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We study an autocatalytic system consisting of several interacting chemical species. We observe a
strong dependence of the concentrations of the chemicals on the size of the system. This dependence is
caused by the discrete nature of the molecular concentrations. Two basic mechanisms responsible for
them are identified and elucidated. The relevance of the transitions to processes in biochemical systems
and in micro-reactors is briefly discussed.
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Rate equations are often employed in the study of
biochemical reaction processes. In rate equations, the
quantities of chemicals are treated as continuous variables,
and the actual discreteness of the molecular concentration is
ignored. Of course, fluctuations of numbers of molecules
have been studied using stochastic differential equations and
introduced non-trivial effects.1,2) Still, discreteness has not
been considered in any such study. In many biochemical
processes, however, some chemicals play important roles at
extremely low concentrations, amounting to only a few
molecules per cell.3,4) Furthermore, there exist amplification
mechanisms involving enzymes in cells through which even
a change by one molecule in a cell can result in drastic
effects. In such situations, the discreteness of the molecular
concentration is obviously not negligible.
We previously showed the existence of a novel transition

induced by the discreteness of the molecular concentration
in an autocatalytic reaction system.5) The system contains
four chemicals Xi (i ¼ 1; . . . ; 4). We considered an auto-
catalytic reaction network (loop) represented by
Xi þ Xiþ1 ! 2Xiþ1 (with X5 � X1) within a container that
is in contact with a reservoir of molecules. Through
interaction with the reservoir, each molecule species Xi

diffuses in and out at a total rate of DisiV , where Di is the
flow rate, si the concentration of chemical Xi in the reservoir,
and V the volume of the container. In this system, a novel
state appears as a result of fluctuations and the discreteness
of the molecular concentration, characterized as extinction
and subsequent reemergence of molecule species alternately
in the autocatalytic reaction loop.
When the volume of the container is small, Ni, the number

of molecules of species Xi, may go to 0 (i.e. become extinct)
through a finite-size fluctuation due to the discreteness of the
molecular concentration. Once Ni reaches 0, it remains 0
until an Xi molecule flows in. Thus, if the flow rate of
molecules is sufficiently small, state with N1 ¼ N3 ¼ 0 or
N2 ¼ N4 ¼ 0 can be realized. In a state with N2;N4 � 0 (a
‘‘1–3 rich’’ state), switches between states with N1 > N3 and
N3 > N1 can occur, and similarly for a state with N1;N3 � 0

(a ‘‘2–4 rich’’ state). A symmetry-breaking transition to
these states was observed in our previous study, with the
decrease of V , as is shown in Fig. 1, as the change of the

probability distribution of the number of molecules. For
large V , corresponding to the continuum limit, the distribu-
tion of z ¼ ððN1 þ N3Þ 	 ðN2 þ N4ÞÞ=V shows a single-
peaked distribution around z ¼ 0, whereas it is replaced by
a symmetric, double-peak distribution as V is decreased.
This is a novel discreteness-induced transition (DIT)
occurring with the decrease of V . The transition occurs
without any change of parameters, and thus cannot be
discussed in the rate equation with noise (i.e., by the
continuum description).
In the system investigated in our previous work, the long-

term average concentration of each chemical does not differ
from that in the continuum limit, since the system over time
switches between the two states of broken symmetry. It is
important to determine if there are systems for which the
average concentrations of chemicals are significantly altered
by the DIT. We will show that this is possible in a system
possessing some kind of asymmetry. With the DIT without
symmetry breaking, the average concentrations of chemicals
are drastically altered by the change of V . The peak position
of the distribution is changed with a finite jump, as the
volume is decreased (see Fig. 2, while see later sections for
the description of the model and simulation). Borrowing the
term of thermodynamics, the DIT reported previously is
regarded as a second order transition involving symmetry
breaking, while the DIT reported here corresponds to the
first order transition without symmetry breaking. This result
is biologically significant as providing a possible description
of the alteration of the concentrations of some molecules
within cells. Note in a cell, the number of molecules of each
chemical species is not necessarily huge, and the discrete-
ness effect is not always negligible.
To investigate this problem, we again use an autocatalytic

reaction loop of chemicals, but here we consider the case in
which Di, ri or si is dependent on the chemical species i,
where ri is the reaction constant of the reaction
Xi þ Xiþ1 ! 2Xiþ1. To study the effects of discreteness,
we investigated the reaction model by using a stochastic
particle simulation. We assumed that the chemicals are well
stirred in the container. At each simulation step, two
molecules in the container are randomly chosen. Then we
judge if the molecules react or not, by checking if one of the
two acts as a catalyst for the other as a substrate. To carry
out the simulation efficiently here, we adopted Gillespie’s�E-mail: togashi@complex.c.u-tokyo.ac.jp
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Fig. 2. Probability distribution of x3 in our model with s1 ¼ s2 ¼ 1:99,

s3 ¼ s4 ¼ 0:01, D ¼ 1=128, sampled over a time span of 5
 106, for

different V (see Case II for details).
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Fig. 3. The average concentration �xixi in Case I: s1 ¼ s3 ¼ 1:7,

s2 ¼ s4 ¼ 0:3, as a function of the volume V (sampled over a time span
of 106 for V > 1024, 107 for 32 < V � 1024, and 108 for V � 32, also

the same for Figs. 5 and 9). D ¼ 1=128.
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Fig. 1. Probability distribution of z � ðx1 þ x3Þ 	 ðx2 þ x4Þ. Here si ¼ 1,

and D ¼ 1=128. For V � 256, z has a distribution around 0, correspond-

ing to the fixed point state xi ¼ 1 (for all i). For V � 64, the distribution

has double peaks around z ¼ 4, corresponding to the 1–3 rich state

(N1;N3 
 N2;N4 � 0), and z ¼ 	4, corresponding to the 2–4 rich state.
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Fig. 4. Probability distribution of x1 and x2, sampled over a time span of

5
 106. s1 ¼ s3 ¼ 1:7, s2 ¼ s4 ¼ 0:3 (Case I). D ¼ 1=128. In the case

V ¼ 2048, peaks around xi ¼ si, which correspond to the fixed point at

the continuum limit, is shown. As V decreases, the peaks get broader

according to fluctuations, and the tail of the distribution of x2 reaches 0.

Thus, there appears a peak around x2 ¼ 0.
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Fig. 5. The average concentration �xixi in Case I
0: s1 ¼ s3 ¼ 1:9, s2 ¼ 0:19,

s4 ¼ 0:01, as a function of the volume V . D ¼ 1=128.
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Fig. 6. Time series of the number of molecules Ni for V ¼ 16. Here

s1 ¼ 0:09, s2 ¼ 3:89, s3 ¼ s4 ¼ 0:01, and D ¼ 1=64. There is a transition

to the 2–4 rich state at t ¼ 4511. In the 2–4 rich state, X4 molecules flow

out at the rate D, and N4 thereby decreases. Due to the flow of X3

molecules, switching from N2 > N4 to N2 < N4 occurs, and N4 increases

again (as seen at t ¼ 4743). Here, the interval over which the switching

takes place is longer than the interval of X3 inflow, 1=DVs3 ¼ 400, and is

indeed long enough for most X4 molecules to diffuse out before X3

molecules can flow into the system. Thus, here N4 readily decreases to 0

before the switch. At t ¼ 5300, with N4 ¼ 0 an X3 molecule flows into the

container, leading to a switch to the 1–3 rich state.
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direct method6) (see Appendix).7)

Note that for there to be a DIT to a 1–3 or 2–4 rich state, it
is necessary that the time interval for inflow of molecules be
longer than the time scale of the reactions. This time interval
for Xi inflow should be �1=DisiV . In our previous study, in
which we considered the case of identical parameter values
for all i, the discreteness of the molecular concentration has
the same effect for all the molecule species, and the
transition occurs near DsV ¼ r.
It is important to realize that the relevance of the

discreteness of the molecular concentration depends on the
reaction and flow rates of each molecule when the parameter
values are not identical. For example, if D1s1 < D2s2, the
inflow time interval for X1 molecules is longer than that for
X2 molecules, so that the discreteness of the X1 flow has a
greater effect on the behavior of the system. In general, V
may determine the species that become extinct, and the
average concentration of each molecule can be greatly
changed by the discreteness effect.
Here, we consider the case in which si is species

dependent, while D and r are identical for all species
ðr ¼ 1Þ, for the autocatalytic loop introduced above. With
this choice, the discreteness effect of each chemical Xi

depends on i. In this system, we find discreteness effects that
result in changes of the average concentrations �xixi, with the
temporal average of the concentration xi ¼ Ni=V . Although
this result is obtained with this simple example, the
mechanism we find would appear to be quite general, and
hence there is reason to believe that the DIT we find exists in
a wide variety of real systems.
We first consider the effect of the discreteness of the

inflow of chemicals and how this depends on the relation
between the reaction rate and the inflow rate. In our model,
the inflow interval of Xi is � 1

DsiV
, and the time scale of the

reaction is � xi
rxixiþ1

. When the former time scale is larger than
the latter, the reaction from i to iþ 1 can proceed to
completion before the inflow of species i occurs. Then Ni

becomes 0. As long as Ni ¼ 0, no reaction to produce
chemical Xi occurs, and the average density may be
decreased radically from the continuum limit case.

Case I: inflow discreteness and reaction rate

As a simplest example to study this mechanism, we
consider the case with s1 ¼ s3 > s2 ¼ s4. In this case, the
rate equation in the continuum limit has a stable fixed point
8i : xi ¼ si. When V is large, each xi fluctuates around this
fixed point. The average concentration �xixi is shown in Fig. 3.
With the decrease of V , the difference between the pair �x1x1
and �x3x3 and the pair �x2x2 and �x4x4 is amplified, and there is clear
deviation from the continuum limit case.
The mechanism responsible for this amplification can be

understood as follows. As V is decreased, we have found
that the 1–3 rich state, with extinction of X2 and X4, appears
when the increase of �x1x1 and �x3x3 occurs. To realize
N2 ¼ N4 ¼ 0, it is necessary for the inflow interval of X2

or X4 to be longer than the time scale of the reaction. The
inflow interval of Xi molecules is � 1

DsiV
, while the time scale

for the reaction is � xi
rxixiþ1

. Since we set r ¼ 1 and xi ¼ Oð1Þ,
the 1–3 rich state appears for 1

Ds2V
; 1
Ds4V

> 1
r
, while the 2–4

rich state appears for 1
Ds1V

; 1
Ds3V

> 1
r
. Thus in the present

case, the 1–3 rich state is first observed as V is decreased. In

the range of values of V for which the relations 1
Ds1V

; 1
Ds3V

<
1
r
< 1

Ds2V
; 1
Ds4V

are satisfied, the 1–3 rich state is realized
often, while the 2–4 rich state is not (see Fig. 4).
Once the 1–3 rich state is realized, an X2 molecule and an

X4 molecule must enter the system almost simultaneously
for the system to break out of this state. Thus the ‘rate of
interruption’ of the 1–3 rich state is roughly proportional to
s2s4V

2, the product of the rates of X2 inflow and X4 inflow.
The expected residence time in the 1–3 rich state is the
reciprocal of the rate of interruption. Thus the ratio of the
expected residence times in the 1–3 rich and 2–4 rich states
is s1s3

s2s4
.

From the above considerations, we expect that for some
V � r

Ds2
, there appears a transition to the 1–3 rich state,

leading to a drastic increase of the 1–3 concentration. The
validity of this conclusion has been confirmed by several
simulations, one of whose results is shown in Fig. 3.

Case I0: imbalance of inflow discreteness

The transition discussed above can create a stronger effect
on the concentrations. As an example, consider the case
s1 ¼ s3 > s2 > s4.
In this case, as in case I, the 1–3 rich state is stable. While

in this state, the system switches from a condition of N1 >
N3 to one of N1 < N3 due to X2 inflow and from N1 < N3 to
N1 > N3 due to X4 inflow. Since the latter event is less
frequent for s2 > s4, the condition N1 < N3 is satisfied for a
greater amount of time in the 1–3 rich state. Hence, it is
expected that �x1x1 < �x3x3. This is confirmed by the results
displayed in Fig. 5. This is in strong contrast with the result
in the continuum limit, where �x1x1 � �x3x3 if D � rsi (i.e., the
time scale of the reactions is much shorter than that of the
inflow). The significant difference between �x1x1 and �x3x3 found
here appears only when the 1–3 rich state is realized through
the effect of the discreteness of the flow of X4 molecules. As
shown in Fig. 5, there is amplification of the difference
between �x1x1 and �x3x3 as V decreases that occurs simultaneously
with the transition to the 1–3 rich state.

Case II: inflow and outflow

When DsiV is small enough to insure the existence of both
1–3 and 2–4 rich states, the preference of states can depend
on the concentrations si. The preferred state is selected
through another DIT caused by outflow rather than inflow of
a particular chemical.
As an example, we consider the case s2 � s1 > s3 ¼ s4.

Here again, the rate equation in the continuum limit has a
stable fixed point. If D � rsi, then x1; x3 � s1þs3

2
and x2; x4 �

s2þs4
2
at the fixed point.

As discussed above, 1–3 and 2–4 rich states appear for
small Ds3V . In the 2–4 rich state, it is likely for N4 to
decrease as a result of the outflow of X4 and the reaction
X4 þ X1 ! 2X1 facilitated by the inflow of X1.
If s4V < 1, it may be the case that all X4 molecules flow

out, and N4 becomes 0. The time required to realize N4 ¼ 0

from N4 ¼ n should be � 1
D
log n when s4V � 0 and n 
 1.

However, if s1 is large, X4 will be consumed by the reaction
caused by X1, and for this reason, N4 will decrease to 0 more
rapidly. The time required to use up X4 may also depend on
s1. In this case, the 1–3 rich state is favoured by the
mechanism described below.
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Fig. 9. The average concentration �xixi in Case II: s1 ¼ s2 ¼ 1:99,

s3 ¼ s4 ¼ 0:01, as a function of the volume V . D ¼ 1=128.
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Fig. 8. Probability distribution of ðx1 þ x3Þ and ðx2 þ x4Þ in Case II:
s1 ¼ s2 ¼ 1:99, s3 ¼ s4 ¼ 0:01, sampled over a time span of 5
 106.

V ¼ 32, D ¼ 1=128. With such a small V , the 2–4 rich states are
destabilized, and the rate of the residence at the 1–3 rich states is almost

102 times larger than that at the 2–4 rich states. The state allowed by the

continuum limit, x1 þ x3 � x2 þ x4 is very rare.
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Fig. 7. Probability distribution of xi in Case II: s1 ¼ s2 ¼ 1:99, s3 ¼ s4 ¼ 0:01, sampled over a time span of 5
 106, for different V .

D ¼ 1=128. In the case V ¼ 512, all xi shows peaks around xi ¼ 1, which correspond to the fixed point at the continuum limit. When V

is small, each xi shows a peak at a different concentration, and the peak height changes greatly with change of V . For V ¼ 256, there

appear peaks at around x1 ¼ 1, x3 ¼ 3, x2 ¼ 4, and also around xi ¼ 0 (for all i). With further decrease of V , N2 and N4 reach 0 more

easily than N1 and N3 do. Accordingly the peaks for x2 and x4 around 0 grows as shown in the case V ¼ 128. The system tends to stay

at the 1–3 rich state, and the peak around x2 ¼ 4 gets smaller (as shown in the case V ¼ 64).
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Fig. 10. The average concentrations �xixi, sampled over a time span of

5
 108 for V � 32 and 5
 106 for V > 32, plotted as functions of the

volume V . s1 ¼ 0:09, s2 ¼ 3:89, s3 ¼ s4 ¼ 0:01, D ¼ 1=64. For large V ,
�xixi is close to the fixed point value of the continuum limit. As V decreases,

there first appears a 2–4 rich state, but for smaller V , this 2–4 rich state

becomes unstable, and the residence time of the 1–3 rich state increases,

leading to a sharp increase of �x3x3. For much smaller V (< 0:5), only X2

molecules exist for most of the time.
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Fig. 11. Probability distribution of x2, sampled over a time span of

5
 106. s1 ¼ 0:09, s2 ¼ 3:89, s3 ¼ s4 ¼ 0:01, and D ¼ 1=64. When V is

large, there is a single peak around x2 ¼ 2, which corresponds to the fixed

point in the continuum limit. Around V ¼ 103, double peaks appear

around x2 ¼ 1 and x2 ¼ 3, corresponding to the 2–4 rich state. As V

decreases, these two peaks move apart, and near V ¼ 102, the tail of the

lower peak reaches 0, implying that N2 and N4 often decrease to 0. Thus

here, the 2–4 rich state is unstable. Then, as V is decreased further, the

peak at x2 ¼ 0 rises sharply.
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When N4 > 0, N4 can increase again as a result of X3

inflow, which leads to switch from the N2 > N4 condition to
the N2 < N4 condition. The inflow interval for X3 is � 1

Ds3V
.

If this interval is much shorter than the time required for N4

to reach 0, N4 may increase again, causing the 2–4 rich state
to be preserved. However, if the interval is longer, N4 may
decrease to 0, in which case, the 2–4 rich state can be readily
destroyed by the inflow of an X3 molecule, as shown in
Fig. 6.
When the system is in the 1–3 rich state, on the other

hand, switches from a condition of N1 > N3 to one of N1 <
N3 due to X2 inflow, cause N3 to remain large (as in case I

0).
The system therefore tends to maintain the condition N1 <
N3 (as long as D=rsi is not too large). However, N1 only
rarely decreases to 0, unlike N4, because s1 is relatively
large. Thus the 1–3 rich state is more stable than the 2–4 rich
state, as shown in Figs. 7 and 8.
Hence, when V is decreased sufficiently to satisfy

s4V < 1, and the time interval 1
Ds3V

is sufficiently long to
allow N4 to decrease to 0, the 2–4 rich state loses stability,
and the residence time in the 1–3 rich state increases, due to
the discreteness of X4. As a consequence, �x3x3 increases as V
decreases, as shown in Fig. 9.

Amplification by Discreteness

Summarizing the findings discussed above, differences
among the ‘degrees of discreteness’ of the chemicals lead to
novel DIT. The average chemical concentrations are greatly
altered by this DIT. Indeed, as the system size (the volume
V) changes, there is a sharp transition to a state qualitatively
different from that found in the continuum limit. There are
two key parameters with regard to discreteness: One is 1

DsiV

(investigated in case I), the inflow time interval for Xi, and
the other is siV (investigated in case II), the number of
species Xi molecules in the system when it is at equilibrium
with the reservoir.
If the interval 1

DsiV
is longer than the time scale of the

reaction, xi
rxixiþ1

, the discreteness of the Xi inflow is relevant.
In such a situation, the Xi molecules present in the system
may be completely consumed by the reaction before any
new Xi molecules flow in, so that Ni may reach 0.
Then, if the condition siV < 1 is satisfied in addition to

the above stated condition, Ni can become 0 as a result of all
Xi molecules flowing out of the system. In this case, the
relation between the time necessary to realize a switch that
increases Ni and the time necessary for Ni to decay to 0 is
also important.
With the above two conditions satisfied for each species

Xi, there appear several switches to different states as V is
changed. As an example, we considered the case in which
s1 ¼ 0:09, s2 ¼ 3:89, s3 ¼ s4 ¼ 0:01, and D ¼ 1=64. In this
case, the average concentration �xixi exhibits three transitions
as V is decreased, as shown in Fig. 10.
First, in the continuum limit, �x1x1 and �x3x3 are very small, as

resulted from the fact that s1 þ s3 � s2 þ s4. Around
V ¼ 103, the discreteness of X3 becomes significant, and
the 2–4 rich state appears. Then the reactions X2 þ X3 !
2X3 and X3 þ X4 ! 2X4 take place only sporadically.
Contrastingly, the flow of X1 molecules is fairly steady.
Thus, while the system is in the 2–4 rich state, N2 > N4 is
satisfied for most of the time, as shown in case I0. Figure 11

displays the distribution of x2. Double peaks corresponding
to the 2–4 rich state appear in this situation.
In the 2–4 rich state with N2 > N4, X2 molecules flowing

into the system raise N2 to the level of s2V , establishing
equilibrium with the reservoir. At the same time, X4

molecules flow out, and N4 decreases to the level of s4V ,
as seen in case II.
As seen in case II, The difference between N2 and N4

increases with further decrease of V , since the switching rate
decreases. In Fig. 11, the gap between the two peaks in the
distribution of x2 is seen to become larger as V decreases.
Around V ¼ 102, finally, the imbalance between N2 and N4

destabilizes the 2–4 rich state. For this reason, the 1–3 rich
state becomes almost as stable as (or more stable than) the
2–4 rich state, in spite of the relation s1 þ s3 � s2 þ s4. The
residence time in the 1–3 rich state increases sharply,
causing �x3x3 to increase (as shown in Figs. 6 and 10). In fact,
�x3x3 increases to approximately 2, which is more than 30 times
larger than its value in the continuum limit.8)

For very small V (i.e. V < 2), N1 and N3 decrease to 0
quite readily, and thus the 1–3 rich state is also easily
destroyed. In this situation, for most of the time only one
chemical exists in the container. Here, only �x2x2 has a large
value, with all of the others near or at Ni ¼ 0.
In the manner described above, non-trivial alteration of

chemical concentrations as a result of DIT was observed. It
has been found that those molecule species whose numbers
vanish are determined not only by the flow rates but also by
the network and dynamics of the reactions. For example,
when V is relatively large (V � 102), �x3x3 decreases as s3
increases.

Discussion

In conclusion, we have reported a DIT that leads to a
strong effect on the average concentrations of the chemicals.
Although we have studied a simple case with only four
chemicals here, we have found that this type of DIT appears
in more complex reaction networks of a more general nature.
In fact, we have randomly chosen a catalytic reaction

network consisting of few hundred species, and studied the
population dynamics of each chemical species with the
scheme of stochastic simulation adopted here. For some
reaction networks we have observed the DIT as the volume
is decreased. In such cases, we have found that the
combination of the two mechanisms we studied here leads
to a variety of transitions and alterations of molecular
concentrations. Although the example reported in the present
paper is quite simple and may look special, the mechanism
found in the example gives a basis for DIT in complex
reaction network.
Generally speaking, DIT and its effects on molecular

concentrations are likely to be observed with chemical
networks containing autocatalytic reactions. However, in
some examples they are observed even without autocatalytic
reactions. When some part of reaction networks works as an
autocatalytic sub-network as a set, as seen in hypercycles,11)

the DIT of the present mechanism is possible.
It is now experimentally feasible to construct a catalytic

reaction system in a micro-reactor, and to design other types
of systems with small numbers of molecules. Also, there was
great advance in techniques for detection of small numbers
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(on the order of 1 to 102) of molecules using fluorescence or
other new methods such as thermal-lens microscopy.12) In
such systems, experimental verification of DIT should be
possible. Also, we believe that the alterations of chemical
concentrations resulting from DIT that we found will have
practical applications, since quite high accumulation of
dilute chemical species is possible as we have shown here.
Since the number of molecules in a biological cell is often

small, the relevance of DIT to cell biology is obvious. For
example, in cell transduction, the number of signal mole-
cules is often less than 100, and even a single molecule can
switch the biochemical state of a cell.13) In our visual
system, a single photon in retina is amplified to a macro-
scopic level.14) Transmission of signals through neurons via
synapses also often involves a small number of molecules.15)

Chemical reaction network consisting of several autocataly-
tic reaction is widely seen in a cell, and such autocatalytic
process provides a candidate for amplification of an effect of
a single molecule. Since the DIT we reported here is
generally observed in autocatalytic reaction networks, it is
expected that it may be used in a biochemical reaction
network in a cell. Indeed, according to our results, the non-
trivial accumulation of dilute molecules and switching
among several distinct states with different chemical
compositions may be realizable by, for example, the control
of flow by receptor. Additionally, in some preliminary
simulations with large reaction networks, some sub-net-
works can be effectively activated or inactivated by DIT. In
such cases, transitions between several states characterized
by active sub-networks can be observed, which will be
relevant to switching between cellular states by a few signal
molecules.
Switching the expression of genes on and off is a focus of

interest in bioinformatics. This digital behavior is also
connected with the concentration of proteins present. As is
pointed out,13) genetic regulation is under stochasticity
coming from smallness in the number of associated
molecules. As we have seen in our model, one chemical
species can exhibit both an on/off switch and continuous
regulation of other chemicals, even if the number of
molecules of this species is small. We believe that the
switching of chemical states facilitated by our DIT plays a
role in the regulation of genetic and metabolic processes in
cells.
Throughout the paper we have adopted stochastic particle

simulations. Of course master equation approach is also
equivalently possible, which is especially useful if some
analytic tools for it are developed. For example, use of
Fokker-Planck equations derived in the limit of large volume
(molecule numbers), is a powerful tool.16) Since our DIT
occurs when the volume (the number of molecules) is quite
small, such tools are so far not available. In future it will also
be important to develop some analytic tools for a system
where the discreteness in the number is essential.
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Appendix: Details of the Simulation

Details of the model
We assumed that the chemicals are well stirred in the

container and the molecules have no volume. Thus the rate
of the reaction Xi þ Xiþ1 ! 2Xiþ1 is given by Ri � rixixiþ1

[concentration/time], where ri is the reaction constant and xi
is the concentration of the chemical Xi. By rewriting it with
the use of Ni, the number of Xi molecules, the rate of the
reaction is given by RiV � riNiNiþ1

V
[reactions/time]. In the

same way, the rate of the Xi inflow is given by DisiV

[molecules/time], corresponding to Disi [concentration/
time], whereas that of the Xi outflow is given by DiNi

[molecules/time], corresponding to Dixi [concentration/
time].
This stochastic model approaches the rate equation

dxi

dt
¼ ri	1xi	1xi 	 rixixiþ1 þ Diðsi 	 xiÞ

when one takes a continuum limit, given by V ! 1.
We also assumed that the area of the surface of the

container is proportional to the volume V , and thus the rate
of the Xi flow is proportional to DiV , to have this well-
defined continuum limit for V ! 1. One might assume that
the area of the surface should be V2=3, and the rate of the Xi

flow should be proportional to DiV
2=3. This change of setting

alters just the parameter values. By suitably adjusting
parameters Di and/or si, the same transitions to the switching
states and the alteration of average concentrations are
observed, even with such settings.
With the rates of the reactions and the flows above, we

carried out the stochastic simulation. In principle, one can
carry out the simulation, by randomly selecting two
molecules, and transforming one of them to other molecule,
according to the reaction rule, with the probability propor-
tional to the rate of reaction, when these molecules react.
Here, as an efficient simulation method, we adopt Gillespie’s
direct method, instead.

Gillespie’s direct method
In our system, the state of the system is determined by Ni,

the number of molecules, and is changed only when one
reaction or one molecular flow occurs. Thus the rate of the
reactions and the flows do not change until the next event
(one reaction or one molecular flow) occurs, so that the lapse
time to the next event decays exponentially.
Gillespie’s direct method6) stands on this fact. First, we

determine the lapse time to the next event by exponentially-
distributed random numbers, and set the time forward. Next,
we determine which event occurs, with the proportion to the
rate of the event. We change the state according to the event,
and re-calculate the rate of the reactions and the flows. These
steps are executed repeatedly, until the specified time
elapses.
In some cases, especially with complicated reaction

networks, there are more efficient methods (see refs. 17
and 18). Here, for simplicity, we adopted the Gillespie’s
direct method. Our result discussed above does not depend
on which method to use.
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