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The systematic adiabatic elimination method is formulated using the eigenfunction expan-
sion method, in terms of the small parameter ™', which is the time scale for a fast variable.
This method is applied to the linear processes with some examples of an optical system and a
chemical reaction model. We also apply this method to the colored noise problems, to obtain the
lowest correction of the effect of the memory.

§1. Introduction

Recently many people are interested in multiplicative stochastic processes® %
and colored noise processes'”™'® as fascinating problems of nonequilibrium sta-
tistical physics. The origin of multiplicative stochastic processes is thought to be
due to adiabatic elimination of fast variables®'¥ and to fluctuations of the
surroundings.”™'® However, the elimination of fast variables in stochastic pro-
cesses is not so clear as in deterministic processes and has rather delicate
problems such as the problems of It6 or Stratonovich stochastic calculus.'**'® No
systematic method with the use of a small parameter has been developed so far.
In § 2, we present a systematic method of elimination of fast variables, using the
eigenfunction expansions. The time scale 7 for the fast variables is used as a
small parameter. Applications to linear processes are given in § 3, with an
example of a simplified model of Raman scattering. The threshold of the laser
action may be reduced by the fluctuation of the external pumping. Other applica-
tions to linear processes are presented in § 4 with a simple example to a chemical
reaction model. There we calculate the higher order correction of the small
parameter r. We note that our theory corresponds to the Born-Oppenheimer
approximation in quantum mechanics, where coordinates of electrons are fast
variables.

Colore;d noise processes are also interesting problems in nonegquilibrium sta-
tistical physics. Only two-level colored noises are treated rigorously,'*# and for
colored Gaussian noises we have to resort to the expansion method using small
parameters such as r, the correlation time of the colored noise. This problem is
related to the adiabatic elimination, since we can consider that colored noises
appear as a result of.the elimination of fast variables. In §5, we apply the
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eigenfunction expansion method to this problem and obtain a Fokker-Planck type
equation to order of r. Discussions are given in § 6.

In this paper we will mainly describe our formulation. Some examples of the
applications of this method to more realistic systems, such as the optical problems,
will be reported in a separate paper, with some extensions of this paper.

§ 2. General formulation of the adiabatic elimination

We present in this section a systematic method of elimination of fast vari-
ables in stochastic processes. For simplicity, we confine ourselves only to a two-
variable system (one slow variable and one fast variable which we eliminate).

We consider the following Langevin equations:

{i=f(x,y)+éx(t),. (2-1)
y=—ra(x, y}+/7E(1),
where £:(¢) and £,(t) are Gaussién white noises satisfying
(1)’ PD=Q0(t—1"),
()& N=Q0(t—1)
and
&(8)6()>=0. (2-2)

Here, 7 is a large parameter and we use 1/y as a small parameter, in order to
eliminate the fast variable y. We assume that the quantities f(x, ) and a(x, y)
are O(7°). The factor v7 in front of &(¢) in Eq. (2-1) appears, since the
stationary distribution of the variable y is postulated to be mdependent of ¥ when
x 1s fixed.

The Fokker-Planck equation associated with Eq. (2-1) is

__19 Q: 3
+—a(x y)P+-r s P (2-3)
In order to project P(x, v, t) into P(x, t)=/P(x, v, t)dy, we first expand
P(x,y; t)=§l Pu(x, )T:(y; x), C(2-4)

where {/1.(y; x)} are eigenfunctions of the Fokker-Planck equation

Qz)y ;fyz n(y; x )+aiya(x, YUIn(y; x)=—An(x MT(y; x). (2-5)
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This is a Fokker-Planck equation for the variable y driven by the force —a(x, )
with x as a parameter. Here, we note that Ao(x)=0 (the eigenvalue for the
stationary solution) and A»(x)>0 for »+0. Using the well-known transforma-
tion into the Schrodinger-type equation from the Fokker-Planck equation,'® we
have -

In(y; x)=¢n(y; x)do(y; x), (2-6)

where {¢.(y; x)} are eigenfunctions of the following ‘Schrédinger equation’,

QAn(x)dn(y; x)= [ sz 3y2+V(y,x)]¢n(y,x) 2-7)
and
V(y;x)=%a(x,y)2+—%~a—a(§y‘y—)- (2-8)

We note that {¢.(y; x)} satisfy the orthonormality condition féa{v; x)én(y; x)dy
=dnrm. The projection of the probability distribution into the x-space is per-
formed as follows:

P(x, t)EfP(x,y, Hdy=Px, t), (2-9)

because fIT.(y; x)dy vanishes except for z=0.
Inserting Eq. (2-4) into Eq. (2-3) and integrating over y after multiplying by
én/do, we obtain

aPk

i,atP,.(x t)=-— ¢k(y,x)f(x y)¢n(y,x)>

SRS o o L ()

,_. ~<|r—4 \(]r—-»

o Lrrirr s L (T 04

+3 Py <%%22(¢k¢0)>}—/1n(x)f)n(r, 1), (2-10)

where <:--> denotes [---dy.
Then the equation for Py(x, t) takes the form

2
2 Pz, 0= —g}mx, N8oi(y; 2 Pox, D+ TP (x, 1)

> ax<¢~(y, x)f(x, y)P(y; x)>Pu(x, t), (2-11)

13
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" since

——<¢o<y,x)¢k(y,x)>~ 0 2 510=0.

In order to obtain the closed equation for Po(x, £) to O(y™"'), we need the lowest
contribution of Ps(£#0) to Po. This contribution is given by

A(x)Pulx, t)= { {Prfbod>5 ax < P Mo_>
b\ 8 | 1 / P 03¢0’ 1
Qi (20 2 L (G Tl ) Re 0+ 0(55).
(2-12)
Thus, we obtain

2Pz, )42z, 967 P, )92 TPz, )

1
Y k+0 OX

X {5(7;<¢k(y; x)f(x, »)bo(y; x)>
+ (Fle, ity (L LBELYS 0. (pcd) L

_Qx [/ n __ﬂ_ } (_l_) .
5 (S8 [P v+ o) (2+13)
This is a Fokker-Planck type equation for P(x, ¢) up to order of y~!. Here, we
note that, in general, a (8/0x)® term appears in the next order.

Adiabatic elimination in a deterministic equation, which is widely used,
easily reproduced from Eq. (2-13) as follows: As @y goes to 0,

1), 2)

Sflx, y)o(y; x)>=ff(x;y)Ps¢(y; x)dy—’f(x,y«;(x)), (2-14)

because Ps:(y; x)=8(y—o(x)) as @»—0. Here y(x) is a stable solution of the
equation a(x, ¥)=0. Thus, we obtain to the lowest order of y~*,

2Pz, ===z, y(x))P(x, 1) (2:15)
if @z=0. That is, we obtain x = f(x, w(x)).

When the noise strength @y is small, we can use WKB approximation for the
estimation of ¢.(y; x). Only the small region near y=y(x) contributes to the

It
u
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brackets in Eq. (2-13) in this case. We expand a(x, y) around the most stable
" solution y=1o(x)

alz,9)=5E) (et (2-16)

and neglect the terms of o(y—). Then we can compute ¢x(y; z) and Ax(y; x)
easily. - This will be performed in the next section.

When the cross correlation <£:(#)&(¢)>= Qd(¢—¢’) does not vanish in Eq.
(2-2), there appears the extra term ( Qz/ 7 )(8°/dxdy) P(x,; t) in Ea. (2+3).
This gives no correction to Eq. (2-11), but gives the additional term

290 (3 (5,2~ (9B 2{32)))}Pta. 0 (2:1)

to Eq. (2:12). Thus we have to add to the right-hand side of Eq. (2-13) the
following term: ‘

~292 5 S h Ty
L (o - (B (4E))) J P . (2-18)

When we take the corrections up to order of Q% /7 into account, there appears a
0*/3x® term and this is no longer of the Fokker-Planck type. In many cases,
however, Q. is small and O(1/v7), and we can neglect these corrections. We
also note that we do not need the last two terms in Eq. (2-13) if @ is small and
o(7°).

§3. Applications to a linear process I

In this section we apply the method described in § 2 to some linear processes.
Here, linear processes mean that the equation for the fast variable y is linear
about y as will be seen in Eqgs. (3-1) and (3-9). We consider the following
Langevin equations:

= flx)+g(x)y+é(2),
y=—rclx)y—alx)}+v7 &(1),

where &z(#) and &(t) are Gaussian white noises with the time correlations
obeying Eq. (2-2). The associated Fokker-Planck equation is

(3-1)

7atP( y,t)——7ﬁf( x)P

Qs
2y 8x
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2 ele)y- P+ Lop (3-2)

Eigenfunctions ”n( v; x) which satisfy the equation

L T+ )y = a2 e = = AnlTa(; 3)

=—nc(x )M (y; x)

(3-3)
are expressed by

IIn(y; x)=¢n(y; x)doly; x);

baly; x):<§(53 >II4/23nI e'““‘”“’"””zo"Hn(%(y—af)), (3-4)

where H.(z) is the »-th Hermite polynomial.
Using the recursion formula for Hn(z)

Hi(z)=2nHn-(2) and 2zHn(2)=Hnu:(2)+2nHr-1(2)

(3-5)

and the orthonormality of {#.(2)}, we can compute easily the integrals appearing
in Eq. (2:13) to obtain

(y; 2)yol3; 1)> = a(2)Sm+ zgx)au (3-6)
etc. Thus we obtain from Eq. (2-13),

(L+2r0)-G-Lrt-Latr)gn) Pz, 1

10/ gx)f(n)ex) Fg(x Falz)e'(x)
= o ( ox) )P0

L@ 3 g(x) 0 g(x)
" 2y or clx) ox c(x)P(x’t)

Qe 0 (@) 0, ) n .
y axg(x)( c(x) ax 2¢ )P(x,t)+0(72> (3 7)

Here, we note that the conventional technique of the adiabatic elimination” gives
only the second term on the right-hand side of Eq. (3-7). |

When the cross correlation @z does not vanish, we have to add to the right-
hand side of Eq. (3:7) the following expression:

PRt SaTiien AWt ame L e £

Rt wae
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d g(x) 0 ‘
Go 3 22l 3 piz, 1) (3-8)
from Eq. (2-18).

When Q: is O(1/y) and Qau is O(1/v7), Eq. (3:7) without Qz/7 terms and
Eq. (3-8) yield the Fokker-Planck equation for P{x, ¢) up to order of 1/y. This
agrees with the result obtained by Morita, Mori and Mashiyama.'®

Next, we consider the following case:

[ 3= £+ g(0)y+ Hx)y 7kl 8), (3:0)

y=—rc(x)y—a(x))+v7&(¢).

Calculations are straightforward and we obtain the Fokker-Planck equation for
the distribution of x up to order of 7'

[ait-{-_é% ——%/1 aa; %a +ax(a/ +—Q—) ]P(x, t)

_10 of  gad  ha( .. @Y, Q 9 gtlah
Ty ax(g+2“”"[ c = c c (d+20)+2c ox C ]P(x,t)

PRI INTS I WYL
+—Q—(ai!;§£—a%+§%%”‘)mx, t). (3-10)

Here, we note that the drift part is given by

__9] 2 &) ] .
- [f+a/g+<af +2 )|z, 1) (311
to the lowest order of 7™ and the diffusion part is given by

10 [Q: 1 Qy | QN | Qo .
L0 1 9= (g +2any s + 9+ 8o (gt 2am |Px, ) (312)

to the lowest order.

As an example, we consider a simplified model of Raman scattering.?
Considering four-wave mixing processes, we can write the following field equa-
tions:

{z‘i—s'F =— Ysz‘Is++x|AL|zz‘Is++ &t

. o ~ 3-13
Art=—7 Al —x|AsP A+ PH+Vrélt ( )
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where As*, A.* and P* represent the Stokes-scattered light amplitude, the laser
mode, and the external source respectively. The Gaussian white noises are
represented by &s* and &.*. As a simplified model, we neglect the effect of the
phase and consider the quantities appearing in Eq. (3-13) to be real. Putting As
as As/ /7. and P as P/y., we obtain

i 1
== P
1 As rsAstxAfPAs+ mfs: (3-14)

AL= _)'L{(1+XA52)AL_P}+\/ZEL .

When 7. is large compared with ys, we can eliminate the laser field adiabatically.
Using the formula (3-10), we obtain the Fokker-Planck equation for As to order
of y.7'. Corresponding to Eqgs. (3:10) and (3-11), the drift term and the diffusion
term are given by

O 4 P Q .
aAs{ 7’5As+((1+xA82)2+ Z(HXASZ));:AS}P(AS, ) (3-15)
and

1 9 [Qs  2PxAS QuU*x*As*/ 4+2Qs . PxAs

7 AT U2 T aas T &t (1 xAs’) }P(As. t)

(3:16)

respectively. Here Qs denotes the strength of the random force &s and Q.
denotes that of &, and @s. is the strength of the cross correlation.

The stationary distribution Ps:(As) is easily obtained to the lowest order of
y.~' from Eqs. (3-15) and (3-16), ' ’

pP? Q.
x{_““( +xa?F " 2(l+xx2))}
&_i_ 2P x*x? Ot Qlix*x%/4+2Qs. Pxx
2 " (1+xx?) ¥t (1+ xx?)?

Ag
Ps:(As)ocexp 7’L.f dx

(3-17)

Thus the threshold is given by Puc=+v7s/x— Q./2. Here, the threshold is
defined by the value of the pumping, beyond which the distribution function
Ps:(As) has its maximum at As#0. We note that the fluctuation Q. reduces the
threshold. We may observe this effect by fluctuating the strength of the external
pumping.
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§4. Applications to a linear process 11

In this section we consider the following Langevin equations:

{i =f(x)+glx)y+Ex(t),

y=—yc(x)y+alx)+/7r&(L), (4-1)

where Ex(t) and &,(t) are Gaussian white noises satisfying Eq. (2:2). We
expand P(x, y; ¢) by the Hermite polynomials as in § 3,

P(x,y; t)=§‘. Vel(x)Palz, 1) YalvVe(x)y), (4-2)
where
2_ 1 Z Z .
Yn(Z) (TI’Q ) /We Hn('ﬁ)Ha(@) (4 3)

Using the recursion relations (3-5), we have
0,0 . Qs & —_ /€ 9,
(aﬁa; ) 8x2>P°_ V72 ax(7c'!?=fx P‘(x))
(4-4)

and we obtain the contribution of Pi(x) to Py(x) in order of ¥ %, when Q: is
o(1/7)

o= bl )
X( %%% \/E)Po 1 %Gx c fP° (4-5)

Inserting Eq. (4-5) into Eq. (4-4), there appear terms (1/y*)(9/0¢)(8/dx) and
(1/7%)(9/0¢)(8*/ox*) which are not of the Fokker-Planck type. However, these
terms can be eliminated in order of ™%, by multiplying Eq. (4-4) by {(1+(1/7?) -
X((Q+2)0/dx ) g/ )N afox )N g/c)—(8/ox W ag/c?)))™" from the left.  Thus we
obtain '

9,0, Q: & € 0 g9 g, 120.a
(6t+ax 2 0x2 2y ox c or ¢ ya C)P(x,t)

-8 9 g[1 8 1, . ’
T2y ox c{c ox c(gf —f9)
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foc™ g(f c) }P(x £

+ L2 S aYp(; g, (4-6)

Here we note that in the case Q:= O(7°), a (8/8x)® term appears. When we
assume c(x)=1, for example, we have up to order of y?

0., 0 __Q__ _(Q 2, _ 1 a : '
=2 93 3 or 1Pz, )+ LR L (o 420 )P D

1 9 _Q: 0
+ b ga NP, )~ oo +2a )P(x £).

(4-7)

Before considering a simple example, we remark that when y=p, f(x)=0, i
g(x)=1, c(x)=1and Q-=0, Eq. (4-1) reduces to the Ornstein-Uhlenbeck process ;
and the problem is the derivation of Smoluchowski equation with some correc-
tions. This problem was treated by many physicists.’®**~?? The eigenfunction ;
expansion method was performed in this special case by Stratonovich at first'® |
and has been refined up to the present.'®?” We also note that the correction of
O(77?) vanishes in this case and the equation for P(x, ¢) is of the Fokker-Planck
type up to order of y2.

As an example of Eq. (4:7), we consider the following chemical reaction model

A+ X=mX,
Y+Cc=X, (4-8)
Y-D.

The Langevin equations for this model are ‘ ]

I=ax—bx™+cy+E(2),
y=—yy+he+/TE(L). (4-9)

Assuming that the damping coefficient 7 is large, we can use Eq. (4-7) to obtain
the Fokker-Planck type equation for P(x, ¢) in order of y™?. Here, we only write
the expression of the stationary distribution function Ps:(x) as
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Pst(l’)
kc akc) - ( _ ke Qma\bx™'  mbQyC® m-1_ QyC*x*™
. ~exp (a+ y ) AT T 0, S mEd r* Qs |

( Q1+Q—;‘—,gz—+-Qy’;—C( ac— Zk))

(4-10)

From this expression, we can see the shift of the phase transition point” up to
order of 772, which is ¢=0 in the absence of the coupling between X and Y.

§5. An application to the colored noise system

Recently Sancho and San Miguel studied the following stochastic process:'®
Z=Ff(x)+g(x)n(t), (5-1)

where 7(¢) is a Gaussian noise which satisfies
<77(t)r)(t')>=gzle""“". (5-2)

Instead of Egs. (5-1) and (5-2), we consider the equivalent coupled Langevin
equations

i=f(x)+g(x)y,
53
{7)=—77)+7€(t), (5-3)

where £(t) is a Gaussian white noise obeying
e n="s-1) (5-4)

Then the problem is reduced to the elimination of the fast variable 7 and we can
use the method described in preceding sections.
After scaling 7 by y=7""?5 and expanding P(x, y; t) by

Plx,y, t)=; Pn(x, t) Ya(y), (5+5)

where Y» is defined by Eq. (4-3), we obtain from the recursion relations (3+5)
Pn=1/zli,Gn{‘/_ﬁPn-x+v n+1Pn+1} (5'6)

and
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—(p+l 041 0 N9 .
Gn—(n+7 6t+7 axf> z9 (5-7)

Using the above relations, we can calculate Po(x), which is equal to the
distribution function P(x, t)=/P(x, y; t)dy

o, 0 _ 0
(F+ar@)Pe =4 Lo{6A+26.66R+]. (54
From this expansion, we have

(ﬁ —f(x))P(x ¢)

_Q 9 _Q ad d [\ o Q 9 0 a3 0
2 axgaxgp 27 ox (a +6xf)8x Pt w9 Yar Sor 9

(5-9)

up to order of y~'. Multiplying Eq. (5-9) by (1+(Q/27)(0/dx)g(d/ox)g)™"
~(1—(Q/ 27)(3/dx)g(d/dx)g) from the left, we obtain the Fokker-Planck type
equation up to order of y™'. '

P(x t)———f(x)P+—éQ e aI(g——~(gf fg))P-I;O(lz)

(5-10)

This agrees with the result of Ref. 13), which was obtained by a more complicated

method.
Equation (5-8) can be written in a compact form using continued fraction

expansions. In fact, we have
Jd, d
(W+Ef(x))P(x, t)
:76140 QJOP(I, t)a
_Q}l q}l

(5-11)

TR TR e et T

- e
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where & » and U, are the operators defined by

G n+17—a‘97 751’( x) (5-12)
and
Yn=y/nF1 ‘z%ax (5-13)

However, these corrections higher than O(y™') are rather complex and not of the
Fokker-Planck type.

§6. Discussion

In this paper, we have formulated the adiabatic elimination by the eigenfunc-
tion expansion method. We have confined our arguments in this paper only to the
process with one fast variable and one slow variable. Extensions of our formula-
tion to the process with many degrees of freedom will be reported in a separate
paper.

The method described in § 2 is very general and will be applied to various
problems of stochastic processes. Especially, optical problems are very interest-
ing for the application of this method. We point out the possibility that the
fluctuation may reduce the threshold of the laser action in Raman scattering in
§ 3.

We note that the adiabatic elimination, derivation of the Smoluchowski
equation with corrections, and colored noise processes, which have been studied
separately, have very common aspects and can be treated in a unified manner, as
we have described in this paper.
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