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Abstract

Non-self-similar sets defined by a decision procedure are numerically investigated by introducing the notion of inaccessi-
bility to (ideal) decision procedure, that is connected with undecidability. A halting set of a universal Turing machine (UTM),
the Mandelbrot set and a riddled basin are mainly investigated as non-self-similar sets with a decision procedure. By encoding
a symbol sequence to a point in a Euclidean space, a halting set of a UTM is shown to be geometrically represented as a
non-self-similar set, having different patterns and different fine structures on arbitrarily small scales. The boundary dimension
of this set is shown to be equal to the space dimension, implying that the ideal decision procedure is inaccessible in the
presence of error. This property is shown to be invariant under application of “fractal” code transformations. Thus, a charac-
terization of undecidability is given by the inaccessibility to the ideal decision procedure and its invariance against the code
transformations. It is also shown that the distribution of halting time of the UTM, decays with a power law (or slower), and that
this characteristic is also unchanged under code transformation. The Mandelbrot set is shown to have these features including
the invariance against the code transformation, in common, and is connected with undecidable sets. In contrast, although a
riddled basin, as a geometric representation of a certain context-free language, has the boundary dimension equal to the space
dimension and a power law halting time distribution, these properties are not invariant against the code transformation. Thus,
the riddled basin is ranked as middle between an ordinary fractal and a halting set of a UTM or the Mandelbrot set. Last, we
propose undecidability for analog computation, and discuss the appropriate condition for coding. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

For defining sets, recursive procedures are gener-
ally utilized. Such recursive procedures can roughly be
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divided into two kinds, one is a generating procedure
(generator) which generates elements of a set, and the
other is a decision procedure (recognizer) which de-
cides whether a given object is included in a set. In this
paper, we focus our attention on sets defined by the
latter. As a set defined by a decision procedure (i.e., a
halting set of a decision procedure), we consider the
following three sets from different category:
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• a halting set of an automaton treated in classical
computation theory; 1

• a geometric set defined by a decision procedure;
• a basin of attraction treated in dynamical systems

study. 2

Although these three sets are different in their origin,
they are similarly defined according to procedures of
decision. So far, the halting sets have not been stud-
ied from this unified standpoint on decision proce-
dures. In this paper, by using the same methods, we
study various halting sets of a decision procedure in
computation theory, geometry and dynamical systems
study.

1.1. Computation

In classical computation theory [1–4], halting sets of
an automaton (decision procedure) with various com-
putational power are treated, which include regular set,
context-free language and recursively enumerable set,
and so forth [2]. Basically, these objects are studied
only by means of proving theorems. Thanks to this ap-
proach, rigorous mathematical theory was made, but
this theory is often hard to be understood intuitively. 3

Relation with other fields is also not made clear.
On the other hand, in dynamical systems study,

basins (halting sets) and transient processes (deci-
sion processes) to an attractor are studied extensively
and intensively. Indeed some analytic approaches are
developed for these studies, but their application is
limited to some ideal cases. For dynamical systems
studies, experimental approaches with numerical sim-
ulation using digital computers are generally adopted
and are effective, in contrast with rare use of these
approaches in classical computation theory.

Noticing the unified standpoint of decision proce-
dures, we study geometric properties of a halting set of
automaton by mapping a symbol sequence to a point in
a Euclidean space, and investigate dynamical systems

1 A given symbol string is decided to be included in the set when
the automaton with that symbol string goes to a halting state.

2 A given initial point is decided to be included in the set when the
dynamical system with that initial point converges to an attractor.

3 For example, overuse of reduction to absurdity.

characteristics of a decision procedure determined by
an automaton.

In this work, we aim to re-interpret computation
from a viewpoint of dynamical systems, by positively
adopting experimental approaches with numerical
simulations. This study is based on the recognition
that both the halting sets of automaton in computa-
tion theory and the basins in dynamical systems study
have a common feature as halting sets of decision
procedure.

1.2. Fractal geometry and nonlinear dynamical
systems

In fractal geometry [5–7], sets having infinitely fine
structures are treated. However, these sets are studied
basically from a viewpoint of self-similarity. Among
sets having infinitely fine structures, however, there
exist not only self-similar sets but non-self-similar sets
that cannot simply be characterized by self-similarity.
For example, there are sets having a “different” fine
structure on an arbitrarily small scale, treated in de-
tail in the following sections. Many interesting sets
are included in the non-self-similar sets. However,
non-self-similar sets have been scarcely studied so far,
as compared with self-similar sets (i.e., ordinary frac-
tals).

Likewise, in dynamical systems study [8–12], sys-
tems with chaotic dynamics are often studied which
have exponential orbital instability. However, there
exist also interesting nonlinear dynamical systems
that cannot simply be characterized by chaotic behav-
ior [13], while these dynamical systems have been
scarcely studied, as compared with ordinary chaos.

On the other hand, as will be mentioned in Sec-
tion 3, geometric representation of the halting set
of the universal Turing machine, 4 obtained by en-
coding a symbol sequence to a point in a Euclidean
space, is shown to be a non-self-similar set, having
a different fine structure on an arbitrarily small scale
(see also [14]). In addition, a dynamical system in
which a Turing machine is embedded generally has a

4 See Section 3 for the brief explanation, and also [2–4], for
example.



A. Saito, K. Kaneko / Physica D 155 (2001) 1–33 3

different instability other than chaotic instability, and
is shown to be qualitatively different from chaos (see
also [15–17]).

In this paper, we study such non-self-similar sets,
by treating general decision procedures not restricted
within dynamical systems simply characterized by
chaotic behavior. We try to explore a new type of
geometric and dynamical systems properties simulta-
neously by re-interpreting computation.

1.3. Code

When we discuss properties of geometric sets or
dynamical systems in which (a halting set of) an
automaton is embedded, coding causes an inevitable
problem. These geometric and dynamical systems
properties must be discussed together with a code
which maps a symbol sequence to a real number. So
far, the problem of coding is not seriously discussed.
Here we study a nature of codes explicitly.

1.4. Analog computation

Our study is related to analog computation since
we do not restrict a decision procedure of a set to a
discrete one. 5 Although several analog computation
models have been studied so far (e.g. [18–22]), classes
of computable real functions do not coincide with each
other, in contrast with the case of classical discrete
computation theory. Also, ordinary studies of analog
computation (including the cited studies) start by con-
structing a model in the beginning, without explicit
consideration on physical realizability. Only after the
model construction, physical realizability, especially
noise effects, is either considered only insufficiently,
or not considered at all.

Here, our approach to analog computation does not
start by constructing a model in the beginning, in con-
trast with ordinary approach. Instead, we aim to clar-
ify a necessary condition for analog computation on
the basis of above studies of dynamical systems and

5 Note that the concept of procedure is essentially
“computational”, where the meaning of “computation” is not nec-
essarily restricted within classical one.

computation. 6 To propose the condition, physical re-
alizability (noise effects) is seriously considered.

1.5. Overview

In the present paper, a halting set of a universal Tur-
ing machine from classical computation theory, the
Mandelbrot set 7 from fractal geometry, and riddled
basin structure 8 from nonlinear dynamical systems
study are mainly investigated as concrete objects, all
of which are defined by decision procedure. We will
see both geometric properties of the sets and dynami-
cal systems characteristics of decision procedures. We
mainly study the boundary dimension for the former
and halting time distribution for the latter. For studying
these features, numerical approaches borrowed from
nonlinear dynamical systems studies are adopted.

Especially we focus on the cases where dimension
of boundary of a set asymptotically approaches (and
is equal to) the dimension of space, and where halting
time distribution of decision procedure of a set decays
according to a power law or slower. When the bound-
ary dimension is equal to the space dimension, the de-
cision procedure of the set has so strong uncertainty
that one cannot approach the ideal decision procedure,
in the presence of error. Such system is qualitatively
different from a system with a boundary dimension
less than space dimension, or a system with an ordi-
nary chaotic unpredictability. We survey this strong
uncertainty and its behavior against the transformation
of code.

This paper is organized as follows. In Section 2, we
study the code that maps a symbol sequence to a real
number, to prepare for the subsequent sections. There
it is shown that the preservation of (boundary) dimen-
sion is generally not guaranteed under the transforma-
tion from one code to another.

In Section 3, we treat a halting set of a universal
Turing machine, aiming to see how undecidability can

6 Another different study of analog computation based on dy-
namical systems is presented in [23].

7 See Section 4 for the brief explanation, and also [5,10,11], for
example.

8 See Section 5 for the brief explanation, and also [24,25], for
example.
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be characterized. The geometric representation of the
halting set of a universal Turing machine, according
to the code introduced in Section 2, is shown to have
different patterns and have different fine structures on
arbitrarily small scales. Furthermore, the boundary di-
mension of this set is shown to approach the space
dimension, as the computation time is increased. In
other words, the decision procedure of the set has the
strong uncertainty mentioned above. In addition, this
result is shown to be invariant against certain “fractal”
code transformations. Thus, a characterization of the
undecidability of the halting problem of a universal
Turing machine is given by the strong uncertainty im-
plying the inaccessibility to the ideal decision proce-
dure, and by the invariance of the strong uncertainty
against the code transformations. It is also shown that
the distribution of halting time of the universal Turing
machine, decays with a power law (or slower), and
that this characteristic is also unchanged under code
transformation.

In Section 4, we treat the Mandelbrot set to show
similarity with the above halting set of a universal
Turing machine. In particular, the Mandelbrot set has
common properties with the halting sets of universal
Turing machine, as for the boundary dimension and
the halting time distribution. The invariance against the
application of “fractal” function, which corresponds
to a code transformation, is also common. Thus, the
Mandelbrot set can be connected with undecidable sets
from the standpoint of the strong uncertainty with the
inaccessibility to the ideal decision procedure.

In Section 5, we treat riddled basin structure. Rid-
dled basin of a certain simple dynamical system geo-
metrically represents a certain context-free language.
Concerning the boundary dimension, even though the
set has the boundary dimension equal to the space di-
mension, this property of the boundary dimension is
not invariant against a code transformation, in strong
contrast with the halting sets of a universal Turing
machine and the Mandelbrot set. Absence of the in-
variance is also shown concerning the halting time
distributions of the riddled basin structure. Thus, the
riddled basin is ranked as “middle” between ordinary
fractals like Cantor set and a halting set of a universal
Turing machine or the Mandelbrot set.

In Section 6, we study geometric and dynamical
systems characteristics of converted (universal) Tur-
ing machines which are obtained by modifying a
universal Turing machine. In particular, relation be-
tween modification and computational universality is
pursued.

Following these results, we propose a novel concept
for analog computation in Section 7, and discuss the
appropriate condition for coding.

2. Code

As will be shown in the following, dynamical fea-
ture of an automaton (e.g., universal Turing machine
and pushdown automaton [2]), as well as the geomet-
ric property of its halting set, generally depends on
the way of embedding a symbol sequence to a num-
ber (i.e., code). In this section, we discuss briefly the
problem of coding in connection with dynamical sys-
tems.

2.1. Code

In this paper, we use the word “code” as a map-
ping which transforms an infinite symbol string on a
finite alphabet to a real number. Furthermore, “sym-
bol string” indicates a finite symbol string, whereas
“symbol sequence” indicates an infinite one.

Here, we restrict codes which map a symbol se-
quence to a real number represented by the same label
of Markov partition [9] of a certain piecewise-linear
map. To be concrete, a symbol sequence of n symbols
is encoded into a real number on the interval [0, 1], by
choosing a piecewise-linear map f : [0, 1] → [0, 1]
defined by

f (x) = 1

αi+1 − αi
(x − αi) for x ∈ [αi, αi+1],

where α0 = 0, αn = 1 and αi < αi+1. Then, we en-
code a symbol sequence to a real number which has the
same label of Markov partition of this piecewise-linear
map, by labeling the interval between αi , and αi+1

as ‘i’. As a result, a finite symbol string, correspond-
ing to the set of all symbol sequences with the prefix,
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is encoded by this code, to an interval which has the
same label of Markov partition. 9

In particular, for a 2-symbol sequence (n = 2), the
code has only one parameter α (i.e., α1). When α = 1

2 ,
this code corresponds to the binary encoding, using a
symbol sequence as base-2 expansion of a real number.

2.2. Code transformation

Now we consider transformation of a code with
2-symbol sequences. Suppose a 2-symbol sequence s
is chosen. Then, by using a code with parameter α
(denoted as code α), one real number, denoted as xα ,
is decided for s. Similarly, by using another code with
parameter β (code β), another real number, xβ , is de-
cided for s. By varying s, one can obtain a one-to-one
mapping, denoted as tα→β , from xα to xβ . This tα→β :
[0, 1] → [0, 1] transforms encoding by code α into
that by code β. Thus, we call such a mapping tα→β

code transformation.
When α = 1

2 , t1/2→β becomes Lebesgue’s singular
function Lβ [26,27], where Lebesgue’s singular func-
tion Lβ : [0, 1] → [0, 1] is defined by the functional
equation,

Lβ(
1
2x) = βLβ(x),

Lβ(
1
2 (1 + x)) = β + (1 − β)Lβ(x),

where 0 < β < 1. 10

Fig. 1 shows L1/3 (i.e., t1/2→1/3). When β �= 1
2 ,

this “fractal” singular function Lβ is shown to have
following properties [26,27]:

• continuous;
• strictly monotone increasing from 0 to 1;
• the differential coefficient is 0 almost everywhere.

9 A code satisfying this condition is considered to be appropriate,
but this condition may be too strong. The question what are the
appropriate condition and class of codes remains unsolved, which
will be discussed in Section 7. Here we do not treat other types
of codes.
10 Since encoding using code 1

2 is binary encoding 1
2 x corresponds

to the shift of a 2-symbol sequence to right with the insertion
of the symbol ‘0’ at the left most cell. The real number for this
symbol sequence using code β is obtained by multiplying the real
number for the original symbol sequence using code β by β. Thus
t1/2→β satisfies the first equation. It is easy to check t1/2→β also
satisfies the second equation.

Fig. 1. Lebesgue’s singular function L1/3 (i.e., code transformation
t1/2→1/3).

If β = 1
2 , solution of the functional equation is, of

course, simply L1/2(x) = x which corresponds to the
identity transformation.

Concerning the fractal (boundary) dimension 11

which is important in subsequent sections, the in-
variance of the (boundary) dimension under the frac-
tal transformations is not guaranteed, whereas the
(boundary) dimension is preserved under the appli-
cation of diffeomorphism [28]. Not only in the case
of the 2-symbol code, but generally the preservation
of (boundary) dimension is not guaranteed under the
transformation from one code to another.

For example, consider the middle-thirds Cantor set
consisting of real numbers with no ‘1’s in their base-3
expansion. In other words, it is obtained by encoding
all symbol sequences on the alphabet {0, 2}, using the
Markov partition of the map f : [0, 1] → [0, 1] 12

11 We treat box-counting dimension and Hausdorff dimension as
fractal dimension. The word “boundary dimension” is used as
box-counting dimension or Hausdorff dimension of boundary of
a set, unless otherwise mentioned.
12 The set of symbol strings on the alphabet {0, 1, 2}, where the
symbol strings end with the symbol ‘1’ with no ‘1’ before that
‘1’, is, of course, encoded to the complement of the Cantor set
with the base-3 code. This set of symbol strings is included in the
class of regular sets, i.e., accepted by a finite automaton [2].
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f (x) = 3x mod 1.

The fractal dimension of this middle-thirds Cantor set
is log 2/log 3. Since the Lebesgue measure of this set
is zero, the boundary dimension of this set (also the
boundary dimension of the complement of this set) is
also log 2/log 3.

Then, if we transform the code using f to another
3-symbol code using the Markov partition of g

g(x) = 1

αi+1 − αi
(x − αi) for x ∈ [αi, αi+1],

where α0 = 0, α3 = 1 and αi < αi+1, the (boundary)
dimension D of the resulting Cantor set is given by
the solution of equation [7]

αD1 + (1 − α2)
D = 1.

Thus, we can change the (boundary) dimension D by
changing α1 and α2 (e.g., if α1 = 1

4 and α2 = 3
4 , then

D = 1
2 ). Hence for a Cantor set, the (boundary) di-

mension is not preserved under the above code trans-
formation.

3. Halting set of universal Turing machine

In this section, by using codes introduced in the
previous section, we investigate both geometric prop-
erties of halting set of a universal Turing machine and
dynamical systems characteristics of its decision pro-
cedure, to characterize undecidability.

3.1. Turing machine

First, we briefly describe the Turing machine [1–4].
The Turing machine (TM) is the most important model
of computation, and is also an abstract model of a
digital computer.

A TM basically consists of a finite control, a tape
and a tape head. A finite control has finite states
{q1, q2, . . . , qm}. A tape is one-dimensional, and con-
sists of infinite cells on which one of the symbols in
finite alphabet {s1, s2, . . . , sr} is written. A tape head
reads one cell on the tape at each time step.

Depending on the symbol read by the tape head and
on the state of the finite control, the TM

1. changes the state of the finite control;
2. rewrites the symbol on the cell which is read by

the tape head;
3. shifts the tape head either to the left or right neigh-

bor cell.

The finite control has two special states, one is the ini-
tial state and the other is the halting state(s). The finite
control is prepared in the initial state at the beginning
of the TM’s movement (i.e., “computation”), and the
TM halts when the finite control arrives at the halting
state.

It is well known that the TM can solve various
problems, or perform various “computations”, by
properly encoding the problem on the tape initially
by using the alphabet {s1, s2, . . . , sn}, and by also
properly setting transition function δ: {q1, q2, . . . , qm}
×{s1, s2, . . . , sn} → {q1, q2, . . . , qm}×{s1, s2, . . . , sn}
× {L,R}, where ‘L’ denotes the motion of the tape
head to left and ‘R’ to right, respectively. Because
of this “computational” ability and equivalence of
“computational” power with other various models of
computation, the Church–Turing thesis [2] has been
broadly accepted, which asserts that the intuitive con-
cept of what is “computable” can be identified with
what can be performed by TM. 13

As the most important consequence of this formula-
tion of computation, it has been understood that there
exists a class of undecidable (i.e., not computable) de-
cision problems within well-defined problems. A de-
cision problem is decidable if it can be solved by a
TM which is guaranteed to halt in finite time, and a
problem is undecidable if it cannot be solved by a TM
guaranteed to halt in finite time. Especially, the most
famous undecidable problem is the halting problem of
the following universal Turing machine.

One can construct a particular TM that is able to
simulate any TM by accepting, on its initial tape, the
description of the simulated TM, together with the
description of input which would be given to the sim-
ulated TM. Such a TM is called universal Turing ma-
chine (UTM). Therefore a single UTM can perform
all computation that can be performed by any TM.

13 In spite of “vagueness” in the former, the latter is mathematically
strictly defined.
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The halting problem of a UTM is a question to de-
cide whether the UTM will eventually halt (i.e., en-
ter a halting state) or not (i.e., run forever and never
halt), for a given initial tape with a given symbol
string. This question is undecidable, i.e., no TM can
answer this question with a guaranty to halt in finite
time. Of course, there are TMs whose halting prob-
lems are decidable. In other words, the problems can
be solved by another TM which always halts with finite
time.

A halting set of a TM is a set from whose symbol
strings, written on the initial tape, the TM will eventu-
ally halt. The set is called recursively enumerable. The
class of recursively enumerable sets is the most com-
plex in the Chomsky hierarchy [29,30] of the formal
languages. A set of symbol strings with a decidable
decision procedure is called recursive. 14 In the class
of recursively enumerable sets, some sets are recursive
(i.e., decidable) while some sets are undecidable. The
halting set of UTM is known as a recursively enumer-
able set but not a recursive set [2].

3.2. Input for TM

Usually, we consider a symbol string to be an input
for TM. In other words, on an initial tape, we con-
sider a special symbol called “blank symbol”, written
on every cell except the symbol string. This use of
symbol string as an input is equivalent to the use of a
symbol sequence such that blank symbols are inserted
to (both) the end(s) of that symbol string. 15

However, we have to be careful when we consider
a halting problem. If a TM halts on an input, it also
halts on inputs obtained by changing symbols on such
cells that are not read by the tape head until the TM
halts, for any symbols (not just blank symbols). Of
course, the number of changeable cells is not nec-
essary to be finite in contrast with the usual input.
Thus, to study the halting problem where halting is
the only concern, we can consider the halting prob-

14 In other words, a set is recursive if there is a TM, guaranteed
to halt in finite time, that can answer whether a given symbol
string is in the set or not.
15 To be more precise, symbol sequence consisting only of blank
symbols is appended to the end(s) of that symbol string.

lem on all symbol sequences, instead of restricting
inputs so that blank symbol is written on except a fi-
nite number of cells. 16 Therefore, as a halting set, we
consider a set of symbol sequences instead of symbol
strings.

3.3. Different patterns and different structure on any
small scales

Let us consider the structure of a halting set of a
UTM. A UTM can simulate any TM. In considering a
halting set, this fact indicates that a mere single halting
set of UTM contains all halting sets of TM.

To put it more concretely, suppose that a UTM has
a one-way infinite tape with the tape alphabet {0, 1},
and that the UTM simulates a TM which also has
a one-way infinite tape with the same tape alphabet.
Then, assume that the symbol sequence on the ini-
tial tape of the UTM is a concatenated symbol se-
quence composed of the description of the simulated
TM, followed by the symbol sequence that would be
supplied for the simulated TM. In this setting, if a
symbol sequence s is included in the halting set of
the simulated TM (i.e., the simulated TM halts on
s) and symbol string p is the description of the sim-
ulated TM, the concatenated symbol sequence ps is
included in the halting set of the UTM. Thus, the
halting set of the UTM contains all halting sets of
TM. 17

Now we consider the geometry of the halting set
of UTM, obtained by using code 1

2 , i.e., the binary
encoding, with the decreasing weight from left to
right of the symbol sequence. From the above fact,
the geometric representation of the halting set of the
UTM contains different patterns, i.e., a region for
each halting set of a TM, constructed by contracting
the geometric representation of the halting set of the
TM obtained by using the same code 1

2 , by the rate
2−|p|, where |p| is the length of the description p of
the TM. As a consequence, the geometry of the halt-

16 Another treatment of languages on infinite symbol strings is
presented in, e.g. [31,32].
17 To symbol sequences of each of halting sets of TM, the de-
scription p of the corresponding TM is prefixed.
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ing set of the UTM by using code 1
2 has a different

structure on an arbitrarily small scale. 18

Also in the case of a UTM having a two-way in-
finite tape with the alphabet {0, 1}, a similar result
is obtained about the geometry of the halting set of
the UTM by using code 1

2 and by mapping it into a
two-dimensional space. 19 In general, the present dis-
cussion is extended to geometry of an undecidable
halting set of a UTM with n tape symbols, obtained
by encoding symbol sequences as base-n expansion
of real numbers. Such set has different fine structures
on arbitrarily small scales and have different patterns,
in strong contrast with ordinary self-similar fractals.

3.4. Universal Turing machine

Now, we will numerically investigate both bound-
ary dimension of the halting set of UTM as a geomet-
ric property and halting time distribution of UTM as a
dynamical feature of decision procedures. As a UTM,
we mainly treat three UTMs, Rogozhin’s UTM(24,
2), Minsky’s UTM(7, 4) and Rogozhin’s UTM(10, 3)
[3,33], where UTM(m, n) denotes a UTM with m in-
ternal states and n tape symbols. (However, it should
be noted that treating a specific ‘U’TM is equal to
treating all TMs including all UTMs.) We briefly de-
scribe each UTM, and then explain the coding method.

3.4.1. Rogozhin’s UTM(24, 2)
Rogozhin’s UTM(24, 2) has 24 internal states

besides a halting state {q1, q2, . . . , q24} and a

18 We can easily construct a TM which accepts (halts on) a
symbol string of arbitrary length and does not accept other symbol
strings. Thus the geometry of the halting set of the UTM cannot
have a geometric structure only up to a finite scale (e.g., classical
geometric sets like line segment). Similarly, the geometry of the
halting set of the UTM does not have a self-similar structure (i.e.,
a same structure) on an arbitrarily small scale, like a Cantor set,
since it contains an arbitrary halting set of TM, including a TM
which only halts on a symbol sequence of binary expansion of
a point corresponding to a fractal with an arbitrary structure. (In
fact, it contains various fractals which can be drawn by a digital
computer.) Hence the geometry of the halting set of the UTM
must have different fine structures on arbitrarily small scales.
19 The result is obtained by mapping symbol sequence of the
halting set to a pair of real numbers by dividing the symbol
sequence at the cell which is read by the tape head at the beginning
of computation, and using code 1

2 for each, see also next section.

two-way infinite tape with tape alphabet {0, 1}. q1

is the initial state for this UTM. Table 1 shows
the transition function of Rogozhin’s UTM(24,
2). 20

Since Rogozhin’s UTM(24, 2)’s tape is two-way
infinite one, we map a symbol sequence of the halt-
ing set of Rogozhin’s UTM(24, 2) to a point of a
two-dimensional space. To be more precise, we map
the halting set into two unit squares, denoted by square
0 and square 1, respectively. First, we divide a sym-
bol sequence in the halting set into three parts, one
cell (called “center cell”) which is read by the head
at the beginning of the computation, and the right and
left sides of the symbol sequence, from the center
cell. Then we represent the right and left sides of the
symbol sequence by a pair of real numbers given by
code α, respectively. Finally, this pair is put into ei-
ther square 0 or square 1 depending on whether the
symbol on the center cell is equal to ‘0’ or ‘1’, where
the right side of the symbol sequence corresponds to
the horizontal axis, and the left side to the vertical
axis.

We name this geometric representation of the halt-
ing set of Rogozhin’s UTM(24, 2) by using code α to
be ULα , Fig. 2 shows UL1/2 and UL1/3.

3.4.2. Minsky’s UTM(7, 4)
Minsky’s UTM(7, 4) has seven internal states be-

sides a halting state {q1, q2, . . . , q7} and a bi-infinite
tape with tape alphabet {y, 0, 1, A}. q2 is the initial
state for this UTM. The symbol ‘y’ is read by the
head of Minsky’s UTM(7, 4) at the beginning of its
computation. Table 2 shows the transition function of
Minsky’s UTM(7, 4).

To obtain a geometric representation of the halt-
ing set of Minsky’s UTM(7, 4) in a two-dimensional
space, first we transform the tape alphabet {y, 0, 1, A}
of a symbol sequence into {3, 0, 1, 2}, respectively.
(Other choices of transformation from the tape

20 There are further restrictions, especially on inputs, to use
Rogozhin’s UTM(24, 2) “properly”. Still, we do not need to ex-
clude inputs that do not use the UTM properly since our main
concern lies in dynamical and geometrical aspects of the undecid-
ability of the halting problem. This remark is also applied to the
cases of other UTMs.
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Table 1
The transition function of Rogozhin’s UTM(24, 2) [33]

q1 q2 q3 q4 q5 q6 q7 q8

0 0, q5, R 1, q1, R 0, q4, L 1, q12, L 1, q1, R 0, q7, L 0, q8, L 0, q7, L

1 1, q2, R 1, q3, L 0, q2, L 0, q9, L 0, q6, L 1, q7, L 0, q6, L 1, q2, R

q9 q10 q11 q12 q13 q14 q15 q16

0 0, q19, R 1, q4, L 0, q4, L 0, q19, R 0, q10, R 0, q15, L 0, q16, R 0, q15, R

1 1, q4, L 0, q13, R Halt 1, q14, L 1, q24, R 1, q11, L 1, q17, R 1, q10, R

q17 q18 q19 q20 q21 q22 q23 q24

0 0, q16, R 0, q19, R 1, q3, L 1, q18, R 0, q22, R 1, q10, L 1, q21, R 0, q13, R

1 1, q21, R 1, q20, R 1, q18, R 0, q18, R 1, q23, R 1, q21, R 0, q21, R 0, q3, L

Fig. 2. The halting set of Rogozhin’s UTM(24, 2), represented by code 1
2 and code 1

3 . Dots correspond to inputs halted within 500 steps
(UL1/2(500) and UL1/3(500) in the text). (a) Square 0 of UL1/2 (500). (b) Square 1 of UL1/2(500). (c) Square 0 of UL1/3(500). (d) Square
1 of UL1/3(500). Inputs are chosen at random in each grid cell (1024 × 1024 grid and 729 × 729 grid, respectively).



10 A. Saito, K. Kaneko / Physica D 155 (2001) 1–33

Table 2
The transition function of Minsky’s UTM(7, 4) [3]

q1 q2 q3 q4 q5 q6 q7

y 0, q1, L 0, q1, L y, q3, L y, q4, L y, q5, R y, q6, R 0, q7, R

0 0, q1, L y, q2, R Halt y, q5, R y, q3, L A, q3, L y, q6, R

1 1, q2, L A, q2, R A, q3, L 1, q7, L A, q5, R A, q6, R 1, q7, R

A 1, q1, L y, q6, R 1, q4, L 1, q4, L 1, q5, R 1, q6, R 0, q2, R

alphabet to {0, 1, 2, 3} meet with the same results be-
low.) Then we divide the symbol sequence into three
parts as before, and we represent the right and left
sides of the symbol sequence by a pair of real num-
bers given by a 4-symbol code, respectively. Finally,
this pair is put on a unit square.

Fig. 3 shows the geometric representation of the
halting set of Minsky’s UTM(7, 4) obtained by base-4
code.

Fig. 3. The halting set of Minsky’s UTM(7, 4), represented by base-4 code. Dots correspond to inputs halted within 500 steps. Inputs are
chosen at random in each grid cell (1024 × 1024 grid).

3.4.3. Rogozhin’s UTM(10, 3)
Rogozhin’s UTM(10, 3) has 10 internal states be-

sides a halting state {q1, q2, . . . , q10} and a two-way
infinite tape with tape alphabet {0, 1, b}. q1 is the ini-
tial state for this UTM. Table 3 shows the transition
function of Rogozhin’s UTM(10, 3). Here, geometric
representation of the halting set of this UTM is ob-
tained in the same way, using a 3-symbol code and
three unit squares.



A. Saito, K. Kaneko / Physica D 155 (2001) 1–33 11

Table 3
The transition function of Rogozhin’s UTM(10, 3) [33]

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

0 1, q1, R 0, q3, L 0, q2, L 1, q1, R b, q3, L 1, q7, L 0, q8, R 1, q6, L 1, q10, L 0, q5, R

1 0, q2, L 0, q2, L b, q6, L 1, q5, R 1, q5, R 1, q6, L Halt 1, q8, R 0, q10, R 0, q10, R

b b, q4, R b, q2, L b, q1, R 1, q4, L b, q5, R b, q6, L b, q9, L b, q8, R 0, q4, L b, q9, R

3.5. Boundary dimension

Now we study the dimension of a halting set of
UTM. Geometric representation of halting set of
UTM has positive Lebesgue measure (i.e., a fat frac-
tal [8,34]). In fact, our UTMs are numerically shown
to halt for some symbol sequences on the initial
tape. When the head of a UTM, moves to the right
and left at most i and j sites, respectively, during
its computation, before it halts, then the UTM with
symbol sequences of the same symbols up to i and
j sites and any symbols beyond them, also halts,
because the UTM can only read up to i and j sites
before it halts, as mentioned already. These symbol
sequences correspond to rectangular region with any
of our code (in the case of UL1/2 of Rogozhin’s
UTM(24, 2), they correspond to rectangular region
with sides 2−i and 2−j ), and this region is contained
in the geometric representation of the halting set of
the UTM. Therefore, the halting set of the UTM has
positive two-dimensional Lebesgue measure (at least
2−(i+j) in the case of UL1/2). Dots in Figs. 2 and 3
correspond to such symbol sequences.

Thus, its fractal dimension is the same as the dimen-
sion of the space (i.e., D = 2). Instead, we investigate
the box-counting dimension of the boundary (i.e., the
exterior dimension [8,35]) of geometric representation
of halting set of UTM to study its fine structure.

The definition of the box-counting dimension of a
set S in N -dimensional space is equivalent to D0 =
N − limε→0 logV [S(ε)]/log ε, where V [S(ε)] is the
N -dimensional volume of the set S(ε) created by fat-
tening the original set S by ε [8]. In the following,
based on this definition, we numerically estimate the
box-counting dimension of the boundary (the bound-
ary dimension) of geometric representation of halting
set of each of the above mentioned UTMs. Especially

we investigate the boundary dimension of geometric
representation of halting set of Rogozhin’s UTM(24,
2) with code 1

2 and code 1
3 (i.e., UL1/2 and UL1/3,

respectively), and those of Minsky’s UTM(7, 4) and
Rogozhin’s UTM(10, 3) with base-4 and base-3 code,
respectively.

Of course, it is impossible to take infinite time for
the numerical simulations. Thus we treat the set of in-
puts on which each UTM will halt within a given finite
step n (denoted as ULα(n) in the case of Rogozhin’s
UTM(24, 2)), and investigate the boundary dimen-
sion of the set (ULα(n)). Then we survey the asymp-
totic behavior of the boundary dimension of the set
(ULα(n)) as n is increased (to infinity).

3.5.1. UL1/2

The detailed procedure to study the boundary di-
mension D0 of UL1/2 is as follows. First, we choose
a point (X, Y ) in either unit square 0 or 1 of a
two-dimensional space at random. 21 Then we per-
turb this point (X, Y ) to (X + ε, Y ), (X, Y + ε) and
(X + ε, Y + ε). Then we decide whether Rogozhin’s
UTM(24, 2), starting from each of these four tapes at
the center cell, will halt within n steps or not (i.e., in
UL1/2(n) or not). If all four points are in UL1/2(n)

or none of them are in UL1/2(n), we regard there to
be no boundary in the square of length ε made from
these four points. Otherwise we regard that there is
a boundary in the square. We repeat this procedure
for a large number of points and evaluate the fraction
of squares with a boundary, denoted as f (ε), which
gives the estimation of V [S(ε)]. Varying ε, we obtain
the scaling of f (ε) with ε, and can evaluate N − D0

(i.e., 2 −D0).

21 Choosing square 0 or 1 is equal to determining the symbol on
the center cell.
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Fig. 4. Log–log plot of f (ε) (i.e., the fraction of squares with a boundary) of UL1/3(n) with ε for computation time n = 1000, 3162,
10 000, 31 623 and 100 000. The slope of f (ε) becomes smaller with the increase of n.

In Fig. 4, the log–log plot of f (ε) of UL1/2(n) with
ε is shown for several values of n. It can be fit as
f (ε) ∼ ε2−D0 for small ε, from which one can obtain
2 −D0 for each n. Fig. 5 displays the log–log plot of
2 − D0 versus the computation time n. It shows that
2 −D0 of the boundary of UL1/2(n) approaches zero
roughly as n−0.45 with the increase of the computa-
tion time n. In other words, when we increase n, the

Fig. 5. Log–log plot of 2 − D0 (i.e., uncertainty exponent φ) of
UL1/2(n) versus the computation time n, obtained from Fig. 4.
It approaches zero roughly as n−0.45 with the increase of the
computation time n. The data are least-square fit to a straight line,
1.4n−0.45.

box-counting dimension of the boundary of UL1/2(n)

approaches two, which is the same as the dimension
of the space. Thus the box-counting dimension of the
boundary of UL1/2 is estimated to be two.

Here we briefly refer to the uncertainty exponent
φ = N − D0 [8,35]. Suppose there exists a set A
in a certain N -dimensional space and our ability to
determine the position of points has an uncertainty ε.
Ā denotes the complement of A and S denotes the
boundary separating A and Ā. If we have to determine
which set a given point lies in, the probability f (ε) of
making a mistake in such determination is proportional
to V [S(ε)]. Thus, if the box-counting dimension of the
boundary S is D0, f (ε) is proportional to εN−D0(=
εφ). If φ is small, then a large decrease in ε leads to
only a relatively small decrease in f (ε). Thus φ is
called uncertainty exponent.

The above result that the uncertainty exponent of
the boundary of UL1/2(n) becomes smaller with the
increase of computation time n indicates that it be-
comes more difficult to decrease mistake in determi-
nation of UL1/2(n). The null uncertainty exponent of
the boundary of UL1/2 (i.e., D0 = 2) indicates that the
probability of making a mistake (equally, the volume
of ε-neighborhood of the boundary V [S(ε)]) does not
depend on ε.
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A decision procedure is defined in ideal condition
without errors. On the other hand, robustness of a de-
cision procedure against a noise is essentially differ-
ent, depending on if the boundary dimension of a set
is equal to the space dimension or less. Indeed, if the
boundary dimension is less than the space dimension
with the uncertainty exponent φ > 0, one can de-
crease the volume of ε-neighborhood of a boundary
(V [S(ε)]) to any amount in principle, by decreasing ε.
In other words, one can arbitrarily approach the ideal
decision procedure (i.e., ideal condition without er-
rors) by improving accuracy in principle, even under
presence of errors. On the other hand, if the bound-
ary dimension is equal to the space dimension with
the uncertainty exponent φ = 0, it is impossible to
approach the ideal decision procedure (i.e., the ideal
condition) as long as there exist errors no matter how
small they are.

Consequently, decision procedure of the halting set
of UTM by using code 1

2 has so strong uncertainty
that one cannot approach the ideal decision procedure,
in the presence of error. This result is also reasonable,
since unlike chaotic unpredictability (i.e., sensitive de-
pendence on initial conditions), the halting problem
of UTM is undecidable even if descriptions of inputs

Fig. 6. Log–log plot of f (ε) (i.e., the fraction of squares with a boundary) of UL1/3(n) with ε for computation time n = 316, 562, 1000,
1778 and 3162. The slope of f (ε) becomes smaller with the increase of n, similarly in Fig. 4.

are known exactly. In this way, the undecidability is
explained from the viewpoint of the uncertainty expo-
nent, i.e., the boundary dimension.

3.5.2. UL1/3

In the case using code 1
3 , i.e., for obtaining the

boundary dimension of UL1/3, the detailed procedure
is as follows. It is the same as the case of UL1/2 that
first we choose a point (X, Y ) in either unit square 0
or 1 of a two-dimensional space at random, and per-
turb the point (X, Y ) to (X + ε, Y ), (X, Y + ε) and
(X+ ε, Y + ε). Then, we decide the labels of Markov
partition for X, Y,X + ε and Y + ε (i.e., decoded
symbol sequences (code 1

3 )
−1(X), (code 1

3 )
−1(Y ),

(code 1
3 )

−1(X + ε) and (code 1
3 )

−1(Y + ε)), and
compose four input symbol sequences for corre-
sponding four points. For example, in the case of
(X, Y ) in square 0, the corresponding input sym-
bol sequence is concatenation of (code 1

3 )
−1(Y ),

‘0’, (code 1
3 )

−1(X), where the symbol sequence
(code 1

3 )
−1(Y ) is flip-flopped (turned over). Subse-

quent procedure is the same as for the case of UL1/2.
In Fig. 6, the log–log plot of f (ε) of UL1/3(n) with

ε is shown for several values of n. It can be fit as
f (ε) ∼ εφ for small ε, from which one can obtain φ
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Fig. 7. Log–log plot of uncertainty exponent φ (i.e., 2 − D0) of
UL1/3(n) versus the computation time n, obtained from Fig. 6. It
also approaches zero with a power law (roughly as n−0.70) as in
the case of UL1/2.

for each n. Fig. 7 shows the log–log plot of φ versus
the computation time n, and φ also approaches zero
with a power law (roughly as n−0.70) as in the case
of UL1/2. In other words, with the increase of n, the
box-counting dimension of the boundary of UL1/3(n)

approaches two, i.e., the dimension of the space, in the
same way as UL1/2. Thus the box-counting dimension
of the boundary of UL1/3 is also estimated to be two.

Consequently, similarly to UL1/2, the boundary di-
mension of UL1/3 is also equal to the space dimension
two, and decision procedure of UL1/3 also has strong
uncertainty so that one cannot approach the ideal de-
cision procedure, in the presence of error. Thus, our
result of the strong uncertainty of ULα is not based on
the property of the code. 22

Note that UL1/3 is the set obtained by transforming
UL1/2 by the code transformation t1/2→1/3. As seen
in the case of Cantor set in Section 2, code transfor-
mation in general, does not preserve the (boundary)
dimension. However, the above results show that the
property that boundary dimension is equal to space
dimension, i.e., the strong uncertainty, is preserved
in the case of the halting set of UTM. Thus, one
could say the property that a decision procedure is not

22 The result of the boundary dimension equal to the space di-
mension of the halting set of UTM is independent of code α, see
also Section 5.3.

robust against a noise is robust under application of
even “fractal” code transformations.

In conclusion, the boundary dimension of geomet-
ric representation of the halting set of UTM is equal to
the space dimension. There exists strong uncertainty
such that one cannot approach the ideal decision pro-
cedure in the presence of error. Furthermore, the above
property is conserved even by “fractal” code transfor-
mations. Thus, a characterization of the undecidability
is given by the strong uncertainty implying inaccessi-
bility to the ideal decision procedure, and by invari-
ance of the strong uncertainty against code transfor-
mations. It should be noted that this characterization
of undecidability is intuitively more comprehensible
than ordinary one in classical computation theory.

3.5.3. Geometric representation of halting set of
other UTMs

The boundary dimension of geometric representa-
tion of halting set of other UTMs is also equal to
the space dimension. Since UTMs can imitate each
other, the geometric representations of halting set for
any UTMs contain each other, and each has the same
boundary dimension, that is equal to the space dimen-
sion.

Indeed, we have numerically studied the boundary
dimension of geometric representation of halting sets
of Minsky’s UTM(7, 4) and Rogozhin’s UTM(10, 3),
obtained by using base-4 code and base-3 code, re-
spectively. Fig. 8 shows the log–log plot of the uncer-
tainty exponent φ of these sets, versus the computation
time n. In these systems again, φs approach zero with
some power of n, as in the previous cases (roughly as
n−0.60 and n−0.65, respectively). Thus the boundary
dimension of these sets is also estimated to be two,
i.e., the dimension of the space in which they lie.

3.6. Halting time distribution

We now focus on dynamical systems characteristics
of decision procedure of such geometric representation
of halting set of UTM. In particular, we study the
distribution of halting time of the decision procedure,
for Rogozhin’s UTM(24, 2) with code 1

2 and code
1
3 (i.e, UL1/3 and UL1/3, respectively), and Minsky’s
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Fig. 8. Log–log plot of uncertainty exponent φ(2−D0) of Minsky’s
UTM(7, 4) using base-4 code and Rogozhin’s UTM(10, 3) using
base-3 code, versus the computation time n. Both φs approach
zero, roughly as n−0.60 and n−0.65, respectively, with the increase
of the computation time n.

UTM(7, 4) and Rogozhin’s UTM(10, 3) with base-4
and base-3 code, respectively.

3.6.1. Cantor set
First, let us consider the halting time distribution of

the complement of the Cantor set, which corresponds
to a regular set, before treating those of UTMs. The
complement of the Cantor set is the set of initial points
which eventually leave the interval [0, 1] by the map
f (x) = 3x (x < 1

2 ), f (x) = 3x − 2 (x ≥ 1
2 ). Thus,

if x ∈ [0, 1] is given, the decision procedure for the
set is deciding whether f k(x) /∈ [0, 1] for some k >

0. In this case, the length of a chaotic transient is
computation time for the decision process.

In the construction of the complement of the Cantor
set, the fraction of the points which leave [0, 1] decays
exponentially with time n when initial points are scat-
tered uniformly in [0, 1]. In general, the distribution of
transient time decays exponentially for transient chaos
(i.e., construction process of ordinary fractals), where
remaining points with null measure forms fractal set
[8].

3.6.2. UL1/2

On the other hand, in the case of our UL1/2, the
fraction of the initial points halting with computation
time n, denoted as p(n), is found to decay according

Fig. 9. Log–log plot of p(n) (i.e., the fraction of the initial points
halting with computation time n) with n in the case of UL1/2.
p(n) is fitted by p(n) ∼ n−2.4.

to a power law. Fig. 9 shows the log–log plot of p(n)
with n, where p(n) is fitted by p(n) ∼ n−2.4.

In contrast with this numberical result, p(n) is ex-
pected to decay slower than power law if n is further
increased. The reason is as follows. The halting prob-
ability of a UTM, known as Chaitin number Ω [36],
is obtained by summing p(n) over n. Ω is known as
random number [37]. If p(n) decayed with a power
law up to n → ∞, there were an algorithm to tell any
bit of halting probability Ω . This would contradict the
randomness of Ω . Thus p(n) must decay slower than
a power law. 23

3.6.3. UL1/3

Similarly we have studiedp(n) for UL1/3. As shown
in Fig. 10, p(n) is found to decay with a power law
(p(n) ∼ n−2.7) as in the case of UL1/2. Thus this char-
acter of the halting time distribution is also unchanged
under code transformation.

23 Suppose p(n) were bounded upwards by cna for sufficiently
large n, where a is a constant satisfying a < −1 and c is a positive
constant. Then, Ω satisfied

∑N
n=1p(n) ≤ Ω ≤ ∑N

n=1p(n) +∫ ∞
n+1cna dn, where N is a sufficiently large natural number. The

computation time necessary to calculate
∑N

n=1p(n) is finite. Thus,
one could improve the precision of Ω in any amount by taking
large N . (The error were at most

∫ ∞
N+1cna dn, which is also

computable.) Hence, if the power law holds, the power should
approach −1 for n → ∞, because

∑∞
n na diverges with a = −1.
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Fig. 10. Log–log plot of p(n) (i.e., the fraction of the initial points
halting with computation time n) with n in the case of UL1/3.
p(n) also decays with a power law (p(n) ∼ n−2.7) as in the case
of UL1/2.

In any case, the construction of both UL1/2 and
UL1/3 takes much longer time than the construction of
ordinary fractal sets by transient chaos. Furthermore,
it should be stressed that the halting time distribution
of undecidable system obeys power law distribution
up to large n. Indeed this power law property is not
restricted to the above Rogozhin’s UTM(24, 2), as
shown next.

3.6.4. Geometric representation of halting set of
other UTMs

We have numerically studied the halting time dis-
tribution of geometric representation of halting set of
Minsky’s UTM(7, 4) and Rogozhin’s UTM(10, 3). In
Fig. 11, we have plotted the halting time distribution of
Minsky’s UTM(7, 4) with base-4 code and Rogozhin’s
UTM(10, 3) with base-3 code. Again this shows the
power law property (p(n) ∼ n−2.1 and p(n) ∼ n−1.5,
respectively).

Remark. In this section, it is numerically found
that the uncertainty exponent and the halting time
distribution decay as power laws of computation
time n. The powers, however, depend on the UTM
and on the code. At this stage, we conjecture that
these results imply absence of universal power
exponent.

Fig. 11. Log–log plot of the halting time distribution of Minsky’s
UTM(7, 4) and Rogozhin’s UTM(10, 3), obtained by using base-4
code and base-3 code, respectively. p(n) (i.e., the fraction of the
initial points halting with computation time n) also decays with a
power law (p(n) ∼ n−2.1 and p(n) ∼ n−1.5, respectively), in the
same way as in Rogozhin’s UTM(24, 2).

4. Mandelbrot set

In this section, we deal with the Mandelbrot set, to
show its common features with the above halting set
of a UTM.

4.1. Mandelbrot set

The Mandelbrot set [10,11], denoted as M , is the
subset of the complex plane C, and is defined as M =
{c ∈ C||Qn

c(0)| � ∞} for Qc(z) = z2 + c (equiva-
lently, M = {c ∈ C|Kc is connected}, where Kc is the
filled-in Julia set of Qc). Fig. 12 shows M .

Although self-similarity of M has often been stud-
ied as a structure containing small copies of M itself,
M is also known as a set with extraordinarily complex
structure. Indeed, M has been called one of the most
intricate and beautiful objects in mathematics [10,11].
Likewise, M has Misiurewicz points where M and
corresponding filled-in Julia set Kc are similar. Thus,
similarly with geometric representation of halting set
of UTM, M has different patterns and has a different
fine structure on an arbitrarily small scale, in contrast
with ordinary self-similar fractals.

There is a decision procedure for M . It is shown that
if |c| > 2, then |Qn

c(0)| → ∞ and thus c ∈ M . Also
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Fig. 12. The Mandelbrot set M (precisely, M(500)).

if |Qk
c(0)| > 2 for some k > 0, then |Qn

c(0)| → ∞
[10,11]. Thus, if c ∈ C is given, the decision procedure
of M (precisely, that of the complement of M) is given
by deciding whether |Qk

c(0)| > 2 for some k > 0.
Although their origins are different, M and halting

set of UTM are not distinguishable as a set defined

Fig. 13. Log–log plot of f (ε) (i.e., the fraction of squares with a boundary) of M(n) with ε for computation time n = 100, 3162, 1000,
3162 and 10 000. The slope of f (ε) becomes smaller with the increase of n.

by a decision procedure. Also, there is no guarantee
if the decision procedure of M (precisely, that of the
complement of M) will halt, similarly with the halting
problem of UTM. Hence it is interesting to study if
there is a relation, in some sense, between M and
recursively enumerable sets [18,38].

Here we investigate the M’s boundary dimension
and the halting time distribution of M’s decision pro-
cedure in the same way as the halting set of UTM, to
point out that (the decision procedures of) M and the
halting sets of UTM have common properties.

4.2. Boundary dimension

4.2.1. M
It is proven that Hausdorff dimension, which gives

a lower bound for box-counting dimension, of the
boundary of M is equal to the space dimension two
[39], i.e., the maximal value in two-dimensional space.
To see also the asymptotic behavior of such boundary
dimension, we study the box-counting dimension of
the boundary of M numerically in the same way as
ULα . Here again, we cannot treat M directly by means
of numerical simulation as in the case for ULα . Thus
we study the boundary dimension of M(n), i.e., the
set of points which are not decided not included in M
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Fig. 14. Log–log plot of uncertainty exponent φ (i.e., 2 − D0)
of M(n) and M1/3(n) versus the computation time n. Both φs
approach zero roughly as n−0.45 with the increase of the compu-
tation time n. This power law decay of φs is in common with the
case of halting set of UTM.

within a given finite step n. The detailed procedure for
this case is almost same as for ULα’s.

The asymptotic behavior of the boundary dimension
of M(n) with the increase of n is given in Fig. 13,
where f (ε), the fraction of squares with a boundary
of M(n), is plotted with ε with a logarithmic scale
for several values of n. Fig. 14 also shows the log–log
plot of φ (i.e., 2 − D0) versus the computation time
n. As is shown, the box-counting dimension of the
boundary of M(n) approaches two with the increase of
the computation time n. The approach is given by 2 −
cn−0.45, where c is a positive constant. This asymptotic
convergence to the dimension of the space is common
with the case of halting set of UTM.

4.2.2. M1/3

Since M is already a geometric set, it intrinsically
does not matter how to encode. However, it is possible
to apply a fractal function which corresponds to a code
transformation, to M .

Now, by using Lebesgue’s singular function Lβ

which is a transformation from encoding with code
1
2 into encoding with code β, we can define L′

β :

[−2, 2] → [−1, 1] 24

24 In other words, the map corresponds to a transformation from
a real number to the real number on Markov partition, which has
the same label as the base-2 expansion of the original real number.

Fig. 15. M1/3 obtained by t→1/3(M) (precisely, M1/3(500)).

L′
β(x) =



Lβ(

1
2x) for x ∈ [0, 2],

−Lβ(− 1
2x) for x ∈ [−2, 0],

and also define a transformation t→β : x + iy �→
L′
β(x)+ iL′

β(y), where x, y ∈ [−2, 2].
Let Mβ the set obtained by applying t→β to M (i.e.,

t→β(M)). In the following, we will numerically study
boundary dimension of Mβ in the case of β = 1

3 (i.e.,
M1/3; Fig. 15).

In the same way as for M , the asymptotic behav-
ior of the boundary dimension of M1/3(n) with the
increase of n is studied by considering M1/3(n) ob-
tained by t→1/3(M(n)). In Fig. 16, f (ε), the frac-
tion of squares with a boundary of M1/3(n), is plot-
ted with ε with a logarithmic scale for several values
of n. Fig. 14 also shows the log–log plot of φ versus
the computation time n as before. As is shown, the
box-counting dimension of the boundary of M1/3(n)

approaches two by 2 − cn−0.45 with the increase of
the computation time n. Thus the box-counting di-
mension of the boundary of M1/3 is also estimated to
be two. This property of boundary dimension includ-
ing asymptotic behavior is common with the previous
cases.
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Fig. 16. Log–log plot of f (ε), the fraction of squares with a boundary of M1/3(n), with ε for computation time n = 100, 316, 1000, 3162
and 10 000. The slope of f (ε) becomes smaller with the increase of n.

Consequently, similarly with the case of undecid-
able halting set of UTM, decision procedures of M
and M1/3 also indicate the strong uncertainty, in the
sense that one cannot approach the ideal decision pro-
cedure, in the presence of error. This strong uncer-
tainty is also unchanged under application of a fractal
function which corresponds to a code transformation.
Now it is clear that M and halting set of UTM have

Fig. 17. Log–log plot of the halting time distribution p(n) for M and M1/3 (i.e., the fraction of the points that are decided not included
in M or M1/3 with computation time n). It decays with a power law (or slower) roughly as n−2.0, in common with halting sets of UTM.

common features (which were expected by naive ar-
guments previously) from the standpoint of the strong
uncertainty.

4.3. Halting time distribution

We have also studied the halting time distribution
p(n) for M and M1/3, defined as the fraction of the
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points that are decided not included in M or M1/3

with computation time n. As shown in Fig. 17, p(n)
is found to decay with a power law (or slower) as
n−2.0.

Thus, decision procedure of both M and the halting
set of UTM have long-time tail in the halting time dis-
tribution, and this property is also preserved under the
application of a fractal function corresponding to the
code transformation. These results are in a strong con-
trast with the construction process of ordinary fractals
(i.e., transient chaos).

5. Riddled basin

Here we treat riddled basin structure, in the same
manner. The riddled basin of a certain simple dynam-
ical system will be shown to have different charac-
ter, e.g., against “fractal” code transformations, from
a halting set of a UTM and the Mandelbrot set.

5.1. Riddled basin

Basin of a class of chaotic attractors has a complex
structure, called riddled basin, which was not observed
for a simple low-dimensional dynamical system. The
basin of an attractor is said to be “riddled” [24,25,40],
when, for any point in the basin of the attractor,
any of its ε-vicinity includes points with a non-zero
volume in the phase space, that belong to another
attractor’s basin. Especially, when basins are riddled
with each other, the basins are called “intermingled”
[25].

Although an ordinary chaotic system with a sin-
gle attractor exhibits unpredictability, its “qualitative”
behavior is predictable that the state of the system
tends to be confined to the attractor. However, in the
case of a riddled basin, even such qualitative behav-
ior (i.e., which attractor is the eventual one) is unpre-
dictable by any small error because there is always a
positive probability that an arbitrary small error will
put the initial condition into another attractor’s basin
[40].

A simple model which has a riddled basin is intro-
duced by Ott et al. [25]; a two-dimensional map of the

region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 by

xn+1 =




1

α
xn for xn < α,

1

1 − α
(xn − α) for xn > α,

yn+1 =


γyn for xn < α,

δyn for xn > α,

where γ > 1 and 0 < δ < 1. The map in the region
y > 1 is chosen so that orbits in y > 1 move to an
attractor in y > 1 and thus never return to y < 1.

The line segment I = {x, y|y = 0, 0 ≤ x ≤ 1}
is invariant for the map. I is a riddled basin chaotic
attractor according to the definition of Milnor [41] if
the perpendicular Lyapunov exponent

h⊥ = α ln γ + (1 − α) ln δ

is negative [25]. We concern basin structure of y = 0
attractor and y > 1 attractor on the horizontal line
segment {x, y|y = y0, 0 ≤ x ≤ 1} with 0 < y0 < 1.

By assuming a randomly chosen initial x0 in (0, 1)
with a specific initial y0, we have a random walk in
ln y, starting at ln y0, where a step of size − ln δ to
the left has probability 1 −α while a step of size ln γ
to the right has probability α [25]. The initial point
(x0, y0) belongs to the y > 1 attractor’s basin if the
random walk ever reaches ln y ≥ ln 1(= 0). On the
other hand, (x0, y0) belongs to the y = 0 attractor’s
basin if, as n → +∞, ln yn → −∞ without reaching
ln yn ≥ ln 1 for all n.

Let ‘L’ denote a step to left and ‘R’ to right, re-
spectively. Then consider the set of all (sample) paths
of random walk starting from ln y0 until it passes ln 1
for the first time. A path of such a random walk is
expressed by a symbol string on the alphabet {L,R}
(e.g., RR,LRRR,LRLRR, . . . ), and the set of all paths
are decided by γ, δ and y0. In case the ratio of step
sizes between to the left and to the right is a rational
number (i.e., − ln δ/ ln γ is rational), a set of random
walk paths until it passes ln 1 for the first time can be
accepted by a pushdown automaton.

Roughly speaking, a pushdown automaton (PDA)
[2] is a non-deterministic finite automaton with a stack.
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A stack is a one-way infinite memory, i.e., oneway
sequence of cells on each of which one stack symbol
can be written. We regard the end cell of a stack as
“top”. PDA consists of a finite control with a finite set
of states Q, an input tape with an input alphabet Σ ,
and a stack with a stack alphabet Γ . At each transition,
depending on the current finite control state, the input
tape symbol read by input tape head, and the top stack
symbol, PDA changes the finite control state, pops
the top stack symbol off out of the stack and pushes
a symbol string (or empty string) on the stack, and
moves the input tape head one symbol ahead. Also,
without an input tape symbol, PDA can change the
finite control state and manipulate the stack in the
same way as mentioned above, and in this case, the
input tape head does not move. Thus, act of PDA is
determined by transition function δ which maps each
element of Q × (Σ ∪ {ε}) × Γ to a finite subset of
Q × Γ ∗. At the beginning of PDA’s movement, the
finite control is prepared in the initial state, and the
initial stack symbol is written on the top of its stack. A
PDA accepts a symbol string written on its input tape
if there exists a computation path where its stack is
empty. The set of symbol strings accepted by a PDA
is called context-free, and it is decidable (recursive)
in contrast with a halting set of UTM.

Coming back to the problem of the riddled basin,
it is easy to construct a pushdown automaton which
accepts the paths of random walk until it passes ln 1 for
the first time when the ratio of step sizes is rational. 25

Thus, a set of these paths is a context-free language.
In the following, we will call the set satisfying this
condition, which is decided by (γ, δ, y0) as random
walk context-free language (RWCFL).

As a concrete example of RWCFL, we explain the
case of γ δ = 1 and y0 = δ (RWCFL(γ δ = 1, y0 =
δ)). Because γ δ = 1, the step size to left (− ln δ)
and that to right (ln γ ) are the same. Also, because
y0 = δ, the random walk starts at ln δ, i.e., one step
to the left of ln 1. In this setting, the paths of random

25 Basically such a PDA is constructed as follows: first, suppose
l, r ∈ Z, and let the ratio of l to r equal the ratio of the step size
of ‘L’ to that of ‘R’. Then, let the PDA push l stack symbols on
the stack when its input tape head reads ‘L’, whereas let r stack
symbols be popped off when ‘R’ is read.

walk starting from ln y0 until it passes ln 1 for the
first time are R,LRR,LRLRR,LLRRR, . . . . The set of
all these paths is RWCFL(γ δ = 1, y0 = δ). The Dyck
language [2] which is a set of properly nested strings of
brackets is well-known context-free language, and this
RWCFL(γ δ = 1, y0 = δ) corresponds to the Dyck
language by removing the right most R of these paths.

Although these paths are symbol strings, we can
also regard these as symbol sequences because, once
a random walk passes ln 1, it will move to the y > 1
attractor no matter what symbols follow the original
symbol string (e.g., RR∗∗ · · · ,LRRR∗∗ · · · ,LRLRR∗
∗ · · · , . . . ). Thus, this simple dynamical system virtu-
ally executes encoding RWCFL(γ, δ, y0) on the hor-
izontal line segment {x, y|y = y0, 0 ≤ x ≤ 1} by
using code α, as the basin of the y > 1 attractor.

5.2. Scaling

In [42], scaling property of the Dyck language using
binary encoding is studied. The argument there is also
valid in the case of our RWCFL. Let S be a subset of
interval [0, 1]. A map f : [0, 1] → [0, 1] is a scaling
of S when f preserves membership of S (i.e., x ∈ S if
and only if f (x) ∈ S). Thus, a scaling f corresponds
to a copy of the original S.

In the case of Cantor sets treated previously, all
scalings can be generated by composition of two func-
tions f0 and f2, where f0(x) = α1x and f2(x) =
(1 − α2)x + α2. Thus, f0 and f2 form a basis for the
scalings of Cantor set.

On the other hand, in the case of our RWCFL (i.e.,
the riddled basin of the simple dynamical system), it
is impossible to generate all scalings by composition
of a finite number of functions, because there are sym-
bol strings in RWCFL that cannot be represented by
concatenation of smaller symbol strings of RWCFL.
Thus, the set of scalings of RWCFL (the riddled basin
of the simple dynamical system) does not have a finite
basis, in contrast with Cantor sets.

5.3. Boundary dimension

Now we deal with dimensional property of such
geometric sets. The riddled basin of y = 0 attractor of
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Fig. 18. Log–log plot of f (ε) (i.e., the fraction of subintervals with a boundary) with ε for computation time n = 100, 316, 1000 and
3162, for the RWCFL with code 1

2 . The slope of f (ε) becomes smaller with the increase of n.

the simple model is the complement of the geometric
representation of RWCFL(γ, δ, y0) with code α. Since
the riddled basin is a fat fractal, we also consider the
dimension of the boundary in this case, to study its
fine structure. Of course, the boundary dimension of
the riddled basin is equal to the boundary dimension
of RWCFL(γ, δ, y0) with code α.

The uncertainty exponent φ is calculated by the
analysis of the simple model using diffusion ap-
proximation to simulate the random walk in [25].
The basic parameters of the diffusion approximation
are the average drift per iterate, ν, and the diffu-
sion per iterate, D. For the simple model, ν is equal
to the perpendicular Lyapunov exponent, ν = h⊥,
and D = 1

2 {α(ln γ − ν)2 + (1 − α)(ln δ − ν)2} =
1
2α(1−α)(ln γ− ln δ)2. Under the condition | ln y0| �
1 and |h⊥| � ln γ,− ln δ, for the validity of the
diffusion approximation, it is given by

φ = h2
⊥

4Dh‖
,

where h‖ = α ln(1/α) + (1 − α) ln(1/(1 − α)) is the
Lyapunov exponent for the dynamics in I [25].

Thus, according to the above formula, for given
RWCFL(γ, δ, y0) with rational − ln δ/ ln γ , one can
change the boundary dimension of the geometric

representation of the RWCFL, by changing α, i.e.,
the code transformation. In particular, if αc satisfies
h⊥ = 0 (i.e., αc ln γ + (1 − αc) ln δ = 0), the above
formula implies that the boundary dimension of the
RWCFL with code αc (and only with that αc) is equal
to the space dimension. However, this equality is eas-
ily broken, in the present case, by code transformation
(i.e., changing α). This fact is in strong contrast with

Fig. 19. Log–log plot of uncertainty exponent φ (i.e., 1−D0) of the
RWCFL with code 1

2 versus the computation time n, obtained from
Fig. 18. It approaches zero roughly as n−1 with the increase of the
computation time n. The dashed line shows an analytic estimate,
given by φ = −[log2 π

−1/2(− arctan((n− 1)/2)1/2 + π/2)]/n.
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Fig. 20. Log–log plot of f (ε) of the RWCFL with code 1
3 with ε for computation time n = 100, 316, 1000 and 3162. The boundary

dimension remains less than one even with the increase of n. Note the difference from the case with code 1
2 in Fig. 18.

the case of a halting set of a UTM and the Mandelbrot
set.

If h⊥ = 0, however, I = {x, y|y = 0, 0 ≤ x ≤ 1}
is no longer an attractor even according to the def-
inition of Milnor. As h⊥ → 0 with h⊥ < 0, the
measure of the riddled basin for the y = 0 attractor
approaches zero (and the measure of the RWCFL
with the corresponding code converges to one). Thus,
even though the boundary dimension is equal to space
dimension with the code αc, the decision problem of
the RWCFL virtually disappears since a point in the
measure zero set cannot actually be chosen. This fact
is also in strong contrast with the case of the halting
set of a UTM and the Mandelbrot set.

As an example, we numerically examine the bound-
ary dimension of the RWCFL such that γ δ = 1, y0 =
δ (that corresponds to the Dyck language) with code
1
2 and code 1

3 (i.e., α = 1
2 and α = 1

3 , respectively).
Here, we also treat the set of paths which are decided
to be in the RWCFL within a given finite step n. In
other words, the set of initial points which are decided
in y > 1 attractor’s basin within n steps is computed,
with the same procedure as before.

Fig. 18 shows the asymptotic behavior of the
boundary dimension for α = 1

2 with the increase of
n, where f (ε), the fraction of subintervals including

a boundary, is plotted with a logarithmic scale for
several values of n.

Fig. 19 shows the log–log plot of φ (i.e., 1 − D0)
versus n. As is shown, the box-counting dimension
of the boundary approaches the space dimension one
roughly as 1 − cn−1 with the increase of the (compu-
tation) time n, 26 similarly with the case of a halting
set of a UTM and the Mandelbrot set.

On the other hand, in Fig. 20, the boundary dimen-
sion is studied for α = 1

3 for several values of (com-
putation) time n. This set is transformed from the set
with code 1

2 by the code transformation t1/2→1/3. Un-
like the case of α = 1

2 (binary encoding), Fig. 20
shows no asymptotic approach of φ to zero with the
increase of n. Thus, the boundary dimension is esti-
mated to be less than one even in the limit of n → ∞.
In terms of the uncertainty exponent, the probability of
making a mistake (equally V [S(ε)]) can be decreased
to any amount, in principle, by a decrease in ε. Thus,

26 The boundary dimension of the RWCFL(γ δ = 1, y0 = δ) with
α = 1

2 is estimated to be

D0 ≈ lim
m→∞

log2(1/
√
π(− arctanm1/2 + (π/2))

2m+ 1
+ 1,

by adopting a random walk representation, see Appendix A.
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Fig. 21. (a) Semi-log plot and (b) log–log plot of the halting time distribution p(n) with n for the RWCFL with both code 1
2 and code 1

3 .

p(n) with code 1
2 is found to decay with a power law as n−3/2, in the same way as the halting set of UTM and the Mandelbrot set. On

the other hand, p(n) with code 1
3 is found to decay exponentially with time n, as in an ordinary fractal set.

the decision procedure of this set does not have the
strong uncertainty mentioned previously.

Now, it is confirmed that one can change the bound-
ary dimension of the geometric representation of the
RWCFL by changing code. In particular, even if the
boundary dimension of the RWCFL with code αc (and
only with that αc) is equal to the space dimension, this
property is easily broken by code transformation (i.e.,
changing α), unlike the halting set of a UTM and the
Mandelbrot set.

After all, there exist various classes in non-self-
similar sets that are not simply characterized by self-
similarity, especially in sets that have the boundary

dimension equal to the space dimension. RWCFL,
an example of context-free language, is ranked as
“middle” between a halting set of a UTM and a
self-similar set like Cantor set which corresponds to
a regular language.

So far, we have fixed an RWCFL and changed α

(code). Now, let us change RWCFL by fixing α (code),
i.e., a Markov partition of a piecewise-linear map char-
acterized by α. For given α, there is a pair (γ, δ) such
that α ln γ +(1−α) ln δ is equal to, or arbitrarily close
to, zero, satisfying − ln δ/ ln γ is rational. Hence the
geometric representation of the RWCFL specified by
these γ and δ with appropriate y0 using code α has
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boundary dimension equal to, or arbitrarily close to,
the space dimension. 27 Thus, for any code α or any
Markov partition of a piecewise-linear map, there is
RWCFL such that boundary dimension is equal to, or
arbitrarily close to, the space dimension.

Now, let us reconsider a halting set of a UTM. Ba-
sically, a halting set of a UTM contains all halting sets
of TM. Hence it naturally contains all RWCFL. In this
case, although the boundary dimension of each indi-
vidual RWCFL is varied by the code transformation,
within the halting set of UTM there is an RWCFL,
whose boundary dimension is equal to, or arbitrarily
close to the space dimension for an arbitrary code into
a Markov partition of a piecewise-linear map. Thus, it
is realized from this point that the boundary dimension
of the halting set of a UTM is equal to, or arbitrarily
close to the space dimension for an arbitrary code into
a Markov partition of a piecewise-linear map.

5.4. Halting time distribution

Here, we study the decision procedure of RWCFL,
i.e., y > 1 attractor’s basin. Again, we have numeri-
cally studied the halting time distribution p(n) for the
RWCFL such that γ δ = 1, y0 = δ (corresponds to the
Dyck language) with code 1

2 and code 1
3 (i.e., α = 1

2
and α = 1

3 , respectively), defined as the fraction of the
points that are decided to be included in the RWCFL
with (computation) time n.

As shown in Fig. 21, p(n) of α = 1
2 is found to

decay with a power law as n−3/2 (see Appendix A).
Thus, in this case with boundary dimension equal to
space dimension, the decision procedure of α = 1

2
shows the same behavior as a halting set of a UTM
and the Mandelbrot set, from the aspect of halting time
distribution.

On the other hand, in the case of α = 1
3 , p(n) is

found to decay exponentially with time n. Thus, the
decision procedure of α = 1

3 without strong uncer-
tainty, shows the same behavior as ordinary fractal
sets, as for the halting time distribution.

27 Note that RWCFL signifies the way to choose labels of Markov
partition for letting boundary dimension equal to, or arbitrarily
close to, the space dimension.

Hence, it is shown that the power law decay of α =
1
2 is easily broken by the code transformation (i.e.,
changing α), unlike a halting set of a UTM and the
Mandelbrot set.

6. Converted (universal) Turing machine

6.1. Adding ‘ε’ symbol

Now we consider modification of a UTM by adding
‘ε’ symbol to the original tape alphabet of the UTM,
where ‘ε’ symbol does nothing: suppose that ‘ε’ sym-
bol is written on a cell of the tape of a TM and the
tape head of the TM moves to this cell from the left
neighbor cell, with the finite control state qi . Then,
at the next time step, the tape head of the TM moves
to the right neighbor cell without changing anything,
i.e., this TM leaves the ‘ε’ symbol on the cell as
it is, and shifts its tape head to the right with the
finite control state qi . It is similarly defined when
the tape head moves from the right side to the left
side.

Of course, even if a UTM is converted in this
way by adding this ‘ε’ symbol, the resulting TM
is also universal. Practically, we consider εUTM
obtained from Rogozhin’s UTM(24, 2) by adding
‘ε’ symbol to the tape alphabet of Rogozhin’s
UTM(24, 2), and investigate both the boundary di-
mension and the halting time distribution of the
halting set of εUTM, similarly as the previous
cases.

In Fig. 22, the log–log plot of f (ε) of εUTM us-
ing base-3 code (by transforming the tape alphabet
{0, 1, ε} into {0, 1, 2}) is shown for several values
of the computation time n. In this case also, φ ap-
proaches zero roughly as n−0.40, as in the previous
cases. Thus the boundary dimension of the geometric
representation of the halting set of εUTM using base-3
code, is also estimated to be two, i.e., the dimension
of the space. The decision procedure of εUTM pos-
sesses inaccessibility similarly as the previous cases of
UTMs.

In Fig. 23, the halting time distribution of εUTM
with base-3 code is plotted. This also shows the power
law property (p(n) ∼ n−2.6).
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Fig. 22. Log–log plot of f (ε) (the fraction of squares with a boundary) of εUTM using base-3 code, with ε for computation time n = 500,
1581, 5000 and 15 811. The slope of f (ε) becomes smaller with the increase of n.

6.2. Changing halting state

Now we modify a UTM by changing its halting
state. For a given UTM, a “broken” (U)TM is defined
by changing one of the finite control states of the given
UTM as a new halting state for the “broken” (U)TM.
Also, this “broken” (U)TM has the same transition
function and tape alphabet as the original UTM. We

Fig. 23. Log–log plot of the halting time distribution of εUTM
obtained by using base-3 code. p(n) (i.e., the fraction of the initial
points halting with computation time n) also decays with a power
law (p(n) ∼ n−2.6), similarly as the cases of UTMs.

say “broken” (U)TM at qi if the new halting state for
the “broken” (U)TM is qi . (Because this TM has the
same (number of) internal states and tape symbols as
the original UTM, it is appropriate as a contrast study.)

By this modification, it is prospective that the
“broken” (U)TM is no longer a UTM, and that
the halting problem of this “broken” (U)TM be-
comes decidable. However, it is, of course, pos-
sible that the halting problem of this “broken”
(U)TM is still undecidable. For example, it may
be possible that this “broken” (U)TM, with a new
description on the initial tape, becomes a new
UTM.

Now, we study both the boundary dimension and the
halting time distribution of geometric representation
of the halting set of “broken” (U)TMs obtained from
Rogozhin’s UTM(24, 2) and Minsky’s UTM(7, 4),
similarly as above.

6.2.1. “Broken” (U)TMs obtained from Rogozhin’s
UTM(24, 2)

Since Rogozhin’s UTM(24, 2) has 24 internal
states besides a halting state, the number of pos-
sible “broken” (U)TMs obtained from Rogozhin’s
UTM(24, 2) is 23, besides trivial destruction at the
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Fig. 24. Log–log plot of f (ε) of “broken” (U)TM at q16 using code 1
2 , with ε for computation time n = 1000, 3162, 10 000, 31 623 and

100 000. The boundary dimension remains less than the space dimension even with the increase of n. Note the difference from the case
of Rogozhin’s UTM(24, 2) with code 1

2 in Fig. 4.

initial state q1. We have numerically studied the
boundary dimension and the halting time distribu-
tion of these “broken” (U)TMs, by using code 1

2
(i.e., base-2 code). From the numerical results, these
“broken” (U)TMs with code 1

2 can roughly be classi-
fied into three groups:

Group 1. The boundary dimension approaches the
space dimension and the halting time distribution
obeys a power law distribution.

Group 2. The boundary dimension remains less than
the space dimension and the halting time distribution
decays much faster than that of original Rogozhin’s
UTM(24, 2) and group 1.

Group 3. It shows the same characteristics as those
in group 2, but the Lebesgue measure of the geomet-
ric representation of the halting set is estimated to
be the total measure, two, and the complement is a
skinny fractal, in contrast with the case of group 1 and
group 2.

“Broken” (U)TMs at q18, q20, q21, q22, and q23 are
found to be included in group 1. The boundary di-
mension of the geometric representation of the halting
set of these “broken” (U)TMs approaches, and is esti-

mated to be, two, i.e., the space dimension. Also, the
halting time distribution of these “broken” (U)TMs
decays according to a power law. Thus the character-
istics of the original UTM are preserved.

“Broken” (U)TMs at q5, q6, q7, q8, q9, q10, q13, q15,

q16, q17, q19, and q24 are found to be included in
group 2. As an example, in Fig. 24, the log–log plot of
f (ε) of “broken” (U)TM at q16 is shown for several
values of the computation time n. The boundary di-
mension of the geometric representation of the halting
set of “broken” (U)TM at q16 using code 1

2 , remains
less than the space dimension with the increase of n.
Thus, the boundary dimension is estimated to be less
than the space dimension even in the limit of n → ∞.
In Fig. 25, the halting time distribution of “broken”
(U)TM at q16 with code 1

2 is plotted. It is found to
decay much faster than that of Rogozhin’s UTM(24,
2) with code 1

2 .
The rest of “broken” (U)TMs (those at q2, q3, q4,

q11, q12, and q14) are found to be included in group 3.
These show the same behavior as in group 2, but, here,
the Lebesgue measure of the geometric representation
of the halting set is estimated to be two that is the
total Lebesgue measure of both square 0 and square 1.
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Fig. 25. Log–log plot of p(n) with n in the case of “broken” (U)TM at q16 using code 1
2 . This p(n) is found to decay much faster than

that of Rogozhin’s UTM(24, 2) with code 1
2 in Fig. 9.

In other words, the Lebesgue measure of non-halting
inputs is estimated to be zero, in contrast with the case
of groups 1 and 2.

To sum up, the decision procedure of the halting
sets of the “broken” (U)TMs in group 1 has inaccessi-
bility to the ideal decision procedure, in the presence
of error. Thus, the halting problem of the “broken”
(U)TMs in group 1 is expected to be undecidable.
On the other hand, for the groups 2 and 3, the UTM
is broken, and the TM is expected to lose undecida-
bility.

6.2.2. “Broken” (U)TMs obtained from Minsky’s
UTM(7, 4)

Since Minsky’s UTM(7, 4) has seven internal
states besides a halting state, the number of possible
“broken” (U)TMs obtained from Minsky’s UTM(7,
4) is six. We have numerically studied the bound-
ary dimension and the halting time distribution of
these “broken” (U)TMs, by using base-4 code. In
contrast with “broken” (U)TMs from Rogozhin’s
UTM(24, 2), all the “broken” (U)TMs from Minsky’s
UTM(7, 4) are found to belong to groups 2 or
3. No “broken” (U)TM exhibits an approach of
boundary dimension to the space dimension. Thus
all the TMs are expected to lose undecidability

(and to be no longer universal) with the change of
table.

The difference between the present “broken”
(U)TMs and those from Rogozhin’s UTM(24, 2) is
understood as follows. As a measure of complexity
of TM, the number of commands of TM, given by
the product of the number of the internal states and
the number of the symbols in the tape alphabet, is
proposed by Shannon [43]. This complexity measure
is equal to 48 for Rogozhin’s UTM(24, 2) and 28
for Minsky’s UTM(7, 4). By changing qi as a new
halting state, the commands at qi cannot be used for
the “broken” (U)TM at qi , and the above complexity
measure for the “broken” (U)TM is equal to 46 and
24, respectively. Therefore, “damage” from destruc-
tion of a internal state is more serious to the “broken”
(U)TMs obtained from Minsky’s UTM(7, 4).

Indeed, another measure of complexity of TM is
proposed, as the number of commands really used
by TM. It is not more than 46 and 24, respectively.
However, the least known number of commands
for being UTM is 22, that is obtained from UTM
with four internal states and six tape symbols [33].
The number for the “broken” (U)TM obtained from
Minsky’s UTM(7, 4) is much closer to 22 than that
from Rogozhin’s UTM(24, 2). Hence, it is expected
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that “broken” (U)TMs from Minsky’s UTM(7, 4) lose
undecidability.

7. Discussion: analog computation and code

7.1. Undecidability in analog computation

In Section 1.4, we mentioned physical realizabil-
ity of models of computation. Indeed several analog
computation models have been studied so far (e.g.
[18–22]), but each model defines each computability,
and relation of each other is not made so clear.

On the other hand, from a viewpoint of physical re-
alizability, the (in)accessibility is considered to give
one condition for any models of computation. Note
that we have shown inaccessibility of undecidable de-
cision procedure in the sense of the Turing model.
Here, we propose that this inaccessibility holds for any
other models with undecidability and propose the fol-
lowing statement: in a model of analog computation,
a procedure should be uncomputable (undecidable), if
it has inaccessibility in the sense that the ideal proce-
dure is not approached in the presence of error.

This proposition is based on the following con-
sideration: from a viewpoint of physical realizability,
it is actually impossible to avoid errors (noise) in
computational operation and observation. Thus, it is
irrelevant to count a procedure with the inaccessibil-
ity as computable, since one cannot even approach
the ideal procedure on which the model is founded,
in the presence of error. Such procedure having the
inaccessibility should be included in uncomputable
procedures.

Concerning the Mandelbrot set M , Penrose sug-
gests that M (and also the complement of M) is not
“recursive” (i.e., “undecidable”) [38]. By our con-
dition of physical realizability, M should also be
undecidable. A remark should be made here: Blum,
Shub, and Smale have already pointed out and proved
the undecidability of M over R according to their
well-known formulation of analog computation [18].
However, all fractals (like a typical Julia set) are
also undecidable according to their formulation. In
our criterion that takes into account of the precision
and the inaccessibility, we can properly distinguish

ordinary fractals from more complex sets that are
hard to handle.

7.2. Class of appropriate codes

About the coding, we have introduced the mapping
from a symbol sequence to a real number represented
by the same label of Markov partition of a certain
piecewise-linear map, so that the effect of farther cells
gets smaller in the real number. Otherwise, it is impos-
sible to discuss the distance in the symbol sequence,
necessary to consider geometric and dynamical sys-
tems properties. Conversely, such coding may be re-
quired to construct an analog computation machine
from a dynamical system. However, the question about
the appropriate condition for coding remains unan-
swered yet, and a wider class of codes seems to exist.

As the first step to address this question, we show
that use of too general codes are meaningless (1). Then
we point out that even within a computable transfor-
mation, there is a case that inaccessibility is not pre-
served (2). Then we discuss possible limitation on
the ability to detect decidability, by our codes into a
Markov partition of a piecewise-linear map (3). Fi-
nally, following the above arguments, we discuss a
certain class of codes that we want to clarify in future
studies (4).

1. First of all, use of all codes (i.e., all mappings from
a symbol sequence to a real number) is too general.

For example, there is a code which solves a halt-
ing problem of a UTM. Consider a code which
first maps a symbol sequence to another symbol
sequence, and then maps the resulting symbol se-
quence to a real number. Its detail is given as fol-
lows. If a given symbol sequence s is included in
the halting set of the UTM, then s is transformed to
the concatenated symbol sequence 1s, and then 1s
is transformed to a real number given by, e.g., the
base-n encoding. Otherwise s is transformed to 0s,
and then 0s is transformed to a real number given
by the same code.

This code executes computation using the same
computational power as a TM with a halting prob-
lem oracle [2], at the stage of mapping a symbol
sequence to another symbol sequence. As a result,
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an undecidable set can be constructed from a de-
cidable set at this stage, and this code does not pre-
serve decidability.

Of course, if this code is used, it is impossible
to distinguish a geometric representation of a de-
cidable set from that of an undecidable set. In par-
ticular, there is a decidable set whose dimensional
property is the same as undecidable sets.

Not only the halting problem of UTM but also
all decision problems can be solved only by the
coding, in the similar way as above (this is mere
transfer of computation to code). It is not at all
realistic that all computation can be executed only
by codes, and therefore it is necessary to restrict a
class of codes, instead of considering all codes.

2. Following (1), let us restrict the mapping from
a symbol sequence to another symbol sequence
within computable transformations tc. A com-
putable transformation tc : x ∈ Σ∗ �→ tc(x) ∈ Σ ′∗

is defined as injection satisfying tc(x) to x as well
as x to tc(x) is computable and tc(Σ

∗) is decid-
able. This computable transformation tc conserves
both undecidability and decidability of sets (i.e.,
for a given S ⊂ Σ∗, tc(S) is undecidable if and
only if S is undecidable), in contrast with the code
in (1) that solves a halting problem of UTM.

Within the codes into a Markov partition of a
piecewise-linear map, we have shown inaccessibil-
ity and its invariance against code transformations,
for the halting problem of UTM. The question,
then, is if these properties are preserved for all the
computable transformations. Unfortunately, this is
not the case.

Indeed, let us consider a geometric representa-
tion of the halting set of a UTM, obtained by first
mapping a symbol string in the halting set using a
computable transformation tc and then by mapping
the resulting symbol string using our code into a
Markov partition of a piecewise-linear map. For ex-
ample, suppose a halting set of a UTM on tape al-
phabet {s0, s1} is given, and consider adding a new
tape symbol ‘snew’ to the tape alphabet. In this set-
ting, if we transform {s0, snew, s1} to {0, 1, 2} (this
transformation is a computable transformation) and
apply 3-symbol code of a piecewise-linear map to

the set, then the boundary of the geometric repre-
sentation of the halting set is embedded in a Can-
tor set. This is equivalent with modifying the UTM
by adding unhalt symbol ‘u’. 28 Similarly we can
embed the boundary to a Cantor set by increasing
redundancy, e.g., by transforming the halting set of
the UTM by changing s0 → s0s0 and s1 → s1s1

(this transformation is also a computable transfor-
mation).

In the above cases, the boundary dimension is
less than the space dimension. Thus, it is impossi-
ble to require each decision procedure of all unde-
cidable sets to be inaccessible since above two ex-
amples of a code are considered to be appropriate.

3. On the other hand, contrary to above facts, possibly
there could be a decidable language (not shown yet)
that “outwit” our codes into a Markov partition of a
piecewise-linear map, and its decision procedure of
geometric representation possesses inaccessibility,
with those codes.

Even if this turns out true, the class of codes
adopted in the present paper is restricted too much,
and one should find a class of appropriate codes,
that is broader than those by a Markov partition of
a piecewise-linear map.

Here, it seems that what code is appropriate will
not be derived from computation theory but will
be determined by our “sense”, in particular, on dy-
namical system. Indeed, even the simple 2-symbol
code α into a Markov partition of a piecewise-linear
map cannot be appropriate from computation the-
ory, if α is an uncomputable real number. However,
as for the boundary dimension, e.g., there is almost
no difference between uncomputable real α and its
neighboring rational, as seen in this paper.

4. It will be important to determine the class of ap-
propriate codes. Following the argument so far, we

28 Similarly if halt symbol ‘h’ is chosen as ‘snew’, then the halting
set is modified by adding the regular set of the symbol strings
on the alphabet {s0, h, s1}, whose symbol strings end with the
first symbol ‘h’. This resulting set is, of course, undecidable (but
note, however, that this modification of the set does not satisfy the
above condition for computable transformation of symbol string).
Since the added regular set corresponds to the complement of the
Cantor set, the boundary is also embedded in the Cantor set.
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want to investigate realizability of the following
class of codes in future studies:

For S ⊂ Σ∗, S is undecidable if and only if
there exists at least one computable transforma-
tion tc: Σ∗ → Σ ′∗ such that decision procedure
of tc(S) with any of the codes in the class, is
inaccessible.

Here we have considered a computable transfor-
mation as a “filter” for transformations that lower
boundary dimension, as mentioned in above exam-
ples of (2). For at least one set (which can be said
“concentrated”) included in all undecidable sets de-
rived from the original undecidable set, we require
decision procedure of the set to be inaccessible,
with any codes in the class. At the same time, for
any of decidable sets, we require decision proce-
dure of the set to be accessible, with at least one of
codes in the class. Our codes into a Markov par-
tition of a piecewise-linear map are considered to
be included in this class.

To clarify this class of coding might be di-
rectly connected with the explicit statement of
the “physical” Church–Turing thesis, that any
physically realizable computers cannot be more
powerful than the classical models of computation
[44]. For example, if this class exactly coincides
with our possible class of codes, then it seems to
be difficult to utilize analog states to do more than
the discrete TM, and this fact will seem to support
the “physical” Church Turing thesis.

8. Conclusion

Our main results in this paper are as follows:

• Boundary dimension equal to space dimension
indicates that decision procedure of a set has so
strong uncertainty that one cannot approach the
ideal decision procedure, in the presence of error.
Decision procedure of geometric representation of
halting set of a UTM has this strong uncertainty,
and this property is preserved under code trans-
formations. A characterization of undecidability
of the halting problem of a UTM is given by the
strong uncertainty implying inaccessibility to the

ideal decision procedure, and by invariance of the
strong uncertainty against code transformations.

• The Mandelbrot set, known as a set with extraor-
dinarily complex structure, can be connected with
undecidable sets by both the inaccessibility and its
invariance against “fractal” function which corre-
sponds to a code transformation.

• Riddled basin of a certain simple dynamical sys-
tem, having different unpredictability from chaotic
unpredictability, represents geometrically a certain
context-free language. The riddled basin is ranked
as middle between an ordinary fractal and a halting
set of a UTM or the Mandelbrot set. There exist
various classes in non-self-similar sets that are not
simply characterized by self-similarity, especially
in sets that have boundary dimension equal to space
dimension.
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Appendix A

Both the boundary dimension and the halting time
distribution for the RWCFL(γ δ = 1, y0 = δ) with
α = 1

2 can be estimated by considering random walks.
The number of paths starting from −1 at time 0 and

reaching 0 first at time 2m+ 1 is (1/(m+ 1))

(
2m
m

)

[45]. Thus, the halting time distribution p(2m + 1),
i.e., the fraction of the points that are decided to be in
the y > 1 attractor’s basin at time 2m+ 1, is

p(2m+ 1)= 1

m+ 1

(
2m
m

)
2−(2m+1)

≈ 1

2
√
π

1

m3/2 +m1/2
.

The measure of the y > 1 attractor’s basin is
limN→∞

∑N
m=0p(2m + 1). This is equal to 1 that is
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known as ruin probability [45] (i.e., the complement
of the y > 1 attractor’s basin is a skinny fractal). From
this, the total measure of the points that are decided
to be in the y > 1 attractor’s basin up to time 2m+ 1
is approximated to be −1/

√
π(− arctanm1/2 + π/2)

+ 1.
Now, cover the interval [0, 1] by a grid of subin-

tervals, where the length of subintervals is ε =
2−(2m+1). The number of subintervals needed to cover
the boundary (i.e., the skinny fractal) is estimated
N(ε) ≈ (1/

√
π)(− arctanm1/2 + π/2)22m+1. Thus,

the box-counting dimension of the boundary is

D0 = lim
ε→0

− logN(ε)

log ε

≈ lim
m→∞

log2(1/
√
π)(− arctanm1/2 + π/2)

2m+ 1
+ 1.

These results of both the boundary dimension and
the halting time distribution agree well with the nu-
merical experiments.
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