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1 Question to be addressed

A cell consists of several replicating molecules that mutually help the synthe-
sis and keep some synchronization for replication. At least a membrane that
partly separates a cell from the outside has to be synthesized, keeping some de-
gree of synchronization with the replication of other internal chemicals. Both
catalysts and resource chemicals exist in some balance to maintain recursive
production. How is such efficient recursive production possible while keeping
diversity of chemicals? Is there some universal statistics in abundances of
chemicals and in the network for a cell with steady recursive growth?

In a cell, a variety of chemicals form a complex reaction network to synthesize them-
selves. Then how such cell with a huge number of components and complex reaction
network can sustain reproduction, keeping similar chemical compositions?

On the other hand, the total number of molecules in a cell is limited. If there is a huge
number of chemical species that catalyze each other, the number of some molecules species
may go to zero. Then molecules that are catalyzed by them no longer are synthesized.
Then, other molecules that are catalyzed by them cannot be synthesized. In this man-
ner, the chemical compositions may vary drastically, and the cell may lose reproduction
activity.

Of course, the cell state is not constant, and a cell may not divide for ever. Still, a
cell state is sustained to some degree to keep producing similar offspring cells. We call
such condition for reproduction of cell as ’recursive production’ or ’recursiveness’. The
question we address here is if there are some conditions on distribution of chemicals or
structure of reaction network.

Rhe number of each molecule in a cell changes in times through reaction, and the
number, on the average is increased for the cell replication. Positive feedback process
underlying the replication process may lead to large fluctuations in the molecule numbers.
With such large fluctuations and complexity in the reaction network, how is recursive
production of cells sustained?!

2 Logic

Here, we study statistical characteristics that a cell with recursive growth has to satisfy.
In a cell, there is a huge number of chemicals that catalyze each other and form a complex

! This type of problem has been discussed in relationship with the origin of life[1, 2, 3]. Here we discuss
this problem in connection with a universal feature of a cell with recursive production, in general, which
should hold also for the present cell.



network. Through membrane, some chemicals flow in, which are successively transformed
to other chemicals through this catalytic reaction network. For a cell to grow recursively,
a set of chemicals has to be synthesized for the next generation. Each chemical, for its
synthesis, requires some other chemicals as a catalyst. Then, generally speaking, there
should exist some mutual relationship among molecules to catalyze each other.

While the number of molecule species is huge in a cell, the number of each molecule
species is not necessarily large. Then fluctuations in molecule number are inevitable, since
the reaction occurs through stochastic collision. The number of some molecules may go
to zero, which sometimes may be dangerous, since such molecules may be essential as a
catalyst to the synthesis of some molecules. Then, it is not trivial how recursive production
of molecules in a cell is sustained.

Here it will be too much demanding to request that all the molecules keep their number
through recursive production of a cell. The compositions of chemicals can differ by cells
through divisions. Such loose reproduction should be all right as a beginning of cell.
Still, with this loose reproduction, the catalytic activities should be sustained to keep
reproduction of cells. In this sense we need to understand how an ensemble of molecules
keep catalytic activity and loose reproduction in the amidst of large fluctuations in the
chemical compositions.

The biochemical reactions for metabolism, synthesis of membrane and nucleic acid
keep some synchrony. In a cell, some transported nutrients are successively transformed
to some other chemicals that include catalysts for other reactions. If the transportation
of nutrients is higher, that would be helpful for the growth. But if nutrients are too much
there will be no room for catalysts from it, and the reaction no longer works. Various
chemicals should exist in order for catalytic reactions to work efficiently. On the other
hand, if all chemicals exist in the same order, first, the probability of each molecule
to meet its catalysts will be lower, and the effective transformation of nutrients is not
possible. Furthermore, in this equally distributed number of chemicals, since there are
many molecule species that are low in concentration, the reaction events progress just
randomly, and the chemical compositions will differ much by generations.

Thus, in order for effective transformation of nutrients, existence of some structure
in abundances in chemicals should be favorable. Indeed, in catalytic reactions, there are
successive structure, as catalysts for the reactions to transform nutrients, then catalysts
for such catalysts for nutrients, and then catalysts for catalysts for catalysts for nutrients,
and this cascade continues. It would then be expected that these levels of catalysts do
exist in different levels of abundances. On the other hand, if such unbiased distribution
in abundances of chemicals exist, the reaction probability is not homogeneous for each
reaction. This will lead to decrease the random change of concentrations, as compared
with the case of almost equal distribution in numbers.

Hence, for an effective use of resource chemicals, some hierarchical structure in cata-
lysts is favored, with regards to the abundances. Indeed, by taking a specific cell model,
we will explicitly show existence of such cascade structure. When a hierarchical structure
exists, it is easily expected that some power law exists in the abundances. The distribu-
tion p(z) that the abundances of chemicals is between z and z + dz is then given by a
power law. Indeed, as will be shown, from several model simulations, we find universal
power law statistics for a cell that grows efficiently and recursively[4].

At this stage, however, we need to seriously consider the fluctuation of the number of
molecules[5]. The chemical abundance of each molecule is under some fluctuation, since
the collision process of molecules is basically stochastic. As long as the total number
of molecules in a cell is not very huge, fluctuation in each molecule concentration are
inevitable. Of course, negative feedback process to stabilize the concentration is one
possible solution, to reduce the fluctuations. For reproduction of a cell, however, molecules



have to be synthesized which implies some positive feedback process to amplify the number
of each molecule species. As for growth, it is better to strengthen this amplification rate,
which, however, may amplify the fluctuations also. We need to study some general features
of the fluctuations inherent in such positive feedback system. As a very simple illustration,
let us consider a process that a moluclue z,, is replicated with the aid of other catalytic
molecules.

Then, the growth of the number N (m) of the molecule species ., is given by dN (m)/dt =
AN(m). Here A involves the rate of several reaction processes to synthesize the molecule
Z,,. Such synthetic reaction process depends on the number of the molecules involved in
the catalytic process. Recall, however, that all chemical reaction processes are inevitably
accompanied with fluctuations arising from stochastic collision of chemicals. Thus, al-
though the reactions to synthesize a specific chemical and convert it to other chemicals
is balanced in a steady state, the fluctuation terms remain. Accordingly, the above rate
A has fluctuations n(t) around its temporal average @. Then the above rate equation is
written as dN(m)/dt = N(m)(a + n(t)), and it follows that

dlogN(m)/dt =a + n(t). (1)

In other words, the logarithm of chemical abundances shows Brownian motion around
its mean. The logarithm of chemical abundances is expected to obey normal (Gaussian)
distribution, if 7(¢) is approximated by a Gaussian noise, Accordingly, the logarithm of
the number molecules is suggested to obey normal (Gaussian) distribution, as

Such distribution is known as log-normal distribution. In contrast to the Gaussian dis-
tribution, the log-normal distribution has a longer tail for more abundances, if plotted in
the original scale without taking logarithm.

Of course, the present argument is too simple, since the reaction process is not neces-
sarily directly autocatalytic, as assumed in the above argument. Replication of a molecule
occurs only through several steps of reactions. Still, in each term of reaction process,
there can appear a multiplicative stochastic process with 7(t)z,,, for the change of z,,, in
general. Hence, the log-normal distribution, rather than Gaussian distribution, may be
common in a cell that reproduces itself recursively[7, 6]. This argument on this fluctuation
is rather primitive, and we need to check if it really works in a model and experiments.
We will discuss this problem later.

The log-normal distribution, if plotted in the normal scale, has a very large tail to
the abundant side. This large fluctuation in number, in some sense is quite far from the
controlled behavior of a cell. Such fluctuations may destroy the recursive growth of a cell.
Is there some control mechanism to suppress some fluctuations there? Is gene a controller
for such fluctuations? This problem will also be discussed in the last section.

P(N) x exp(—

3 Model

What type of a model is best suited for a cell to answer the question raised above? With
all the current biochemical knowledge, we can say that one could write down several
types of intended models. Due to the complexity of a cell, there is a tendency of building
a complicated model in trying to capture the essence of a cell. However, doing so only
makes one difficult to extract new concepts, although simulation of the model may produce
similar phenomena as those in living cells. Therefore, to avoid such failures, it may be
more appropriate to start with a simple model that encompasses only the essential factors
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Figure 1: Schematic representation of our modeling strategy of a cell

of living cells. Simple models may not produce all the observed natural phenomena, but
are comprehensive enough to bring us new thoughts on the course of events taken in
nature.

In setting up a theoretical model here, we do not put many conditions to imitate the
life process. Rather we impose the postulates as minimum as possible, and study universal
properties in such system. For example, as a minimal condition for a cell, we consider a
system consisting of chemicals separated by a membrane. The chemicals are synthesized
through catalytic reactions, and accordingly the amount of chemicals increases, including
the membrane component. As the volume of this system is larger, the surface tension for
the membrane can no longer sustain the system, and it will divide. Under such minimum
setup as will be discussed later, we study the condition for the recursive growth of a cell.

Let us start from simple argument for a biochemical process that a cell that grows
must at least satisfy. A huge number of chemicals that catalyze each other is spatially
arranged in a cell, and in some problems such spatial arrangement is very important, but
as a minimal condition, let us discard the spatial configuration of molecules within a cell,
since they are not rigidly fixed but can move around randomly to some degree. Hence,
we consider just the composition of chemicals in a cell. These molecules change their
number through reaction among these molecules. Since most reactions are catalyzed by
some other molecules, the reaction dynamics consist of a catalytic reaction network.

Assuming that some reaction processes are fast, they can be adiabatically eliminated.
Also, most of fast reversible reactions can be eliminated by assuming that they are already
balanced. Then we need to discuss only the concentration (number) of molecules species,
that change relatively slowly. For example by assuming that enzyme is synthesized and
decomposed fast, the concentrations can be eliminated, to give catalytic reaction network
dynamics consisting of the reactions with



where X; catalyzes the reaction[8, 4]. If the catalysis progresses through several steps,
this process is replace by

X,~—|—mX7'—>Xg+ij (4)

leading to higher order catalysis[9].

Now, the internal state of the cell can be represented by a set of numbers (n, ng, - - -, ny.),
where n; is the number of molecules of the chemical species ¢ with ¢ ranging from i =1
to k. For the internal chemical reaction dynamics, we chose a catalytic network among
these k chemical species, where each reaction from some chemical 7 to some other chem-
ical j is assumed to be catalyzed by a third chemical /, i.e. (i + /£ — j+£) . The rate
of increase of n; (and decrease of n;) through this reaction is given by en;n,/N?, where
¢ is the coefficient for the chemical reaction. For simplicity all the reaction coefficients
were chosen to be equal, and the connection paths of this catalytic network were chosen
randomly such that the probability of any two chemicals ¢ and j to be connected is given
by the connection rate p.

For a cell to grow, some resource chemicals must be supplied through membrane, which
are successively transformed to other chemicals through this catalytic reaction network.
These resources (nutrients) are supplied from the environment by diffusion through the
membrane (with a diffusion coefficient D). (Note that the nutrient chemicals have no
catalytic activity, since they are not products by intra-cellular reactions. Indeed, there
does not occur catalytic reactions in the environment.) Besides these nutrients, some
of these chemicals may penetrate > the membrane and diffuse out while others will not.
With the synthesis of the impenetrable chemicals that do not diffuse out, the total number
of chemicals N = }>; n; in a cell can increase. As the number of molecules is large enough,
the membrane is no longer sustained, even just due to the constraint of surface tension.
Then, when the number of molecules is larger than some value, it is expected to divided.
We study how this cell growth is sustained by dividing a cell into two when the volume
is larger than some threshold. For simplicity the division is assumed to occur when the
total number of molecules N = >, n; in a cell exceeds a given threshold N,,... Chosen
randomly, the mother cell’s molecules are evenly split among the two daughter cells.

Summing up, the basic picture for a simple toy cell we take is given as in Fig.1. In our
numerical simulations, we randomly pick up a pair of molecules in a cell, and transform
them according to the reaction network. In the same way, diffusion through the membrane
is also computed by randomly choosing molecules inside the cell and nutrients in the
environment. In the case with N > k (i.e. continuous limit), the reaction dynamics is
represented by the following rate equation:

dn;/dt =" Con(j,i,£) e n; ne/N*> =" Con(i, j',£') € n; ne/N? + Doy(m;/V — n;/N), (5)

gL g

where Con(i, j,£) is 1 if there is a reaction ¢ + £ — j + £, and 0 otherwise, whereas o;
takes 1 if the chemical i is penetrable, and 0 otherwise. The third term describes the
transport of chemicals through the membrane, where 7; is a constant, representing the
number of the ¢-th chemical species in the environment and V' denotes the volume of the
environment in units of the initial cell size. The number 7; is nonzero only for the nutrient
chemicals.

Remark

? Even if the reaction coefficient and diffusion coefficient of penetrating chemicals are not identical but
distributed, the results reported here are obtained.
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Figure 2: The growth speed of a cell and the similarity between the chemical compositions
of the mother and daughter cells, plotted as a function of the diffusion coefficient D. The
growth speed is measured as the inverse of the time for a cell to divide. The degree
of similarity between two different states m (mother) and d (daughter) is measured as
the scalar product of k-dimensional vectors H(n,,,n,) = (n,,/|n,|) - (ns/|ny|), where
n = (ny,ng,...,n;) represents the chemical composition of a cell and |n| is the norm of
n. Both the growth speed and the similarity are averaged over 500 cell divisions. Note
that the case H = 1 indicates an identical chemical composition between the mother and
daughter cells. Reproduced from [4].

Models for specific gene expression or signal transduction have been extensively studied
these days, which are relevant to understand specific function of a cell. There, we can
construct a more detailed model. In our study, we are interested in a recursive production
of a ’whole cell’, and such partial model is not adequate. Instead, we take a ’crude’
catalytic reaction network model that at least include reproduction of the whole set of
chemicals.

4 Zipf law

If the total number of molecules V,,,, is larger than the number of chemical species &, the
population ratios {n;/N} are generally fixed, since the daughter cells inherit the chemical
compositions of their mother cells. For & > N,,.., the population ratios do not settle
down and can change from generation to generation. In both cases, depending on the
membrane diffusion coefficient D, the characteristics of intra-cellular reaction dynamics
change as will be discussed below. Equivalently, this change of intra-cellular dynamics
also appear when changing the connection rate p.

As D is increased, the growth speed of a cell is increased as shown in Fig.2, since
the intake of nutrients is hastened. However, there is a critical value D = D, beyond
which the cell cannot grow continuously. When D > D., the flow of nutrients from
the environment is so fast that the internal reactions transforming them into chemicals
sustaining ‘metabolism’ cannot keep up. In this case all the molecules in the cell will finally
be substituted by the nutrient chemicals and the cell stops growing since the nutrients
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Figure 3: Rank-ordered number distributions of chemical species. (a) Distributions with
different diffusion coefficients D are overlaid. The parameters were set as k = 5 x 10°,
Npax =5 x 10°, and p = 0.022. 30 % of chemical species are penetrating the membrane,
and others are not. Within the penetrable chemicals, 10 chemical species are continu-
ously supplied to the environment, as nutrients. In this figure, the numbers of nutrient
chemicals in a cell are not plotted. With these parameters, D, is approximately 0.1. (b)
Distributions at the critical points with different total number of chemicals k are over-
laid. The numbers of chemicals were set as k = 5 x 10%, k = 5 x 10°, and k = 5 x 105,
respectively. Other parameters were set the same as those in (a). Reproduced from [4].



alone cannot catalyze any reactions to generate impenetrable chemicals. Continuous
cellular growth and successive divisions are possible only for D < D.. When the diffusion
coeflicient D is sufficiently small, the internal reactions progress faster than the flow of
nutrients from the environment, and all the existing chemical species have small numbers
of approximately the same level. As shown in Fig.2, the growth speed of a cell is maximal
at D = D.. This suggests that a cell whose reaction dynamics are in the critical state
should be selected by natural selection. Indeed, simulations with evolution of these cells
support this[10].

Second, at the critical point, the similarity of chemical compositions between the
mother and daughter cell is maximal as shown in Fig.2. Indeed, for £ > N, the chemical
compositions differ significantly from generation to generation when D <« D.. When
D = D., several semi-stable states with distinct chemical compositions appear. Daughter
cells in the semi-stable states inherit chemical compositions that are nearly identical to
their mother cells over many generations, until fluctuations in molecule numbers induce
a transition to another semi-stable state. This means that the most faithful transfer
of the information determining a cell’s intra-cellular state is at the critical state. To
characterize the similarity of cell compositions by divisions, we use the inner product
of composition vectors of mother and daughter cells[4, 11, 7]. As plotted in Fig.2, the
similarity is maximal around D ~ D.. In this state, chemical compositions of cells are
well transferred to offspring through divisions, in the amidst of fluctuations. To sum up,
the faithful reproduction is possible for a cell at D ~ D,.

Now, we study the statistics of the abundances of chemicals focusing on the case with
D ~ D.. The rank-ordered number distributions of chemical species in our model are
plotted in Fig.3, where the ordinate indicates the number of molecules n; and abscissa
shows the rank determined by n;. As shown in the figure, the slope in the rank-ordered
number distribution increases with an increase of the diffusion coeflicient D. We found
that at the critical point D = D,, the distribution converges to a power-law with an
exponent -1. This type of power-law was first studied in linguistics as the frequency of
appearance of words by Zipf[12], and is called Zipf law.

The power-law distribution at this critical point is maintained by a hierarchical organi-
zation of catalytic reactions, where the synthesis of higher ranking chemicals is catalyzed
by lower ranking chemicals. For example, major chemical species are directly synthesized
from nutrients and catalyzed by chemicals that are slightly less abundant. The latter
chemicals are mostly synthesized from nutrients (or other major chemicals), and cat-
alyzed by chemicals that are much less abundant. In turn these chemicals are catalyzed
by chemicals that are even less abundant, and this hierarchy of catalytic reactions contin-
ues until it reaches the minor chemical species. In fact, in the case depicted in the inset
of Fig.3, a hierarchical organization of catalytic reactions with 5 ~ 6 layers is observed at
the critical point, as schematically shown in Fig.4.

Based on this catalytic hierarchy, the observed exponent -1 can be explained using a
mean field approximation. First, we replace the concentration n;/N of each chemical i,
except the nutrient chemicals, by a single average concentration (mean field) z, while the
concentrations of nutrient chemicals S is given by the average concentration S =1 — k*z,
where k* is the number of non-nutrient chemical species. From this mean field equation,
we obtain S = g ff with Sy = 3, n;/V. With linear stability analysis, the solution with
S # 1lis stable if D < &£5 = D,. Indeed, this critical value does not differ much from
numerical observation.

Next, we study how the concentrations of non-nutrient chemicals differentiate. Sup-
pose that chemicals {io} are synthesized directly from nutrients through catalyzation by
chemicals j. As the next step of the mean-field approximation we assume the concentra-
tions of the chemicals {i(} are larger than the others. Now we represent the dynamics




by two mean-field concentrations; the concentration of {ig} chemicals, x, and the con-
centration of the others, z;. The solution with z, # @, satisfies zy = x,/p at the critical
point D.. Since the fraction of the {iy} chemicals among the non-nutrient chemicals is
p, the relative abundance of the chemicals {iy} is inversely proportional to this fraction.
Similarly, one can compute the relative abundances of the chemicals of the next layer
synthesized from i,. At D = D., this hierarchy of the catalytic network is continued. In
general a given layer of the hierarchy is defined by the chemicals whose synthesis from
the nutrients is catalyzed by the layer one step down in the hierarchy. The abundance of
chemical species in a given layer is 1/p times larger than chemicals in the layer one step
down. Then, in the same way as this hierarchical organization of chemicals, the increase
of chemical abundances and the decrease of number of chemical species are given by fac-
tors of 1/p and p, respectively. This is the reason for the emergence of power-law with an
exponent -1 in the rank-ordered distribution. Within a given layer, a further hierarchy
exists, which again leads to the Zipf rank distribution.

In general, as the flow of nutrients from the environment increases, the hierarchical
catalyzation network pops up from random reaction networks. This hierarchy continues
until it covers all chemicals, at D — D. — 0. Hence, the emergence of a power-law
distribution of chemical abundances near the critical point is quite general, and does not
rely on the details of our model, such as the network configuration or the kinetic rules of
the reactions.

We have checked the universality of the Zipf’s law by adopting distributed network
connectivity, and distributed parameters, and so forth. Our result is invariant against
these changes of the model. This power law in abundances seems to be a quite universal
law as long as a cell achieves a recursive growth (i.e., relatively faithful reproduction)
and efficient growth. Since the current cell also satisfies relatively faithful reproduction
( as well as effective growth for a suitable condition), the above behavior at D ~ D.
may be expected to be true also in the present cell. Then, does this Zipf’s law hold
in the present cell? In order to investigate possible universal properties of the reaction
dynamics, examined are the distributions of the abundances of expressed genes (that are
the abundances of the mRNA that produce corresponding proteins). As will be discussed
later, the data from several tissues suggest the validity of the present law[4].

remark

Corresponding to the Zipf’s law in the rank-abundance relationship, the distribution
p(z) of the chemical species with abundance z is proportional to z=2. This is easily
obtained by noting that the rank distribution, i.e., the abundances = plotted by rank n
can be transformed the density distribution function p(z), which is the probability that
the abundance is between z and z + dz. Recalling that dx = dz/dn x dn, there are
|dz/dn|~' chemical species between z and z + dz. Thus, if the abundance-rank relation

is given by a power-law with exponent -1, p(z) = |dz/dn|™" x n? < 272

5 Log-normal distribution

In the lase subsection, we discussed the average abundances of each chemical, and stud-
ied the universal statistic over molecule species. Since the chemical reaction process is
stochastic, each number of molecule differs by cells. For example, if 23 in the last section
is 3000, it can be 2631, 3203, 2903, 3611,... for each cell. Now we study the distribution of
each molecule number, sampled over cells. In Fig.5, we plotted the number distributions
of several chemicals in the condition D ~ D.. We measure the number of chemicals when
a cell is divided into two. Since the total number of chemicals is constant when the cell
is divided, the abundances of each chemical are just proportional to the concentration of
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Figure 4: Schematic representation of catalytic cascade. Higher rank chemicals are mainly
catalyzed by a lower level. This is a schematic representation showing a rough structure
and indeed there are several other cascade paths also.

each. As shown in Fig.5, the distribution is fitted quite well by the log-normal distribution
ie.,

P(n;) =~ exp(— (ogn: 2—Ulogn_,;) ) (6)

where 7; indicates the average of n; over cells[6].

This log-normal distribution holds for the abundances of all chemicals, except for a
few chemicals that are supplied externally to a cell as nutrients, which obey the standard
Gaussian distribution. In other words, those molecules that are reproduced in a cell obey
the log-normal distributions, while those that are just transported from the outside of a
cell follow the normal distributions.

Why does the log-normal distribution law generally hold, in spite of the threat by
the central limit due to addition of several fluctuation terms? We have discussed already
the possible mechanism for the log-normal distribution in §2. However, there is slight
difference here. In the discussion of §2, there is autocatalytic reaction process, as given by
dz;/dt = cx;x;, which leads to multiplicative stochastic process. In the present example,
the reaction process is given by dz;/dt = cz;x,. Thus, the discussion of §2 is not directly
applied.

Still, there is a multiplicative reaction process here. Furthermore, as discussion in §3,
there is a cascade reaction process, to support the recursive production around the critical
state D ~ D.. There, only a part of possible reaction pathways are used dominantly, to
organize a cascade of catalytic reactions so that a chemical in the i-th group is catalyzed
by the (i + 1) — th, and that in the (i + 1) — th group is catalyzed by the (i 4+ 2) — th.
A ”modular structure” with groups of successive catalytic reactions is self-organized in
the network. Then the fluctuations influences multiplicatively through the cascade. By
taking logarithm of concentrations (i.e., logz,,), these successive multiplication are trans-
formed to successive addition. Now, consider of the average of many random numbers.
The distribution of the average approaches the Gaussian distribution, as given by the
central limit theorem. The distribution of logz,, is then expected to obey the Gaussian

10
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Figure 5: The number distribution of the molecules of chemical abundances. Distributions
are plotted for several chemical species with different average molecule numbers. The
data were obtained by observing 178800 cell divisions. The parameters were set as k =
5 x 10%, N,,.. = 10°, and the connectivity to p = 0.02. 30 % of the chemical species
are penetrating the membrane, and the others are not. Within the penetrable chemicals,
two chemical species are continuously supplied from the environment as nutrients. The
diffusion coefficient D of the membrane was set as 0.04, which is close to the critical value

D..

distribution. Hence, the log-normal distribution of z,, is derived. Note that, at the crit-
ical state we are concerned, this cascade of catalytic reaction continues for all chemical
species that are reproduced, and the log-normal distribution holds clearly.

Next we discuss how the magnitude of fluctuations depend on each chemical species.
As shown in Fig.5, the width of the distribution does not change much independently of its
average abundances, when plotted in the logarithmic scale. This suggests a relationship
between the fluctuation and the average for all chemicals. We have thus plotted the

standard deviation of each chemical y/(n; — 7;)? as a function of the average. As shown
in Fig.2, the standard deviation (not the variance) increases linearly with the average.

To discuss the relationship between the mean and the standard-deviation, one should
recall the steady growth and cascade structure in catalytic reactions. Consider two chem-
icals ¢ and j, one of which (j) belongs to a group of catalyzing molecules for the other.
Then the balance between the synthesis and conversion implies z, x A —z; x B = 0,
where A and B are average concentrations of other chemicals involved in the catalytic
reaction. Assuming the steady growth of a cell, the average concentration satisfies
z;/%; = A/B. If we further assume the steady state condition for the fluctuations also,
then < (dz;)* > / < (dz;)? >= (A/B)* = 7;%/Z;*. Hence with this rough argument, the
variance is expected to be proportional to the square of the mean, leading to the linear
relationship between the mean and standard deviation.

11
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Figure 6: Standard deviation versus average number of molecules. Using the same data
set and parameters as for Fig 6.4, the relationship between the average and standard
deviation is plotted for all chemical species. The solid line is for reference.

The linear relationship is also found with regards to the variation of chemical abun-
dances by the change of external conditions. For example, we have computed the change
from Z; to = by changing the concentrations of supplied nutrients. The variation |z’ -;|
is again found to be proportional to Z; for each chemical ¢, similarly as the data plotted
in Fig.6.

The discovered laws on the distribution and the liner relationship between the average
and fluctuation are universally observed, near the critical point with the largest repro-
duction speed, hold generally and do not rely on the details of the model, such as the
network configuration of the kinetic rules of the reactions, as has been confirmed from
simulations of a variety of models.

Note, however, that the above arguments for the two laws are based on the steady
growth of a cell with catalytic cascade process, realized at D ~ D,.. Indeed, as the
parameter D is much smaller, all possible reaction pathways are used with a similar weight,
where the cascades of catalytic reactions are replaced by random reaction network. In this
case, the fluctuations of each molecule number are highly suppressed, and the distribution
is close to normal Gaussian. The variance (not the standard deviation) increases linearly
with the average concentrations. In other words, the behavior is "normal” as expected
from the central limit theorem.

6 Experiment

6.1 confirmation of Zipf’s law

First we discuss the validity of Zipf’s law with regards to the abundances of many chem-
icals within the cell. In order to investigate possible universal properties of the reaction
dynamics, we examined the distributions of the abundances of expressed genes, that are
nothing but the abundances of the mRNA that produce corresponding proteins in a va-
riety of organisms and a variety of tissues. In [4], they used the data publicly available
from SAGE (Serial Analysis of Gene Expression) databases [14] over 6 organisms and
more than 40 tissues. S AGE allows the number of copies of any given mRNA to be
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quantitatively evaluated by determining the abundances of the short sequence tags which
uniquely identify it [15].

Following the numerical results of the model, we plotted the rank-ordered frequency
distributions of the expressed genes, where the ordinate indicates the frequency of the
observed sequence tags (i.e. the population ratio of the corresponding mRNA to the total
mRNA), and the abscissa shows the rank determined from this frequency. As shown, the
distributions follow a power-law with an exponent close to -1 (Zipf’s law). We observed
this power-law distribution for all the available samples, including 18 human normal
tissues, human cancer tissues, mouse embryonic stem cells, nematode (C. elegans), and
yeast (S.cerevisiae) cells. All the data over 40 samples (except for 2 plant data) show the
power-law distributions with the exponent in the range from —1 ~ —0.9. Even though
there are some factors which may bias the results of the SAGE experiments, it seems
rather unlikely that the distribution is an artifact of the experimental procedure. Indeed
there are increasing supports for this Zipt’s law, by using a standard micro array.

6.1.1 Confirmation of laws on fluctuations

Now we discuss the confirmation of the laws of fluctuations. Recalling that the laws are
expected to hold for the abundances of a protein synthesized within cells with recursive
(steady) growth, we measured the distribution of the protein abundances in Escherichia
coli that are in the log phase growth, i.e., in a stage of steady growth. To obtain the distri-
bution of the protein abundances, we introduced the fluorescent proteins with appropriate
promoters into the cells, and measured the fluorescence intensity by flow cytometry. To
demonstrate the universality of the laws, we have carried out several sets of experiments
by using a variety of promoters and also by changing places that the reporter genes are
introduced (i.e., on the plasmid and on the genome).

Indeed, we have measured the distributions of the emitted fluorescence intensity from
Escherichia coli cells with the reporter plasmids containing either (enhanced) green flu-
orescent protein. In general, the fluorescence intensity (the abundance of the protein)
increases with the cell size. To avoid the effect of variation of cell size, which may also
obey log-normal distribution, we normalized the fluorescence intensity by the volume of
each cell, that is estimated by the forward-scatter (F'S) signal from the flow cytometry.
The distributions of this normalized fluorescence intensity are fitted well by log-normal,
rather than Gaussian, distributions, even though each of the expressions is controlled by a
different condition of the promoter. We have also measured the abundances of fluorescent
protein expressed from the chromosome, which again is found to obey the log-normal
distribution. It is furthermore interesting to note that the abundances of the fluorescent
proteins, reported in the literature so far, are often plotted with a logarithmic scale[13].

It should be noted that the log-normal distribution of protein abundances is observed
when the Escherichia coli are in the log phase of growth, i.e., when the bacteria are in
steady growth. For other phases of growth, without steady growth, the distribution is
found to be often deviated from the log-normal distribution. Note that the theory also
supports the log-normal distribution for the steady growth case only, i.e., for a state with
recursive production. If a cell is not in a stationary growth state but in a transient process
switching from one steady state to another, the universal statistics can be violated.

7 Discussion

In the present chapter we have observed ubiquity of log-normal distribution, in several
models. The fluctuations in such distribution are generally very large. This is in contrast
to our naive impression that a process in a cell system must be well controlled.
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Then, is there some relevance of such large fluctuations to biology? Quite recently, we
have extended the idea of fluctuation-dissipation theorem in statistical physics to evolu-
tion, and proposed a linear relationship (or high correlation) between (genetic) evolution
speed and (phenotypic) fluctuations. This proposition turns out to be supported by ex-
perimental data on the evolution of E Coli to enhance the fluorescence in its proteins[16].
Furthermore this phenotypic fluctuation is shown to be tightly related with the genetic
variance, measured through phenotype[18]. Hence the fluctuations are important biolog-
ically.

The log-normal distribution is also rather universal in the present cell, as demonstrated
in the distribution of some proteins, measured by the degree of fluorescence. We have to
be cautious here, since too universal laws may not be so relevant to biological function.
In fact, chemicals that obey the log-normal distribution may have too large fluctuations
to control some function. For example, the abundances of DNA should be deviated from
the log-normal distribution. Some other mechanism to suppress the fluctuation may work
in a cell® .

Note that in a system consisting of molecules synthesized with mutual catalysis, there
can appear some key-stone chemicals. These key-stone molecules work as a controlling
part. As discussed in [7], this key-stone molecule has a higher connection in reaction
network. Then the increase of number fluctuations of such molecule result in a drastic
change in the number of other molecules. Accordingly, to have stable recursive production
of a cell, such key-stone molecules must have relatively smaller fluctuations, in contrast
to the large fluctuations of other molecules arisen from the log-normal distribution. With
a combination of such key-stone chemicals, information on recursive growth is generated,
that works as a controller for synchronized growth.

Then, what mechanism is a candidate to decrease the fluctuation leading to deviation
from log-normal distribution? In relationship with the above key-stone molecules, we
previously proposed a minority control mechanism to suppress the fluctuation[19]. In a
reproducing cell consisting of mutually catalytic molecules, those in minority have ten-
dency to control the behavior of the cell and are preserved relatively well. These minority
molecules are expected to play the role of key-stone molecule species.

The next standard mechanism is negative feedback process. In general, the negative
feedback can suppress the response as well as the fluctuation. Still, it is not a trivial
question how chemical reaction can give rise to suppression of fluctuation, since to realize
the negative feedback in chemical reaction, production of some molecules is necessary,
which may further add fluctuations.

The other possible mechanism is the use of multiple parallel reaction paths. If several
processes work sequentially, the fluctuations would generally be increased. When reaction
processes work in parallel for some species, the population change of such molecule is
influenced by several fluctuation terms added in parallel. If a synthesis (or decomposition)
of some chemical species is a result of the average of these processes working in parallel, the
fluctuation around this average can be decreased by the law of large numbers. Suppression
of fluctuation by multiple parallel paths may be a strategy adopted in a cell.

In fact, the minority molecule species in a core catalytic network discussed in [7] has
higher reaction paths and has relatively lower fluctuations. This is also consistent with
the scenario that more and more molecules are related with the minority species through
evolution, as discussed in [19]. With the increase of the paths connected with the minority
molecules, the fluctuation of minority molecules is reduced, which further reinforces the
minority control mechanism. Hence the increase of the reaction paths connected with the

3 Tt is interesting to note that the weight distribution of adult human obeys the log-normal distribution,
while the height distribution obeys the Gaussian distribution.
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minority molecule species through evolution, decrease of the fluctuation in the population
of minority molecules, and enhancement of minority control reinforce each other. With
this regards, search for molecules that deviate from log-normal distribution should be
important, in future. Here it is important to measure the distribution of chemicals in
relationship with its characteristics (such as the connectivity) in the reaction network.

In physics, we are often interested in some quantities that deviate from Gaussian
(normal) distribution, since the deviation is exceptional. Indeed, in physics, search for
power-law distribution or log-normal distributions has been popular over a few decades,
because they are exceptional. On the other hand, a biological unit can grow and reproduce,
to increase the number. For such system, the components within have to be synthesized,
so that amplification process is common. Then, the fluctuation is also amplified. In
such system, the power-law or log-normal distributions are quite common, as already
discussed here, and as is also shown in several models and experiments [4, 6]. In this case,
the Gaussian (normal) distribution is not so common. Then exceptional molecules that
obey the normal distribution with regards to their concentration may be more important.

Note that our findings are not restricted to a cell. As long as a system grows, through
production by mutual catalytic processes, universal properties we discussed here will
generally appear. Society of human beings with economic production process is such an
example, and indeed Zipf law was first studied in human activities[12]. For example,
such power law is also observed in the wealth distribution. Universality in a reproduction
system revealed in cell biology will be relevant to social dynamics. Indeed, formation of
hierarchy, minority control, as well as differentiation that was discussed in reproducing
cell models[4, 8, 9, 19] provide conceptual tools to understand history, the dynamics of
human society[21]. Furthermore, industry production process, a key issue in the present
proceedings, is also such an example of growth system with catalytic process[22]. As
discussed in the present volume, the industrial production system is also in the amidst of
large fluctuations, and suppression or control of such fluctuations should be important.
Ubiquity of log-normal distributions, as well as control mechanisms discussed here may
be relevant to such problems.
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