional mapfn. A “fixed point
of the FD” means a one-dimensional mapfn

satisfying thatfn+1 = fn.
(3-iii) If a partial functionfn|A satisfiesfm|A = fn|A

∀m > n, we say that “fn|A is n-independent”.
(3-iv) As already mentioned, the statement “fn|A is

a constant function” means thatfn(A) = cn

(cn ∈ I) for given n. It is important to keep
distinction between the statements “fn|A is a
constant function” and “fn|A isn-independent”
clear.

(3-v) The term “(temporal) evolution” refers to that
of the functionfn (i.e.,f0, f1, . . . ). It does not
refer to the dynamics of the one-dimensional
map, given byxm+1 = fn(xm).

(3-vi) We define a network for the functionfn, in
order to describe a graph offn in terms of
graph theory. In general, a network consists of
elements (vertices) and edges. Throughout the
paper, we useA in reference to a connected
entire interval (i.e., the domain of constant
fn|A that is not proper subset of any other
such intervals). We consider each domain of
a constant partial functionfn|A as an element
(i.e., vertex). We consider a directed edge to

1 Here we denote the number of elements of a setS as |S|.

be associated withA andB, if fn(A) ∈ B is
satisfied. A dynamical “network” consists of
elements formed through time evolution and
edges whose terminals change in time.

3.1. Stability around a fixed point

Now we discuss how a constant partial function is
formed in FD and study its stability. First, we consider
an initial functionf0(x) = a0(x − q) + q, around the
fixed pointq. The evolution equation of the slopean
is easily found to take the forman+1 = (1 − ε)an +
εa2

n. This one-dimensional map has fixed pointsan =
0 and 1, withan = 0 stable andan = 1 unstable.
The basin of the fixed point 0 is(−1/ε,1). Thus if
f ′
n(x) is constant and the relation−1/ε < f ′

n(x) <

1 is satisfied onA around a fixed point, thenan =
f ′
n(x) → 0 asn → ∞ and hencef∞(x) = q. Thus,

the slope of the graph offn|A(x) goes to 0.
The following theorem has been proved[3].

Theorem. Consider the functiond(x) = (−1/ε)
(x−q)+q. If fn(x) is continuous around a fixed point q
(on the intervalq ∈ A ⊆ I) and satisfies the conditions

(i) (d(x) − fn(x))(x − fn(x)) < 0 for x ∈ A \ {q},
(ii) fn(A) ⊆ A,

thenfn|A(x) → q asn → ∞.

In Fig. 2, the assertion of this theorem is depicted
graphically.

As n increases, the number of fixed points offn

increases (seeFig. 1). If the conditions stated in the
theorem are satisfied around a fixed point, the graph
of the function around this fixed point becomes flat
asn increases. However, this does not necessarily im-
ply thatfn always converges to a piecewise constant
n-independent function as will be shown in the next
subsection.

3.2. Generated map

We investigated the FD using a ‘generated map’ in
earlier papers[2,3]. This generated map is defined as

gn = Ψ(fn) = (1 − ε)id + εfn. (2)
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Fig. 2. If the graph of a continuous function is contained within
the shaded area around the fixed pointq in the figure, the function
converges to a constantf∞(x) = q. Here, f0(x) = − sin(πx)

(q = 0) and ε = 1/4.

This map is determined byfn. (We use the term
‘generated’ here becausegn is generated fromfn.)
Using this map, the FD(1) can be represented by
fn+1 = gn(fn). For eachx, the valuefn+1(x) is de-
termined by the equationfn+1(x) = gn|A(y) (where
y = fn(x) andy ∈ A). Also note that the valuegn|A
is determined byfn|A. (In the following discussion,
we also use the term ‘drive’, as in the phrase ‘fn|{x}
is driven bygn|A’, and the term ‘refer’, as in ‘fn|{x}
refers toA’, whenfn(x) ∈ A.)

Let us rewrite thegn(x) in the formgn(x) = (1 −
ε)(x − fn(x)) + fn(x). This form is useful to pre-
pare a suitable initial functionf0. If fn(A) = c, then
gn|A(x) = (1 − ε)(x − c) + c. The graph of this gen-
erated map is a segment contained in the line of slope
1− ε that crosses the identity function atc. Examples
of (a) a graph offn(x) and (b) the corresponding gen-
erated mapgn(x) are displayed inFig. 3. Forfn(x) ∈
A, fn+1(x) is determined byfn+1(x) = gn|A ◦ fn(x).
If the attractor2 of the generated mapgn is not a fixed
point, ann-dependent functionfn(x) can exist.

Choosing a suitablef0, it is possible for the map
gn generated from ann-independentfn|Ω to have a
periodic attractor. The typical generated map onΩ(fn)

(see the definition inSection 2) is a piece-wise linear

2 Here the word ‘attractor’ is used in a rather broad sense,
becausegn can be ann-dependent function.

Fig. 3. Examples of a graph of (a)fn(x) and (b) its gener-
ated mapgn(x). Here fn|Ω(x) ∈ Fix(fn) and thereforefn|Ω is
n-independent.fn(Ψ) ⊂ Ω, and thusfn+1|Ψ = gn|Ω ◦ fn|Ψ . The
slope ofgn|Ω is 1− ε. In this example,ε = 3/5. The thin broken
line crosses the identity function atfn(x) and has slope 1− ε.

map of slope 1− ε. The most general one is given by
the Nagumo–Sato map,

xn+1 = (1 − ε)xn + w mod 1, 0 < ε < 1.

This map is generated from the initial function,

f0(x) =




w

ε
for x ∈

[
0,

1 − w

1 − ε

) ⋃ {w

ε

}
,

w − 1

ε
for x ∈

[
1 − w

1 − ε
,1

) ⋃ {
w − 1

ε

}
.

(3)

Note that each partial function is constant here.

3.3. Emergence of elements

In Section 3.1, we stated a theorem asserting the
stability around a fixed point, and inSection 3.2, we
introduced the generated map. To close the present
section, we now study the emergence of a piecewise
constant function.

If fn(x) is constant around a fixed pointq (onA =
[q − a, q + b]), the corresponding generated map is
given bygn|A(x) = (1 − ε)(x − q) + q. This gener-
ated map crosses the identity function atq with slope
1− ε and has a stable fixed pointq. Thus, if there is a
subintervalB (B∩A = ∅) on whichfn(B) ⊆ A is sat-
isfied, thenfn(B) → q asn → ∞, and a new flat part
is generated. This constant function isn-independent
(i.e. A,B ⊆ Ω).
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Since the generated map of a constant partial func-
tion fn|Φ3 has slope 1− ε. As long as the values
fn(x

′) andfn(x
′′) refer toΦ, the difference between

them decreases by the factor 1− ε per iteration.
That is, if fn(x

′′) = fn(x
′) + δ, and fn(x

′) and
fn(x

′′) refer to Φ, then |fn+1(x
′) − fn+1(x

′′)| =
(1 − ε)|fn(x

′′) − fn(x
′)| = (1 − ε)δ. From this con-

sideration,f∞ is expected to be a piecewise constant
function. In fact, all computer simulations carried out
to this time support this conjecture.4

From the graph theoretical point of view, the func-
tion fn is regarded as a graph with verticesx′ and
directed edges fromfn(x

′) to x′.5 In FD, a vertex cor-
responding to a domain of a flat piece is regarded as
a single ‘element’, while an edge changes in time, ac-
cording to the dynamics offn(x

′) (see the definition
(3-vi)). The evolution rule for edges is determined by
the generated map, which is determined by the ele-
ments and edges. In the next section, a class of net-
work dynamics exhibited by FD systems is studied.

4. Dynamical network

In the previous section, the emergence of ‘elements’
was discussed. There, it was seen how asn → ∞, a
functionfn approaches a piecewise constant function,
with each constant piece regarded as an element in
a network. Each constant partial function determines
one linear part of a piecewise linear generated map
with slope 1− ε. The generated map determines the
dynamics of the edges. In this section, we study these
dynamics.

4.1. Choice of the initial function

As illustrated for a particular case inFig. 1, we
have found that beginning from most continuous initial

3 This intervalΦ is not necessarily identical toΩ.
4 The partial functionf0(x)|A = x is alson-independent. If we

start from this identity partial function, it is maintained under the
FD. However, a slight perturbation from it leads to a piecewise
constant function.

5 The direction of the edge is opposite to the direction of the
mappingfn. Here the direction of the edge is chosen to be in the
direction of the propagation of a perturbation applied to at one
partial function, which is discussed inSection 4.3.

functions,fn evolves toward a limit function with a
shape that is too complicated to be computed. As long
as we are interested in complex dynamics, however,
we need to study the rather complicated generated
maps that are formed generally through such temporal
evolution.

We start by considering computer simulations to
obtain a very rough sketch of the functional space.
In Fig. 4, we display three initial functions (·-1) and
the corresponding rough phase diagrams obtained
numerically (·-2). In these phase diagrams (·-2), the
horizontal axis representsε, and the vertical axis
represents a parameter characterizingf0(x), which
becomes steeper as the value of this parameter in-
creases. In this diagram, a dot is plotted in the case
that fn does not converge to ann-independent func-
tion after 1000 steps (which is generally sufficient for
transient behavior to have died out). In other words,
for a parameter set indicated by a dot, the attractor
of fn is time dependent, while at all other points,fn

converges to ann-independent function.
Recall that the stability around a fixed point depends

on ε (seeSection 3.1). The stability criterion curve
u given in Section 3.1is also plotted inFig. 4(·-2).
Below this curve, the fixed points indicated in (·-1)
are stable (while above the curve they are unstable),
and therefore here the graph around the fixed point
converges to flat pieces.

If the graph around a fixed pointq (q ∈ A) is flat,
then all fn(x) ∈ A converge toq as n → ∞. As
shown in Fig. 4, the stability around a fixed point
plays an important role in determining whetherfn is
n-dependent orn-independent.6

To avoid the complicated effect of the folding of
the graph offn, and to focus on the dynamics of the
network, we choose an appropriate piecewise constant
function as the initial functionf0. Let I be divided
into N non-overlapping subintervalsIi (I = ⋃N−1

0 Ii

6 As shown previously, there is a gap between the stability
criterion curve of the fixed point and the boundary between the
phases corresponding ton-dependent andn-independent functions.
Probably this gap can be reduced by considering the fixed points
of f1, f2, . . . , successively, and by using a proper renormalization
procedure[5]. However, this has not yet been successfully carried
out.
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Fig. 4. Phase diagram (·-2) regarding the behavior of the attractor offn, starting from the initial functions displayed in (·-1), obtained
through numerical simulations using the mesh numberM = 6000. Dots are plotted at points (r, ε) in (a) and (k, ε) in (b) and (c) in
the case thatfn does not converge after 1000 steps. Hereu(x) is the stability criterion curve. In (a-1),f0(x) = rx(1 − x), r = 3.8.
In (a-2), u(x) = 2 + 1/ε. In (b-1), f0(x) = (1 − k)x + k sin2((3/2)πx), k = 0.9. In (b-2), u(x) = (2/(

√
2 + 3π))(1 + 1/ε). In (c-1),

f0(x) = x+ (k/m) sin(2πmx) (if f0(x) < 0, f0(x) = 0, while if f0(x) > 1, f0(x) = 1), m = 5, k = 1.5. In (c-2),u(x) = (1/2π)(1+ 1/ε).



242 N. Kataoka, K. Kaneko / Physica D 181 (2003) 235–251

andIi ∩ Ij = ∅). The initial function is chosen as

f0(x) =
N∑
i=1

ai01Ii (x). (4)

Here, the indicating function is defined as

1Ii (x) =
{

1 x ∈ Ii,

0 x /∈ Ii,

andf0(I
i) = ai0. In this section, we consider the case

in which theai0 are chosen randomly, using a uniform
distribution on [0,1].

Although the above initial function may seem too
simple or too special to study the network dynamics
of an FD system, in fact this is not the case.

• As mentioned in the previous section, a continuous
fn approaches a piecewise constant function (con-
sisting of a finite or infinite number of pieces) as
n → ∞.

• To study the dynamics offn, determining the sta-
bility around a fixed point is important. If a contin-
uous partial function is unstable on both sides of a
fixed pointq for all n, then the value of the partial
function does not converge toq. In such a situation,
we believe that partial functionsfn|[a,q) andfn|(q,b]

approaches a constant function and do not take the
valueq.

Of course, the set of limit functions resulting from
the set of all continuous initial functions is not iden-
tical to that resulting from the set of all piecewise
constant initial functions. However, the limit function
realized with a piecewise constant initial function
takes finite number of values (ifN is finite), and each
partial function displays periodic motion with finite
period (becauseg′

n = 1 − ε < 1). This means that
if we choose a continuous initial function satisfying
h0|S = fn|S on the setS = {fn(I

i)} (for all i after
the transient behavior has died out), the evolution of
the partial functionhm|S is identical tofn+m|S .

4.2. Classification of the dynamical network

Usingf0 as defined in the previous subsection, we
numerically computed the temporal evolution offn.

In Fig. 5, two typical results (excluding transients)
are displayed. In this set of simulations, we choose
N = 30 andε = 0.1. We find that some neighboring
subintervals are mapped to the same value after the
transient behavior has ended, i.e.,fn(I

i) = fn(I
i+1)

for sufficiently largen. In this case, these subintervals
join to form a new subinterval. In such situation, the
indices of the subintervals are renumbered. (Hence the
maximal value of the indexi for the subintervalsIi

can become smaller thanN − 1 (26 in Fig. 5(a) and
24 in Fig. 5(b)).)

For most initial functions,fn(x) falls on an attrac-
tor rapidly (by n ∼ 100). In Fig. 5(·-1), the graphs
of fn (n = 1000–1010) are overlaid. As three typical
examples we show the behavior offn|I6, fn|I2 and
fn|I13 specifically. In (a-1), the period offn|I6 is 5
and the period offn|I2 and fn|I13 is 10. In (b-1),
the period of all periodic partial functions is 145.
Although there seems to be no easily discernible
difference between two time series, there is a sig-
nificant difference between the structures of their
networks.

We now set out to describe the function dynamics
in terms of network dynamics. First, letSn(i) be a
function mapping a set of indices to itself. We define
Sn(i) andS(i) as follows:Sn(i) = j if fn(I

i) ∈ Ij and
S(i) := ∪n{SN+n(i)}. HereN is a sufficiently large
number such that the transient behavior has died out.
In other wordsS(i) is the set of allSn(i) after transient
behavior. A directed edge froma to b in Fig. 5(·-2) is
drawn if a ∈ S(b).

Now, letλ be a set of indices. Here, two classes of
λ are important for later discussion.

(4-i) The class for whichS(λ) ⊆ λ. In this case,fn|Ii
(i ∈ λ) evolves independently offn|Ij for any
j /∈ λ. This means that the time evolution of
fn|Ii (i ∈ λ) is not influenced by a perturbation
applied to the value offn|Ij for any j /∈ λ.

If two sets of indicesλ0 andλ1 satisfy this
condition and ifλ0 ⊂ λ1, we say that ‘λ0 and
λ1’ are hierarchical.7 In this situation, a per-
turbation applied tofn|Ii (i ∈ λ0) can influence

7 We call the generated mapgn|Ii (i ∈ λ1) a ‘meta-map’[2].
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Fig. 5. Two typical results are displayed in (a) and (b) for the caseε = 0.1. Each partial function plotted is on the attractor. In both the
cases, the simulation started from a random piecewise constantf0. In (·-1), the graphs offn (n = 1000–1010) are overlaid. In (·-2), the
corresponding network is displayed. The indexi with a filled circle indicates thatfn|Ii is n-independent, while that with an unfilled circle
indicates thatfn|Ii is n-dependent. A square drawn with a broken line indicates a set of indicesλ that satisfiesS(λ) ⊆ λ. (a-1) The period
of fn|I6 is 5 and the period offn|I2 andfn|I13 is 10. (b-2) The period of all periodic partial functions is 145 (although the phase of the
oscillation is different for each subinterval).

the evolution offn|Ij (j ∈ λ1 \ λ0), but a per-
turbation applied tofn|Ij (j ∈ λ1 \ λ0) does
not influence the evolution offn|Ii (i ∈ λ0).

(4-ii) The class for whichS(λ) = λ. In this case,
if λ consists of a single element, the corre-
sponding edge isn-independent. Ifλ consists
of more than one element the network formed
by S(λ) possesses a loop. This means that
i ∈ S(i) ∪ S(S(i)) ∪ S(S(S(i))) ∪ · · · for some
indicesi. Then, if some perturbation is applied
to at fn|Ii for i contained in this loop, the ef-

fect propagates through the loop and eventually
returns toi itself. In this case, we say thatλ is
‘entangled’.

In Fig. 5(·-2), setsλ satisfyingS(λ) ⊆ λ are con-
tained within squares drawn with broken lines, while
entanglements are indicated by loops drawn with
broken lines. As shown, the network inFig. 5(a) is
hierarchical with four layers, and there is no entan-
glement. Contrastingly, the network inFig. 5(b) has
two entanglements (two loops).
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The shape of the network is determined by the man-
ner in which intervals are related underfn, and the
shape can be preserved even if the period of each par-
tial function is changed by changing the couplingε.
Recall that the shape of the network is resulting from
the contracting nature of the generated map. For this
reason the shape can be preserved when a small change
is made to the parameterε, and the network is stable
with respect to the changes inε. Also, a network can
be stable with respect to noise applied to each partial
function. In the next subsection, we study the effect
of noise on the network.

4.3. Entangled network

Dynamical networks in FD systems can possess hi-
erarchy and entanglement. As discussed above one
difference between a network with entanglement and
one without entanglement regards the behavior result-
ing from perturbation. In this subsection, we study the
effect of noise on dynamical networks.

If a network is hierarchical and contains no loops
(no entanglements), the evolution offn can be or-
dered unidirectionally:n-independent partial func-
tions determine ann-independent generated map,
which drivesn-dependent partial functions, which de-
termine ann-dependent generated map, which drives
other n-dependent partial functions, and so forth.8

In this case, the hierarchy of relations among par-
tial functions is uniquely ordered through generated
maps.

Now, we consider how a perturbation applied to
one partial function propagates. For this purpose, we
apply “noise” to one partial function, changingfn|A
to fn|A + δ1A, with δ as a small number. Here the
noise is added only at thenth step, and later time
evolution of the function is given by(1) without noise.
We now study how the effect of such a perturbation is
transmitted through the network.

In the case of a hierarchical network without entan-
glement, this noise propagates in one direction. In this
case, there are three types of noise effects:

8 In Ref. [2], this hierarchy is represented by meta–meta–· · ·
maps.

(i) Noise destroys the network, and a new network
appears.

(ii) The effect of the noise disappears due to the con-
traction induced by the generated map.

(iii) The effect of noise propagates unidirectionally
the network, while the shape of the network is
preserved. In this case, only the phase of oscilla-
tion of each partial functionfn|A is changed.

If the noise amplitudeδ is not too large, the net-
work shape is not destroyed, and the only important
effect is that of type (iii). In this situation, the phase
change of a partial function causes a phase change of
the correspondingn-dependent generated map. As a
result, the phase of the partial function driven by this
generated map changes, and so forth. Hence, the noise
effect for a sufficiently small amplitudeδ in such a
hierarchical network consists of represented as uni-
directional propagation of phase changes through the
network.

In the case of a network with entanglement, an-
other type of noise effect, which is caused by loops,
appears:

(iv) The noise effect circulates through a loop and
leads to a transition to a new attractor.

In this case, the noise propagates unidirectionally
in the loop and returns to the element to which the
perturbation was applied. This returned noise changes
the generated map again, and this effect, if it does
not decay away, returns to the same element again.
Due to the continuation of this process, a new attrac-
tor on the loop is formed. This behavior is in strong
contrast with that seen in hierarchical networks with-
out loops, in which only the phase of oscillation is
changed.

4.3.1. Simple entanglement: an example
Now, we study the dynamics of a network with en-

tanglement, using several different initial functions.
First, let I = [0,1] be divided into the subintervals
Ii = (i/6, (i + 1)/6) (i = 0, . . . ,5), and the points
{i/6} (i = 0, . . . ,6). (Obviously, I = (∪5

0(I
i)) ∪

(∪6
0{i/6}).) We define the initial functionf0 according

to Eq. (4), in terms of the parameterai0.
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Fig. 6. (a) The graph of a limit functionfn (n = 1000–1026). Here,a0
0 = 1/3+ 1/20, a2

0 = 2/3+ 1/10, a3
0 = 1/10, a5

0 = 1/3+ 1/10 and
ε = 0.11. The period is 26. (b) The network corresponding to this function. There are three loops.

f0({1
6i}) = 1

6i, a0
0 ∈ I2 ∪ I3, a1

0 = 0,

a2
0 ∈ I4 ∪ I5, a3

0 ∈ I0 ∪ I1, a4
0 = 1,

a5
0 ∈ I2 ∪ I3. (5)

In Fig. 6(a), an example of the limit function result-
ing from such anf0 is displayed. In that case, the set
of initial valuesai0 were chosen asa0

0 = 1/3 + 1/20,
a2

0 = 2/3 + 1/10, a3
0 = 1/10, a5

0 = 1/3 + 1/10 and
ε = 0.11 was used. In the figure, the graphs offn for
n = 1000–1026 are overlaid. The period offn here is
26.

The network for this function is shown inFig. 6(b).
As seen, there are three loops. It was found that ifε <

1/6, the shape of the network does not change from
the initial time, because the generated map satisfies the
conditiongn|I2i∪I2i+1 ⊂ I2i∪I2i+1 for i = 0,1,2. Due
to the nature off0 given byEq. (5), the possible types
of network structure are restricted. First, the partial
functionsfn|I1 andfn|I4 aren-independent. The other
four fn|Ii are n-dependent and refer to someI2j ∪
I2j+1 (for example,fn(I

0) ∈ I2 or I3). Thus each of
the fourn-dependent partial functions refers to either
of two subintervals at each time step. Accordingly,
there are 2×2×2×2 possibilities at each step. InFig. 7,
the 16 possible networks that are allowed for this type
of initial function are displayed as the directed edges
Sn(i) → i. At each time step,fn corresponds to one of
these 16 possible networks. We call the number in the

figure the ‘state’ of the network. Since the number of
states, 16, is smaller than the period, 26, the network
must exist in the same state (but with different values
of the partial functions) at different times in a single
period during the evolution.

The FD system we study can be described in terms
of the dynamics of a network, consisting of succes-
sive transitions between the states defined in the above
manner. The actual set of allowed transitions between
states depends on the initial valuesai0. By examin-
ing the FD of each partial function, case by case, one
can show that possible sequences of transitions are of
two types, as defined inFig. 8(a-2) and (b-2). These
two types correspond to the cases in whichf0(I

0) �=
f0(I

5) andf0(I
0) = f0(I

5). Each type includes the
transitions denoted by both solid and broken arrows
in the figures, but for givenai0, the actual transition
sequence includes only some of the transitions indi-
cated. For the particular choices off0 considered here,
only the transitions denoted by solid arrows occur.

Two examples of the sequence of transitions be-
tween states starting from two different initial func-
tions are plotted inFig. 8. Here, two actual sequences
of transitions between states fromn = 1000 to 1030
are plotted inFig. 8(a-1) and (b-1), wheref0(I

0) =
f0(I

5) is satisfied in (b-1) and not in (a-1). As shown
in Fig. 8, the set of possible transitions depends on
whetherf0(I

0) = f0(I
5) is satisfied or not. This set
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Fig. 7. The 16 possible states of the network at any given time stepn allowed by the initial nature off0 as defined inEq. (5).

in the former case is depicted in (b-2) and in the latter
case in (a-2). (Note that these sets of transitions char-
acterize long-time behavior, i.e., after transient behav-
ior has ended.)

Now, the functionfn on an attractor is characterized
on three levels, according to (i) the value offn|Ii , (ii)
the state of the network, and (iii) the set of possible
transitions given inFig. 8(·-2).

4.3.2. Transitions among attractors in entangled
networks

As discussed above, the behavior of the network
dynamics in an FD system depends on the initial con-
ditions, represented by the valuesai0. Although the
parameter characterizing the FD model,ε, is fixed,

the change undergone by the FD attractor as theai0
are changed is bifurcation-like, because the generated
map changes with the values of theai0. To elucidate
the dependence on the initial conditions, we carried
out numerical simulations using the definition given in
Eq. (5), employing various values ofa0

0, with all other
ai0 (i = 1, . . . ,5) values fixed. InFig. 9, the values
a0
n on an attractor (after transients) are plotted with re-

spect toa0
0. The solid curve represents the period of the

attractor offn resulting from the corresponding initial
valuea0

0. The flat pieces of this curve means that over
the corresponding interval ofa0

0 valuesa0
n is on the

same attractor. The stability of attractors with respect
to changes ofa0

0 that the existence of these flat pieces
reflects arises from the property that the slope of the
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Fig. 8. In (a-2) and (b-2) are examples of the sequence of transitions between states for the FD system withε = 0.11. The initial function
in (a-1) is defined byEq. (5) with a0

0 = 1/3 + 1/20, a2
0 = 2/3 + 1/10, a3

0 = 1/10, a5
0 = 1/3 + 1/10, and (note thatf0(I

0) �= f0(I
5)),

and the initial function in (b-2) is defined byEq. (5) with a0
0 = 1/3 + 1/10, a2

0 = 2/3 + 1/10, a3
0 = 1/10, a5

0 = 1/3 + 1/10 (note that
f0(I

0) = f0(I
5)). (a-1) and (b-1) depict the evolution of the state fromn = 1000 to 1030. The period of the sequence of transitions

depicted in (a-1) is 26, and that of the sequence depicted in (b-1) is 20. In (a-2) and (b-2), the possible sets of transitions are depicted.
Here (a-2) corresponds to the casef0(I

0) �= f0(I
5), and (b-2) corresponds to the casef0(I

0) = f0(I
5). These two figures depict the two

types of transition sets possible in general, while the actual transitions possible for any given choices off0 will consist of some subset of
these. For the particular choices considered here, only the transitions denoted by solid arrows occur.

generated map is less than unity. The discontinuities
of this curve are caused by discontinuities off∞.

By applying a perturbation to an attractor, a tran-
sition between attractors can result. Such a transition,
on the other hand, can be understood as a propagation
of noise through the network, as mentioned above. To
see how such noise can propagate, we applied an in-
stantaneous “noise” tofn|I0, for sufficiently largen
that fn is on an attractor. (We tookn = 1000 avoid
transients.) We computed the time evolution of the
function after this perturbation, which is denotedhn,

and then measures the differencedi
n betweenhn and

the unperturbedfn: di
n = hn|Ii − fn|Ii . In Fig. 10,

time series ofdi
n are plotted.

The transitions among attractors progress as fol-
lows. At n = 1000, the instantaneous noise is added.
This noise first is transmitted tofn|I3 (seeFig. 6(c)).
However, the effect of the perturbation decays onI0

andI3, as seen fromd0
n plotted in (a) andd3

n plotted in
(d) of Fig. 10. Then,fn|I5 is influenced by the noise.
ThroughI5, the noise effect is conveyed tofn|I2, as
seen in (b). Forn ∼ 1040, the value offn|I2 changes
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Fig. 9. The limiting values of a0
n respect to a0

0. Here,
a2

0 = 2/3+ 1/10, a3
0 = 1/10, a5

0 = 1/3+ 1/10 andε = 0.11. The
period of a0

n (which is also the period offn) is plotted by the
solid curve.

and this effect is transmitted back tofn|I0. Hence,
the noise effect circulates betweenI0 andI2, and for
n > 1040,fn|I2 acts as a ‘pulse generator’. Here, the
amplitude of the ‘pulse’ is of the same order as the
noise. Note that the magnitude ofdi

n is of a different
order on eachIi: (a) d0

n ∼ 10−3, (b) d2
n ∼ 10−2, (c)

d3
n ∼ 10−4, and (d)d5

n ∼ 10−3. The noise effect is
amplified onI5 and is further amplified onI2. From
this point of view, we can consider the added noise
to be stored infn|I2, which leads to a transition to a
new attractor. This transition is possible because the
network is entangled. In this case the noise effect re-
turns to the interval where the noise was originally
added. Then, deviation from the original attractor is
sustained within the loop in which the noise effect
is circulated. Hence the function switches to a new
attractor.

4.4. Memory in a dynamical network

As is already discussed in Ref.[1], our FD can
be regarded as a system that transforms input to out-
put throughfn(x), with an input–output relationship
that changes autonomously. Since such an autonomous
change of an input–output relationship is commonly
observed in biological cognitive systems, it is interest-

ing to consider the possible function of an entangled
network in this context.

When our functionfn is regarded as defining an
input–output relationship, thean0–a0

0 relation inFig. 10
represents the input dependence of the output. This
relationship exhibits several thresholds with regard
to change in the output behavior; when the input is
changed beyond such a threshold, the output switches
to new behavior. This switch can be caused by per-
turbing a partial function. The pulse generated by such
a perturbation can be regarded as a memory. Within a
network with loops, the input (a perturbation applied
to one partial function at one time step) is memorized
through the propagation of noise within the loop. Note
that for this type of network, (i) the attractor can be
changed as a result of this noise through a transition
process and that (ii) information can be stored in some
parts of the network by virtue of the circulation of the
input. It would thus appear that a dynamical network
of this kind has the potentiality to possess memory
that depends on an input.

5. Summary and discussion

5.1. Summary

In the present paper, FD has been studied by con-
structing initial functions suitable for analytical and
numerical study, after basic introduction to an FD
model inSection 2.

It was shown that the dynamics of an FD system are
represented by a generated map, a one-dimensional
mapgn determined by the one-dimensional mapfn.
The generated map acts as the rule governing the tem-
poral evolution offn(x) (i.e., fn+1(x) is determined
by gn). For most initial conditions, after transient be-
havior dies away, the functionfn is attracted to a
piecewise constant function. In other words,fn comes
to be divided into partial functions, each of which is
constant. InSection 3, the stability of these piecewise
constant functions was discussed. InSection 4we con-
sidered the behavior resulting when we start from a
piecewise constant function, where each domain of a
constant partial function is regarded as an element of
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Fig. 10. The time series of the difference,dn, between the original functionfn and hn, obtained by perturbingfn|I0 at n = 1000: (a)
d0
n ; (b) d2

n ; (c) d3
n ; (d) d5

n . The initial function used here is defined byEq. (5), with a0
0 = 1/3 + 1/20, a2

0 = 2/3 + 1/10, a3
0 = 1/10,

a5
0 = 1/3 + 1/10. We also usedε = 0.11. Note that the scales of the vertical axes differ among the figures.

a network. The dynamics of such a network, which
generate a rule to drive the network itself, were also
studied inSection 4.

After defining initial functions appropriate to allow
for the behavior described above inSection 4.1, the
dynamics of the resulting type of network were clas-
sified inSection 4.2. In one class, the dynamics of the
partial functions are determined hierarchically. These
partial functions are unidirectionally ordered in a tree,
in which each partial function in an upper level is
driven by partial functions by lower levels. In this case,
the effect of a perturbation applied to a partial func-
tion is transmitted unidirectionally through the partial
functions.

In Section 4.3, we studied another class of network
dynamics, that in which there is ‘entanglement’, in
the sense that dynamics of some partial functions are
influenced by other partial functions. The structure of
such entanglement, i.e., the mutual influence of differ-
ent partial functions on the rules for their dynamics,
was analyzed. InSections 4.3.1 and 4.3.2, this en-
tanglement was studied by considering particular sets
of initial conditions. It was shown that a perturbation
(representing an input to one partial function) circu-
lates through a loop in the network, and as a result,
the network dynamics can switch to a new attrac-
tor. The ability of this network to model a memory
was discussed.
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In conclusion, we have found that the FD system
we have studied can form a hierarchically entangled
dynamical network. We believe that such a system
may be useful in modeling the spontaneous emer-
gence of rules governing dynamics in biological
system.

5.2. Dynamical network

In general, a network consists ofelementsand di-
rectededgesbetweenelements. Information is trans-
mitted through directed edges, and the internal state
of an element (i.e., the value of the partial function)
changes accordingly. The terminal of a given di-
rected edge depends on the dynamics of this internal
state.

In this paper, the function of an FD system is rep-
resented by a network according to the following pre-
scription:

• An elementin the network consists of a connected
subinterval on which the value of the functionfn(x)

is constant. According to the results of our simula-
tions, it appears that the formation of such constant
subintervals is a general characteristic of FD sys-
tems, as discussed inSection 3.

• Directed edgesare determined by the relations
among the intervals induced byfn. If fn(A) ∈ B

is satisfied, there is a directed edge fromB to A, in
the graph of a network.

• The internal state of the elementA is defined as the
valuefn|A(x).

• The transmittedinformationfromB toA is the value
fn|B(x).
The shape of a network changes through the change

of its directed edges. For example, the edgeB to A

changes toC to A, if gn ◦ fn(A) ⊆ C. With this
representation, a dynamical network for an FD system
can be formulated.

The advantage of an FD model lies in the simul-
taneous formation of elements and edges. Through
the FD, elements and edges emerge from an
infinite-dimensional functional space. In most studies
of dynamical networks, a fixed set of elements along
with rules that govern the evolution of the edges are

prescribed.9 However, many biological (including
cognitive and social) systems have the ability to gen-
erate rules governing their dynamics spontaneously.
As a simple example, consider signal transduction in
a cell. There, signal molecules change the state of
a cell, and play a role in determining the dynamics.
However, the results governing this function are not
necessarily prescribed by chemical reaction rules, but
are determined by the state of the cell, which is re-
alized through the reaction network dynamics. It is
true that investigation to elucidate the microscopic
dynamics involving signal molecules is important to
understand such context-dependent functions of sig-
nal molecules. However, it is also necessary to adopt
an approach from a higher, macroscopic level, which
can be represented by a functional system. Of course,
the same can be said about a cognitive systems con-
sisting of neurons.

The FD approach is based on self-referential struc-
ture represented byfn ◦ fn, which was introduced to
understand how elements and rules are generated si-
multaneously and interdependently. The fixed point
fn(x) = fn ◦ fn(x) represents a self-consistent con-
dition in which operation by the function does not
change the function itself. This fixed point determines
intervals on which the function is constant. These in-
tervals act as the basic elements in the network, and
drive other partial functions. The constant intervals
formed due to fixed points provide rules governing
the dynamics of the other intervals. The network thus
generated can possess hierarchy and entanglement.

Hierarchy in a network is commonly observed in
biological (as well as cognitive and social) systems.
In some cases, such hierarchy is simple, and the net-
work possesses a tree structure. In some other cases,
the hierarchy is not simple, and the network is en-
tangled; i.e., there exists mutual dependence of the
dynamics of edges. In such a case, the network itself
changes spontaneously. Such network dynamics can
also be changed with inputs. Features of this kind that
exist in real biological networks were also shown to
exist in our FD system in this paper. Considering the

9 This holds for all neural network models, and it also holds for
the models used in recent studies of networks[6–8].
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simplicity of our model (1), the results found here give
reason to believe that these features exist quite gen-
erally in network systems that maintain themselves
through temporal evolution. It is therefore important
to study how concepts formulated with regard to FD
can be applied to real biological network dynamics.

5.3. Future problems

The limit function investigated here starts from a
piecewise constant functionf0. However, in a more
general investigation, we also need to consider the case
in which such initial functions are continuous. With
a continuousf0, the limit function can consist of an
infinite number of constant partial functions. We be-
lieve that infinite hierarchy and infinite entanglement
can be generated in this case. Characterization of the
dynamics in a system with such infinite hierarchy is a
future problem.

The stability of a higher-order structure, such as
hierarchy and entanglement in a network, is an im-
portant problem in FD. Though the theorem stated in
Section 3is valid only for ann-independent partial
function (although we hope to generalize it in future),
we believe that attractors in an FD system are stable,
because the slope of the generated map is 1− ε.

By adding noise (i.e., an input to one or more par-
tial functions) with a finite magnitude, a transition be-
tween attractors can occur. Consider a perturbation
applied to the system by changing the value offn|Ii .
As a result, any partial functionfn|Ij that satisfies
fn|Ij ⊆ Ii is influenced by this change infn|Ii . In this
manner, applied noise is transmitted along edges in the
network. During this transmission, the noise (1) will
decrease due to the contracting nature of the gener-
ated mapgn, but (2) it may cause a transition to a new
attractor for eachfn|Ii when the noise causesfn|Ij to
switch to a new branch in the generated map. (Note
that the generated map is discontinuous.) If a transi-
tion to a new attractors does not occur for anyn, the
influence of the noise eventually disappears, due to the
contraction imparted by the generated map.

Considering the successive addition of inputs
(noise), one can study how the inputs are ‘memorized’
in the network. Note, however, that there is a difficulty

involved with the continuous addition of noise in our
model. Also, when noise is added to fixed points, the
network structure may be completely destroyed.10 In-
deed, in an FD system with noise added continuously
in time, if the magnitude of this noise is sufficiently
large,the function becomes constant over all intervals.
One possible way to avoid this problem is to consider
an FD on a torus (S1), i.e., a map on a circle. In this
case there exists a function that has no fixed points.
The study of FD on a circle is an interesting extension
to be considered in the future.
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