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Abstract

As a first step toward realizing a dynamical system that evolves while spontaneously determining its own rule for time
evolution, function dynamics (FD) is analyzed. FD consists of a functional equation with a self-referential term, given as
a dynamical system of a one-dimensional map. Through the time evolution of this system, a dynamical graph (a network)
emerges. This graph has three interesting properties: (i) vertices appear as stable elements, (ii) the terminals of directed edge:
change in time, and (iii) some vertices determine the dynamics of edges, and edges determine the stability of the vertices,
complementarily. Two aspects of FD are studied, the generation of a graph (network) structure and the dynamics of this graph
(network) in the system.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction For example, in a dynamical systems approach to
the modeling of such a system, a rule governing the
In studying biological, linguistic, and social sys- evolution of a set of variables takes the form of a
tems, one is generally interested in understanding how set of equations. Then, in a naive attempt to realize
a rule for the temporal evolution of a system is orga- the goal stated above, we may introduce a dynamical
nized through the dynamics of the system itself. To system describing the evolution of these equations,
construct a model of such a system as a dynamical as a ‘rule forming’ dynamics. However, the resulting
system or to simulate it using a computer, however, ‘dynamical dynamical system’ would be nothing but
we need to supply a rule for the temporal evolution of a high-dimensional dynamical system. With the same
the system. It would thus seem that the goal of under- goal in mind, then, we would need to introduce another
standing the spontaneous emergence of such a rule indynamical system to describe the change undergone
biological systems through such modeling is difficult by this high-dimensional system. We thus see how a
to achieve. naive attempt to realize the spontaneous emergence
of a fundamental dynamics-governing rule results in
an infinite hierarchy of systems and necessarily meets

_— with failure.
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within an infinite-dimensional dynamical system. We
will show that low-dimensional dynamical systems
are generated from the original infinite-dimensional
dynamical system. The generation of such low-

dimensional systems constitutes the generation of a

dynamic-governing rule. We elucidate the mechanism
for this rule generation.

To serve the present purpose of studying biological
systems, the function dynamics (FD) that we previ-
ously introduced1-3] is reformulated inSection 2
In this FD, we adopt a functional equation having
a ‘self-reference’ term, i.e., a term including com-
position of a function (sayf o f). With this term,
it is shown that a rule governing the dynamics of
partial functions restricted to certain intervals is gen-
erated. This rule is determined by partial functions on
other intervals. With this relationship among partial
functions, low-dimensional dynamical systems are
formed from the original infinite dimensional dynam-
ical system. Accordingly, the function dynamics of
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id is an identity function and is a constant (G< ¢ <

1). This map is well defined iff(/) < I is satisfied.
We define an FD system employing sugfand¥ as
follows:

Sor1=Y(f) o fu A—-8efutefuo fu. 1)

This equation determines the evolution of the func-
tion f;,. If the initial function fy satisfiesfo(l) C I,
the temporal evolution, i.ef, (n = 1,2,...), is de-
termined.

The evolution equation of a function is generally
an infinite-dimensional dynamical system. Among the
class of systems consisting of such function dynam-
ics, the existence of the ‘self-referential’ terfo f,
is the distinguishing feature that characterizes the sys-
tem(1). This composition terny,, o f,, determines the
temporal evolution off,,, and it is an operation in the
functional space. With this term, the rule governing
the evolution of a functional value at a particular value
of its argument depends on the values of the function

the original system can be interpreted as dynamics taken at other values of the argument.

over partial functions. From this point of view, the

Next, we give an example of the temporal evolution

partial functions can be considered as elements in aof f, determined by(1). Here we set the initial func-

self-organized, low-dimensional system that evolves
together while mutually generating rules that govern

each other’s dynamics. We first demonstrate that func-

tion fo(x) = sin(1.57x) ande = 0.55. InFig. 1, the
graph of f,, for certain values of: are displayed. We
find that after a transienf;,, exhibits a temporal oscil-

tion dynamics generates rules hierarchically among lation with a period of two time steps. In this example,
partial functions. Then, we find that the relationships the total function falls on a period-2 attractor in the
among partial functions are sometimes entangled, in functional space. However, for some other values of
the sense that one partial function gives a rule for &, more complicated behavior appears. In general, it is
some other partial functions, which give a rule for not easy to fully explore all the phenomena displayed
the original partial function. The formation of suc- by our model by computer simulation alone.
cessive rules for low-dimensional systems and this To carry out a numerical computation for the
entanglement of rules is analyzed. above FD, it is necessary to divide an interval into
In Section 3formation of low-dimensional dynam-  a finite number,M, of mesh points. For example,
ical systems is studied, and $ection 4 the dynamics I = [0,1) could be divided into subintervals as
of the low-dimensional system are investigated. Sum- I’ =[i/M, (i+1)/M) (i =0, ..., M — 1). However,
mary and discussion are given $ection 5 the composition term often causes a folding of the
graph of the function at each time step, as shown in
Fig. 1(a) and (b). For an initial function with a single
hump, the number of foldings can increase approx-
imately in proportion to 2. Hence, finer and finer
structures can be generated in the graphy,gfand
as a result the outcome of the simulation can have a
strong dependence on the mesh siZeBecause the

2. The modd and its basic features

Let f be a one-dimensional map,— I. We de-
fine a map from the one-dimensional mAgpo a new
one-dimensional map a& (f) = (1—s)id+¢f. Here
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Fig. 1. An example of the time evolution described iy with fo(x) = sin?(1.57x) ande = 0.55. Graphed here are (g) and f1, (b)

f2, (€) fro00 @and (d) f1001. The mesh size i34 = 4000. In this examplef, is on a period-2 attractor in the functional space. The arrows
in (c) and (d) are included to make the period-2 oscillation easily recognizable. Later, the grgploaiillates between the forms shown
in (c) (for evenn) and (d) (for oddn).

folding effect generates infinitesimal (Cantor-set-like) in the FD. In other words, if the value of, at a
structureqd4] with a variety of scales, it is difficult to  point is equal to a fixed point, then this partial func-
study this system by direct computer simulation. tion is alson-independent. The entire domain of all

In general, the following relations are fundamental n-independent partial functions (including all points
for the study of FD: in Fix(f)) is denoted( f).

o If f,(x) = f,(x") is satisfied at some, then
fu(x) = frn(x) forall m > n.

e fulig for g such thatf,(q) = ¢ is n-independent.
Here fi|;, is defined ag-independent, iff,, (¢') =
fi(g" forallm > 1.

3. Network structure

In Fig. 1(c) and (d), eacly, seems to be a piece-
wise constant function (that is, the graph ff con-
We denote the set of fixed points of a one-dimensional sists of flat pieces). This property is not peculiar to
map f by Fix(f). Note thatf, | for x" ¢ Fix(f,) this initial function, but is rather general. Although
satisfying f,, (x") = ¢ € Fix(f,) is alson-independent = we have simulatedEq. (1) using a variety of initial
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functions, in all cases, the functiofy for sufficiently be associated witit and B, if f,(A) € B is
largen consists of a set of constant partial functions. satisfied. A dynamical “network” consists of
(Strictly speaking,f,, approaches such a form asymp- elements formed through time evolution and
totically asn — o0.) Thus we find through our com- edges whose terminals change in time.

puter simulations that the number of elements of the
set {f,(i/(M—1)} (i =0,..., M—1, withn fixed), 3.1. Stability around a fixed point
{/fu i/ (M — 1))}, satisfies|{ f,(i/(M — )} < M
for largen, in the computer simulatiofi]. Now we discuss how a constant partial function is
In this section the generation of flat pieces in the formed in FD and study its stability. First, we consider
graph of f,, is studied. Because FD consists of dy- an initial function fo(x) = ag(x — ¢) + ¢, around the
namics of a one-dimensional map, to avoid confusion fixed pointg. The evolution equation of the slopg
between the function on the intervAbnd that on the is easily found to take the forms, 1 = (1 — ¢)a, +
functional space, we define some useful notation. a?. This one-dimensional map has fixed poimjs=
0 and 1, witha, = 0 stable ands, = 1 unstable.
The basin of the fixed point 0 i6-1/¢, 1). Thus if
f2(x) is constant and the relationl/s < f,(x) <
1 is satisfied onA around a fixed point, then, =
fi(x) = 0 asn — oo and hencef (x) = g. Thus,
the slope of the graph of,|4(x) goes to 0.
The following theorem has been provig].

(3-i) A “partial function f;,,|4” is a function defined
onanintervald (A C I), and f,|a(x) = f,(x)
for x € A.

(3-ii) A “fixed point of f,,” means a fixed point of
the one-dimensional mag,. A “fixed point
of the FD” means a one-dimensional mgp
satisfying thatf,+1 = f,.

(3-iii) If a partial function f,| 4 satisfiesf,,,|4 = fula
Vm > n, we say that |4 is n-independent”.

(3-iv) As already mentioned, the statement; [} is
a constant function” means thgh(A) = ¢,
(cn € 1) for givenn. It is important to keep ) dx) — fu(@)(x— fu(x)) <0forxe A\ {q},
distinction between the statementg,f4 is a (i) fu.(A) C A,
constant function” andf;, | 4 is n-independent”
clear.

(3-v) The term “(temporal) evolution” refers to that In Fig. 2, the assertion of this theorem is depicted
of the functionf, (i.e., fo, f1,...). Itdoesnot  graphically.
refer to the dynamics of the one-dimensional ~ As n increases, the number of fixed points £f
map, given byx,, 11 = f(xm). increases (sekig. 1). If the conditions stated in the

(3-vi) We define a network for the functioy,, in theorem are satisfied around a fixed point, the graph
order to describe a graph of, in terms of of the function around this fixed point becomes flat
graph theory. In general, a network consists of asn increases. However, this does not necessarily im-
elements (vertices) and edges. Throughout the ply that f, always converges to a piecewise constant
paper, we used in reference to a connected n-independent function as will be shown in the next
entire interval (i.e., the domain of constant subsection.
fnla that is not proper subset of any other
such intervals). We consider each domain of 3.2. Generated map
a constant partial functionf, |4 as an element
(i.e., vertex). We consider a directed edge to  We investigated the FD using a ‘generated map’ in

earlier paper$2,3]. This generated map is defined as

Theorem. Consider the functiond(x) = (—1/e¢)
(x—q)+q.If f,(x)is continuous around a fixed pointq
(ontheinterval € A C I) and satisfies the conditions

then f, |4 (x) - g asn — oo.

1 Here we denote the number of elements of a%ses |[S|. g = ¥ (f) = (1—9)id + &f,. (2)
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Fig. 2. If the graph of a continuous function is contained within
the shaded area around the fixed pajn the figure, the function
converges to a constant.(x) = ¢g. Here, fo(x) = —sin(xx)
(gq=0) ande = 1/4.

This map is determined by,. (We use the term
‘generated’ here becausg is generated fromf,.)
Using this map, the FOO1) can be represented by
fa+1 = gn(fn). For eachx, the valuef,,1(x) is de-
termined by the equatiof,+1(x) = g,]a(y) (Where
y = fu(x) andy € A). Also note that the valug, |4
is determined byf,|4. (In the following discussion,
we also use the term ‘drive’, as in the phragg|{y,
is driven byg,|4’, and the term ‘refer’, as inf, |
refers toA’, when f,,(x) € A.)

Let us rewrite theg, (x) in the formg, (x) = (1 —
e)(x — fr(x)) + fu(x). This form is useful to pre-
pare a suitable initial functiorfp. If f,,(A) = ¢, then
gnla(x) = (1 —¢)(x — ¢) + ¢. The graph of this gen-

erated map is a segment contained in the line of slope

1 — ¢ that crosses the identity function atExamples

of (&) a graph off;,,(x) and (b) the corresponding gen-

erated mag, (x) are displayed irFig. 3. For f,,(x) €

A, fur1(x) is determined byf, 1 1(x) = gula o fu(x).

If the attractof of the generated mag, is not a fixed

point, ann-dependent functiorf, (x) can exist.
Choosing a suitablégp, it is possible for the map

gn generated from amn-independentf, | to have a

periodic attractor. The typical generated mag2(y,,)

(see the definition irBection 2 is a piece-wise linear

2 Here the word ‘attractor’ is used in a rather broad sense,
becauseg, can be am-dependent function.
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Fig. 3. Examples of a graph of (a),(x) and (b) its gener-
ated mapg,(x). Here f,|e(x) € Fix(f,) and thereforef, | is

n-independent.f,, (¥) C £2, and thusf, 11|y = gule o fulw. The

slope ofg, | is 1—e. In this exampleg = 3/5. The thin broken
line crosses the identity function &} (x) and has slope 4 ¢.

map of slope 1 ¢. The most general one is given by
the Nagumo-Sato map,
Xpr1=A—¢&xp,+wmodl O<e<l

This map is generated from the initial function,
—w w
—¢ ) U {;} ’

w—1 1—w w—1
B forxe[ng,l>U{ B }
(3

Note that each partial function is constant here.

™

for x € [O, 11
folx) =

3.3. Emergence of elements

In Section 3.1 we stated a theorem asserting the
stability around a fixed point, and fBection 3.2we
introduced the generated map. To close the present
section, we now study the emergence of a piecewise
constant function.

If f,(x) is constant around a fixed poigptlon A =
[¢g — a, g + b]), the corresponding generated map is
given by g,|a(x) = (1 — &)(x — g) + ¢g. This gener-
ated map crosses the identity functionyawith slope
1— ¢ and has a stable fixed poigt Thus, if there is a
subintervalB (BN A = @) on which f,,(B) C A is sat-
isfied, thenf,,(B) — g asn — oo, and a new flat part
is generated. This constant functiormisndependent
(.,e. A, B C 0).
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Since the generated map of a constant partial func-

tion f,|¢° has slope 1- ¢. As long as the values
fn(x") and £, (x”) refer to @, the difference between
them decreases by the factor—1e per iteration.
That is, if f,(x") = fu(x) + 8, and f,(x') and
fu(x") refer to @, then | f11(x") — fura1 ()| =
A -9 fun(x) — fu(x)] = (1 — ¢)s. From this con-
sideration, f, is expected to be a piecewise constant
function. In fact, all computer simulations carried out
to this time support this conjectufe.

From the graph theoretical point of view, the func-
tion f, is regarded as a graph with verticesand
directed edges fronf, (x') to x'.° In FD, a vertex cor-
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functions, f,, evolves toward a limit function with a
shape that is too complicated to be computed. As long
as we are interested in complex dynamics, however,
we need to study the rather complicated generated
maps that are formed generally through such temporal
evolution.

We start by considering computer simulations to
obtain a very rough sketch of the functional space.
In Fig. 4, we display three initial functions-() and
the corresponding rough phase diagrams obtained
numerically ¢-2). In these phase diagrams2), the
horizontal axis represents, and the vertical axis
represents a parameter characterizifygx), which

responding to a domain of a flat piece is regarded as becomes steeper as the value of this parameter in-

a single ‘element’, while an edge changes in time, ac-

cording to the dynamics of, (x') (see the definition
(3-vi)). The evolution rule for edges is determined by

the generated map, which is determined by the ele-

creases. In this diagram, a dot is plotted in the case
that f,, does not converge to anindependent func-
tion after 1000 steps (which is generally sufficient for
transient behavior to have died out). In other words,

ments and edges. In the next section, a class of net-for a parameter set indicated by a dot, the attractor

work dynamics exhibited by FD systems is studied.

4. Dynamical network

of f, is time dependent, while at all other poins,
converges to an-independent function.

Recall that the stability around a fixed point depends
on ¢ (seeSection 3.1 The stability criterion curve

In the previous section, the emergence of ‘elements’ # 9iven in Section 3.1is also plotted inFig. 4(--2).

was discussed. There, it was seen how as oo, a
function f,, approaches a piecewise constant function,

Below this curve, the fixed points indicated in()
are stable (while above the curve they are unstable),

with each constant piece regarded as an element inand therefore here the graph around the fixed point
a network. Each constant partial function determines COnverges to flat pieces.

one linear part of a piecewise linear generated map

If the graph around a fixed poigt (¢ € A) is flat,

with slope 1— ¢. The generated map determines the then all fu(x) € A converge tog asn — oo. As
dynamics of the edges. In this section, we study these Shown inFig. 4, the stability around a fixed point

dynamics.
4.1. Choice of the initial function

As illustrated for a particular case iRig. 1, we
have found that beginning from most continuous initial

3 This interval @ is not necessarily identical t.

4 The partial functionfo(x)|4 = x is alson-independent. If we
start from this identity partial function, it is maintained under the
FD. However, a slight perturbation from it leads to a piecewise
constant function.

5 The direction of the edge is opposite to the direction of the
mapping f,,. Here the direction of the edge is chosen to be in the
direction of the propagation of a perturbation applied to at one
partial function, which is discussed Bection 4.3

plays an important role in determining whethgris
n-dependent on-independent.

To avoid the complicated effect of the folding of
the graph off,,, and to focus on the dynamics of the
network, we choose an appropriate piecewise constant

function as the initial functionfy. Let I be divided
into N non-overlapping subintervalé (1 = | J = 1’

6 As shown previously, there is a gap between the stability
criterion curve of the fixed point and the boundary between the
phases corresponding tedependent and-independent functions.
Probably this gap can be reduced by considering the fixed points
of f1, f2, ..., successively, and by using a proper renormalization
procedurd5]. However, this has not yet been successfully carried
out.
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Fig. 4. Phase diagram-R) regarding the behavior of the attractor ff, starting from the initial functions displayed in-1), obtained
through numerical simulations using the mesh number= 6000. Dots are plotted at points, £§) in (a) and , ¢) in (b) and (c) in
the case thatf,, does not converge after 1000 steps. Hete) is the stability criterion curve. In (a-1)fo(x) = rx(1 —x), r = 3.8.
In (a-2), u(x) = 2+ 1/e. In (b-1), fo(x) = (L — k)x + ksin2((3/2)mx), k = 0.9. In (b-2), u(x) = (2/(v/2+ 3m)(1 + 1/¢). In (c-1),
fo(x) = x4+ (k/m) sin(2zmx) (if fo(x) <0, fo(x) =0, while if fo(x) > 1, fo(x) =1),m =5,k =15. In (c-2),u(x) = (1/27)(1+ 1/¢).
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andI’ N I = ¢). The initial function is chosen as

N .
foo) =) apl" (). 4
i=1

Here, the indicating function is defined as

I 1 xel,
! (x)={0 x¢li
and fo(I') = af). In this section, we consider the case
in which theqg, are chosen randomly, using a uniform
distribution on [Q 1].
Although the above initial function may seem too
simple or too special to study the network dynamics
of an FD system, in fact this is not the case.

e As mentioned in the previous section, a continuous
f» approaches a piecewise constant function (con-
sisting of a finite or infinite number of pieces) as
n — oQ.

To study the dynamics of},, determining the sta-
bility around a fixed point is important. If a contin-
uous partial function is unstable on both sides of a
fixed pointg for all n, then the value of the partial
function does not converge to In such a situation,
we believe that partial functiong, [[4,¢) and f (g, ]
approaches a constant function and do not take the
valueg.

Of course, the set of limit functions resulting from
the set of all continuous initial functions is not iden-
tical to that resulting from the set of all piecewise
constant initial functions. However, the limit function
realized with a piecewise constant initial function
takes finite number of values (¥ is finite), and each
partial function displays periodic motion with finite
period (becausg, = 1 — ¢ < 1). This means that
if we choose a continuous initial function satisfying
hols = fuls on the setS = {f,(I))} (for all i after
the transient behavior has died out), the evolution of
the partial functiom,, |s is identical to f;, 1 |s-

4.2. Classification of the dynamical network

Using fo as defined in the previous subsection, we
numerically computed the temporal evolution ff.

N. Kataoka, K. Kaneko/Physica D 181 (2003) 235-251

In Fig. 5 two typical results (excluding transients)
are displayed. In this set of simulations, we choose
N = 30 ande = 0.1. We find that some neighboring
subintervals are mapped to the same value after the
transient behavior has ended, i.¢,(I") = f,(I't1)

for sufficiently largen. In this case, these subintervals
join to form a new subinterval. In such situation, the
indices of the subintervals are renumbered. (Hence the
maximal value of the index for the subintervalg’

can become smaller thas — 1 (26 inFig. 5a) and

24 inFig. 5b)).)

For most initial functions,f, (x) falls on an attrac-
tor rapidly (byn ~ 100). InFig. 5--1), the graphs
of f, (n = 1000-1010) are overlaid. As three typical
examples we show the behavior @f|;s, fu|;2 and
fnl 3 specifically. In (a-1), the period of;|;6 is 5
and the period off,|;2 and f,|;13 is 10. In (b-1),
the period of all periodic partial functions is 145.
Although there seems to be no easily discernible
difference between two time series, there is a sig-
nificant difference between the structures of their
networks.

We now set out to describe the function dynamics
in terms of network dynamics. First, e, (i) be a
function mapping a set of indices to itself. We define
S, (i) andS(i) as follows:S,, (i) = jif f,(I') € I/ and
S@) = Uy{Sn+n())}. Here N is a sufficiently large
number such that the transient behavior has died out.
In other wordsS(;) is the set of allS,, (i) after transient
behavior. A directed edge fromto b in Fig. 5--2) is
drawn ifa € S(b).

Now, letx be a set of indices. Here, two classes of
A are important for later discussion.

(4-i) The class for whicl§(1) < A. In this casef,|;:
(i € A) evolves independently of,|;; for any
j ¢ A. This means that the time evolution of
fulpi (@ € 2) is not influenced by a perturbation
applied to the value of;|,; for any j ¢ .

If two sets of indices\.g and A1 satisfy this

condition and ifAg C A1, we say thatXp and
11" are hierarchical’ In this situation, a per-
turbation applied tof, | ;i (i € Ao) can influence

7 We call the generated mag,|, (i € A1) a ‘meta-map’[2].
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Fig. 5. Two typical results are displayed in (a) and (b) for the ease0.1. Each partial function plotted is on the attractor. In both the

cases, the simulation started from a random piecewise congiait (--1), the graphs off, (n = 1000-1010) are overlaid. In-), the

corresponding network is displayed. The indewith a filled circle indicates tha, |, is n-independent, while that with an unfilled circle

indicates thatf, |, is n-dependent. A square drawn with a broken line indicates a set of inditiest satisfiesS(A) € A. (a-1) The period

of ful;6 is 5 and the period off,|;2 and f,];13 is 10. (b-2) The period of all periodic partial functions is 145 (although the phase of the

oscillation is different for each subinterval).

the evolution off,|;; (j € A1\ Ao), but a per- fect propagates through the loop and eventually
turbation applied tof,|;; (j € A1\ Ao) does returns toi itself. In this case, we say thatis
not influence the evolution of;,|;: (i € Ao). ‘entangled
(4-ii) The class for whichS(x.) = A. In this case,
if A consists of a single element, the corre-  In Fig. 5(--2), setsi satisfyingS(x) < A are con-

sponding edge iz-independent. If» consists tained within squares drawn with broken lines, while
of more than one element the network formed entanglements are indicated by loops drawn with

by S(.) possesses a loop. This means that broken lines. As shown, the network Fig. Ya) is

i € S3i) U S(S3i)) U S(S(S())) U --- for some hierarchical with four layers, and there is no entan-

indicesi. Then, if some perturbation is applied glement. Contrastingly, the network Fig. Yb) has
to at f,,|; for i contained in this loop, the ef-  two entanglements (two loops).
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The shape of the network is determined by the man- (i) Noise destroys the network, and a new network

ner in which intervals are related undgy, and the appears.

shape can be preserved even if the period of each par- (i) The effect of the noise disappears due to the con-
tial function is changed by changing the coupling traction induced by the generated map.

Recall that the shape of the network is resulting from (iii) The effect of noise propagates unidirectionally

the contracting nature of the generated map. For this the network, while the shape of the network is

reason the shape can be preserved when a small change  preserved. In this case, only the phase of oscilla-
is made to the parametey and the network is stable tion of each partial functiory,|4 is changed.

with respect to the changes inAlso, a network can ) ] )

be stable with respect to noise applied to each partial !f the noise amplitudé is not too large, the net-
function. In the next subsection, we study the effect WOTK shape is not destroyed, and the only important
of noise on the network. effect is that of type (iii). In this situation, the phase

change of a partial function causes a phase change of
the corresponding-dependent generated map. As a
result, the phase of the partial function driven by this

Dynamical networks in FD systems can possess hi- generated map changes, and so forth. Hence, the noise
effect for a sufficiently small amplitudé in such a

erarchy and entanglement. As discussed above one™ . ) )
hierarchical network consists of represented as uni-

difference between a network with entanglement and directional . f oh h h h th
one without entanglement regards the behavior result- |riact|okna propagation of phase changes trough fhe
network.

ing from perturbation. In this subsection, we study the _
In the case of a network with entanglement, an-

effect of noise on dynamical networks. h t noi ﬁ hich i dbvl
If a network is hierarchical and contains no loops other type of noise effect, which is caused by loops,
appears:

(no entanglements), the evolution ¢f can be or-
dered unidirectionally:n-independent partial func-
tions determine am-independent generated map,
which drivesn-dependent partial functions, which de-
termine am-dependent generated map, which drives  In this case, the noise propagates unidirectionally
other n-dependent partial functions, and so fofth. in the loop and returns to the element to which the
In this case, the hierarchy of relations among par- perturbation was applied. This returned noise changes
tial functions is uniquely ordered through generated the generated map again, and this effect, if it does
maps. not decay away, returns to the same element again.
Now, we consider how a perturbation applied to Due to the continuation of this process, a new attrac-
one partial function propagates. For this purpose, we tor on the loop is formed. This behavior is in strong
apply “noise” to one partial function, changing| contrast with that seen in hierarchical networks with-
to fula + 814, with § as a small number. Here the out loops, in which only the phase of oscillation is
noise is added only at theth step, and later time  changed.
evolution of the function is given bfi) without noise.
We now study how the effect of such a perturbation is 4-3.1. Simple entanglement: an example
transmitted through the network. Now, we study the dynamics of a network with en-
In the case of a hierarchical network without entan- tanglement, using several different initial functions.
glement, this noise propagates in one direction. In this First, let/ = [0, 1] be divided into the subintervals
case, there are three types of noise effects: I' = (i/6,(i+1)/6) (i =0,...,5), and the points
{i/6} (i = 0,...,6). (Obviously,I = (U3(I)) U
TRef. [2], this hierarchy is represented by meta—meta— (Ug{i/6})') We define the initial functionfo according
maps. to Eq. (4) in terms of the parameteg,.

4.3. Entangled network

(iv) The noise effect circulates through a loop and
leads to a transition to a new attractor.
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Fig. 6. (a) The graph of a limit functiotf, (» = 1000-1026). Hereag =1/3+1/20,d3 = 2/3+1/10, ag = 1/10, a3 = 1/3+1/10 and
¢ =0.11. The period is 26. (b) The network corresponding to this function. There are three loops.

fodkip =%, a§erPur, =0
adeltur, aeclPull, =1
ag e IPU 5. (5)

In Fig. 6(a), an example of the limit function result-
ing from such anyy is displayed. In that case, the set
of initial valuesal, were chosen as) = 1/3 + 1,20,
a3 = 2/3+1/10,43 = 1/10, a3 = 1/3 + 1/10 and
¢ = 0.11 was used. In the figure, the graphsfpffor
n = 1000-1026 are overlaid. The period ff here is
26.

The network for this function is shown ifig. 6(b).
As seen, there are three loops. It was found that«f

figure the ‘state’ of the network. Since the number of
states, 16, is smaller than the period, 26, the network
must exist in the same state (but with different values
of the partial functions) at different times in a single
period during the evolution.

The FD system we study can be described in terms
of the dynamics of a network, consisting of succes-
sive transitions between the states defined in the above
manner. The actual set of allowed transitions between
states depends on the initial valugls By examin-
ing the FD of each partial function, case by case, one
can show that possible sequences of transitions are of
two types, as defined iRig. 8a-2) and (b-2). These

1/6, the shape of the network does not change from two types correspond to the cases in whili/®) #
the initial time, because the generated map satisfies thefo(15) and fo(IO) = fo(15). Each type includes the

conditiong,,| 2 21 C 12 UT%*1fori = 0, 1, 2. Due

to the nature offp given byEg. (5) the possible types
of network structure are restricted. First, the partial
functionsf, | ;1 and f;| ;2 aren-independent. The other
four f,|; aren-dependent and refer to sonié’ U
1%7+1 (for example, £, (1°) € I? or I%). Thus each of
the fourn-dependent partial functions refers to either
of two subintervals at each time step. Accordingly,
there are 22x2x 2 possibilities at each step. Fig. 7,

the 16 possible networks that are allowed for this type
of initial function are displayed as the directed edges
S, (i) — i. At each time stepf, corresponds to one of

transitions denoted by both solid and broken arrows
in the figures, but for givera{), the actual transition
sequence includes only some of the transitions indi-
cated. For the particular choices fif considered here,
only the transitions denoted by solid arrows occur.
Two examples of the sequence of transitions be-
tween states starting from two different initial func-
tions are plotted ifFig. 8. Here, two actual sequences
of transitions between states from= 1000 to 1030
are plotted inFig. 8a-1) and (b-1), whergp(1°) =
fo(I®) is satisfied in (b-1) and not in (a-1). As shown
in Fig. 8 the set of possible transitions depends on

these 16 possible networks. We call the number in the whether fo(1°%) = fo(I°) is satisfied or not. This set
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Fig. 7. The 16 possible states of the network at any given timesstaifiowed by the initial nature offp as defined irEq. (5)

in the former case is depicted in (b-2) and in the latter

case in (a-2). (Note that these sets of transitions char-

the change undergone by the FD attractor aSaﬁle
are changed is bifurcation-like, because the generated

acterize long-time behavior, i.e., after transient behav- map changes with the values of thg To elucidate

ior has ended.)

Now, the functionf,, on an attractor is characterized
on three levels, according to (i) the value & i, (ii)
the state of the network, and (iii) the set of possible
transitions given irFig. §(--2).

4.3.2. Transitions among attractors in entangled
networks

As discussed above, the behavior of the network
dynamics in an FD system depends on the initial con-
ditions, represented by the valueg.. Although the
parameter characterizing the FD model,is fixed,

the dependence on the initial conditions, we carried
out numerical simulations using the definition given in
Eq. (5) employing various values aﬁ, with all other

ab (i = 1,...,5) values fixed. IrFig. 9, the values

a,? on an attractor (after transients) are plotted with re-
spect tcng. The solid curve represents the period of the
attractor off, resulting from the corresponding initial
valueag. The flat pieces of this curve means that over
the corresponding interval af) valuesa? is on the
same attractor. The stability of attractors with respect
to changes 0&8 that the existence of these flat pieces
reflects arises from the property that the slope of the
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Fig. 8. In (a-2) and (b-2) are examples of the sequence of transitions between states for the FD systesm @ith. The initial function

in (a-1) is defined byEq. (5)with a3 = 1/3 + 1/20, a3 = 2/3+ 1/10, a3 = 1/10, aj = 1/3+ 1/10, and (note thafo(/®) # fo(I®),

and the initial function in (b-2) is defined biq. (5) with a3 = 1/3 + 1/10, a2 = 2/3+ 1/10, a3 = 1/10, a§ = 1/3+ 1/10 (note that

folI® = fo(I®). (a-1) and (b-1) depict the evolution of the state fram= 1000 to 1030. The period of the sequence of transitions
depicted in (a-1) is 26, and that of the sequence depicted in (b-1) is 20. In (a-2) and (b-2), the possible sets of transitions are depicted.
Here (a-2) corresponds to the cagg /%) # fo(I°), and (b-2) corresponds to the caggl% = fo(1%). These two figures depict the two

types of transition sets possible in general, while the actual transitions possible for any given chogigegilbEonsist of some subset of

these. For the particular choices considered here, only the transitions denoted by solid arrows occur.

generated map is less than unity. The discontinuities and then measures the differentebetweens,, and
of this curve are caused by discontinuitiesfaf. the unperturbedf,: d; = hyl; — ful;i. In Fig. 10
By applying a perturbation to an attractor, a tran- time series off, are plotted.

sition between attractors can result. Such a transition, The transitions among attractors progress as fol-
on the other hand, can be understood as a propagatiorows. At n = 1000, the instantaneous noise is added.
of noise through the network, as mentioned above. To This noise first is transmitted tg, | ;3 (SeeFig. 6(C)).
see how such noise can propagate, we applied an in-However, the effect of the perturbation decaysi8n
stantaneous “noise” tg;, |0, for sufficiently largen and/3, as seen frord? plotted in (a) and/> plotted in
that f,, is on an attractor. (We took = 1000 avoid (d) of Fig. 10 Then, f,|;s is influenced by the noise.
transients.) We computed the time evolution of the Through1®, the noise effect is conveyed 6,2, as
function after this perturbation, which is denotieg seen in (b). Forn ~ 1040, the value off, |;2 changes
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ing to consider the possible function of an entangled

0.52 1 . .
network in this context.
When our functionf, is regarded as defining an
0.5 period input—output relationship, thé—a§ relation inFig. 10

represents the input dependence of the output. This
&t . relationship exhibits several thresholds with regard
to change in the output behavior; when the input is

il

0.48 ¢ = =

- — =] changed beyond such a threshold, the output switches
26 ] to new behavior. This switch can be caused by per-
gl = Hd o B UL 20 turbing a partial function. The pulse generated by such

a perturbation can be regarded as a memory. Within a
network with loops, the input (a perturbation applied

03 04 05 06 07

0 to one partial function at one time step) is memorized
a . . -
0 through the propagation of noise within the loop. Note
Fig. 9. The limiting values ofa® respect to ad. Here, that for this type of network, (i) the attractor can be

ag = 2/3+01/101_c18 =1/10,43 = 1/3+1/10 ande = 0.11. The changed as a result of this noise through a transition

gslri'é’iuori’;f (which is also the period off,) is plotted by the 50655 and that (ii) information can be stored in some
parts of the network by virtue of the circulation of the
input. It would thus appear that a dynamical network

and this effect is transmitted back t6|,0. Hence,  of this kind has the potentiality to possess memory
the noise effect circulates betweghand 72, and for that depends on an input.

n > 1040, f,|,2 acts as a ‘pulse generator’. Here, the

amplitude of the ‘pulse’ is of the same order as the

noise. Note that the magnitude df is of a different 5. Summary and discussion

order on each’: (a) d° ~ 1073, (b) d? ~ 1072, (c)

d? ~ 1074, and (d)d; ~ 1073, The noise effectis 5.1, Summary

amplified on7® and is further amplified od?. From

this point of view, we can consider the added noise  |n the present paper, FD has been studied by con-
to be stored inf,|;2, which leads to a transition to @  structing initial functions suitable for analytical and
new attractor. This transition is possible because the numerical study, after basic introduction to an FD
network is entangled. In this case the noise effect re- model inSection 2

turns to the interval where the noise was originally It was shown that the dynamics of an FD system are
added. Then, deviation from the original attractor is represented by a generated map, a one-dimensional
sustained within the loop in which the noise effect mapg, determined by the one-dimensional mgp

is circulated. Hence the function switches to a new The generated map acts as the rule governing the tem-

attractor. poral evolution off, (x) (i.e., f,+1(x) is determined
by g,). For most initial conditions, after transient be-
4.4. Memory in a dynamical network havior dies away, the functiorf, is attracted to a

piecewise constant function. In other worgs,comes
As is already discussed in Refl], our FD can to be divided into partial functions, each of which is
be regarded as a system that transforms input to out-constant. IrSection 3 the stability of these piecewise
put through £, (x), with an input—output relationship  constant functions was discussedSkection 4ve con-
that changes autonomously. Since such an autonomoussidered the behavior resulting when we start from a
change of an input—output relationship is commonly piecewise constant function, where each domain of a
observed in biological cognitive systems, it is interest- constant partial function is regarded as an element of
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functiorf, and h,, obtained by perturbingf,|,0 at » = 1000: (a)

dY% (b) d%; (c) d5; (d) d5. The initial function used here is defined Bg. (5) with ad = 1/3 + 1/20, a3 = 2/3 + 1/10, a3 = 1/10,
ag = 1/3+1/10. We also used = 0.11. Note that the scales of the vertical axes differ among the figures.

a network. The dynamics of such a network, which

generate a rule to drive the network itself, were also

studied inSection 4

After defining initial functions appropriate to allow
for the behavior described above $ection 4.1 the
dynamics of the resulting type of network were clas-
sified inSection 4.2In one class, the dynamics of the

partial functions are determined hierarchically. These

partial functions are unidirectionally ordered in a tree,
in which each partial function in an upper level is
driven by partial functions by lower levels. In this case,
the effect of a perturbation applied to a partial func-
tion is transmitted unidirectionally through the partial
functions.

In Section 4.3we studied another class of network
dynamics, that in which there is ‘entanglement’, in
the sense that dynamics of some partial functions are
influenced by other partial functions. The structure of
such entanglement, i.e., the mutual influence of differ-
ent partial functions on the rules for their dynamics,
was analyzed. IrSections 4.3.1 and 4.3.2his en-
tanglement was studied by considering particular sets
of initial conditions. It was shown that a perturbation
(representing an input to one partial function) circu-
lates through a loop in the network, and as a result,
the network dynamics can switch to a new attrac-
tor. The ability of this network to model a memory
was discussed.
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In conclusion, we have found that the FD system prescribed. However, many biological (including
we have studied can form a hierarchically entangled cognitive and social) systems have the ability to gen-
dynamical network. We believe that such a system erate rules governing their dynamics spontaneously.
may be useful in modeling the spontaneous emer- As a simple example, consider signal transduction in
gence of rules governing dynamics in biological a cell. There, signal molecules change the state of
system. a cell, and play a role in determining the dynamics.
However, the results governing this function are not
necessarily prescribed by chemical reaction rules, but
are determined by the state of the cell, which is re-

In general, a network consists efementsand di- alized through the reaction network dynamics. It is
rectededgesbetweenelementsinformationis trans- true that investigation to elucidate the microscopic
mitted through directed edges, and the internal state dynamics involving signal molecules is important to
of an element (i.e., the value of the partial function) understand such context-dependent functions of sig-
changes accordingly. The terminal of a given di- nal molecules. However, it is also necessary to adopt
rected edge depends on the dynamics of this internal an approach from a higher, macroscopic level, which
state. can be represented by a functional system. Of course,

In this paper, the function of an FD system is rep- the same can be said about a cognitive systems con-
resented by a network according to the following pre- sisting of neurons.
scription; The FD approach is based on self-referential struc-
ture represented by, o f,,, which was introduced to
understand how elements and rules are generated si-
multaneously and interdependently. The fixed point
fn(x) = fu o fu(x) represents a self-consistent con-
dition in which operation by the function does not
change the function itself. This fixed point determines
intervals on which the function is constant. These in-
tervals act as the basic elements in the network, and
drive other partial functions. The constant intervals
formed due to fixed points provide rules governing
the dynamics of the other intervals. The network thus
generated can possess hierarchy and entanglement.
oo : , Hierarchy in a network is commonly observed in
e The transmitte¢hformationfrom B to A is the value : . . .

biological (as well as cognitive and social) systems.
Jalp (). In some cases, such hierarchy is simple, and the net-
The shape of a network changes through the changework possesses a tree structure. In some other cases,

5.2. Dynamical network

e An elementin the network consists of a connected
subinterval on which the value of the functigh(x)
is constant. According to the results of our simula-
tions, it appears that the formation of such constant
subintervals is a general characteristic of FD sys-
tems, as discussed Bection 3

e Directed edgesare determined by the relations
among the intervals induced bg,. If f,(A) € B
is satisfied, there is a directed edge fréno A, in
the graph of a network.

e Theinternal state of the elememnt is defined as the
value f,|4(x).

of its directed edges. For example, the eddjéo A
changes toC to A, if g, o f,(A) € C. With this
representation, a dynamical network for an FD system
can be formulated.

The advantage of an FD model lies in the simul-

the hierarchy is not simple, and the network is en-

tangled; i.e., there exists mutual dependence of the
dynamics of edges. In such a case, the network itself
changes spontaneously. Such network dynamics can
also be changed with inputs. Features of this kind that

taneous formation of elements and edges. Through exist in real biological networks were also shown to

the FD, elements and edges emerge from an
infinite-dimensional functional space. In most studies
of dynamical networks, a fixed set of elements along
with rules that govern the evolution of the edges are

exist in our FD system in this paper. Considering the

9 This holds for all neural network models, and it also holds for

the models used in recent studies of netwdiks3].
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simplicity of our model (1), the results found here give involved with the continuous addition of noise in our
reason to believe that these features exist quite gen-model. Also, when noise is added to fixed points, the
erally in network systems that maintain themselves network structure may be completely destroy@dh-
through temporal evolution. It is therefore important deed, in an FD system with noise added continuously
to study how concepts formulated with regard to FD in time, if the magnitude of this noise is sufficiently
can be applied to real biological network dynamics. large,the function becomes constant over all intervals.
One possible way to avoid this problem is to consider
5.3. Future problems an FD on a torus{Y), i.e., a map on a circle. In this
case there exists a function that has no fixed points.
The limit function investigated here starts from a The study of FD on a circle is an interesting extension
piecewise constant functioyp. However, in a more  to be considered in the future.
general investigation, we also need to consider the case
in which such initial functions are continuous. With
a continuousfo, the limit function can consist of an  Acknowledgements
infinite number of constant partial functions. We be-
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. . . . 10 ica i ad i ;
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