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Dynamics with a threshold input-output relation commonly exist in gene, signal-transduction, and neural
networks. Coupled dynamical systems of such threshold elements are investigated, in an effort to find differ-
entiation of elements induced by the interaction. Through global diffusive coupling, novel states are found to
be generated that are not the original attractor of single-element threshold dynamics, but are sustained through
the interaction with the elements located at the original attractor. This stabilization of the novel state�s� is not
related to symmetry breaking, but is explained as the truncation of transient trajectories to the original attractor
due to the coupling. Single-element dynamics with winding transient trajectories located at a low-dimensional
manifold and having turning points are shown to be essential to the generation of such novel state�s� in a
coupled system. The universality of this mechanism for the novel state generation and its relevance to biologi-
cal cell differentiation are briefly discussed.
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I. INTRODUCTION

Differentiation of identical units through interaction is an
important issue in both physics and biology. Through devel-
opmental processes, cells with identical genes start to take
different chemical compositions; this process is known as
cell differentiation �1,2�. Several distinct types of cells are
generated that have different compositions of gene expres-
sions. Theoretically, on the other hand, state differentiation
of identical units has been studied in dynamical systems, by
using a coupled dynamical system, such as coupled chaotic
systems �3� or coupled oscillators �4�.

In coupled dynamical systems with identical elements,
there is a homogeneous state in which all elements take an
identical value. If this homogeneous state is unstable, differ-
entiation of elements follows. This has been studied exten-
sively as symmetry breaking. For example, by losing the
synchronization in oscillations, elements are differentiated
into clusters with different phases of oscillation, in coupled
chaotic or coupled oscillator systems �3,4�. Here the differ-
entiation occurs with regard to the phase of oscillation.

In a biological cell, differentiation is more drastic. Differ-
ent compositions of chemicals or, in other words, different
types of gene expression appear, and the differentiation is not
with regard to the phase of oscillation but in the fixed com-
position of chemicals �e.g., proteins�. To describe cell differ-
entiation as a coupled system of intracellular oscillatory dy-
namics, isologous diversification has been proposed �5,6�,
while its dynamical systems analysis is not as yet fully de-
veloped.

In the gene expression dynamics of a cell, the basic pro-
cess is on-off output against input�s�, with some threshold
function, rather than oscillatory dynamics �7�. In the present
paper, we present a mechanism for state differentiation by
taking elements with such a threshold function �i.e., y
=tanh��x� with ��1� and coupling them globally with each
other through simple diffusion coupling. By varying several
parameters, we find the generation of novel states in a
coupled system that are not attractors of the original single-

element dynamics. This differentiation of states is not ex-
plained as symmetry breaking and, indeed, the original at-
tractor also remains stable. To explain such coupling-induced
generation of novel stable states, we propose a transient trun-
cation mechanism, which brings about stabilization of stag-
nation point�s� in transient trajectories, mediated by interac-
tion with elements that have already fallen on the original
attractor. We show how this mechanism works, and describe
the condition for the generation and stabilization of novel
states. The generality of this mechanism in a coupled thresh-
old dynamics model is discussed, as well as its extension and
relevance to cell differentiation.

II. MODEL

Gene expression �7� and signal transduction �8� as well as
neural response �9� often follow threshold dynamics, where
the output y can be represented by y=tanh��x� where x is an
input and � ��1� is a parameter representing the sensitivity.
The input to each variable �gene or neuron� comes from sev-
eral genes �or neurons� that are connected through excitatory
or inhibitory couplings. For such dynamics, the following
threshold dynamics model is often adopted;

ẋi = tanh�� �
0�j

M−1

Jijxj − �i� − xi, �1�

where xi is the state of the ith variable �e.g., gene expression�
with i=0,1 , . . . ,M −1, while the component of the connec-
tion matrix Jij goes from positive to negative values �10�.
Here, we study the case in which Jij is either −1 or 1, se-
lected randomly, as is used in the spin-glass model �11�,
while the specific form of the distribution of Jij is not impor-
tant for discussion of the results. The threshold value �i is
fixed, and is also distributed over �−1,1�. The parameter �,
representing the sensitivity, is fixed at 4 in the present paper,
while the behavior to be discussed is unchanged as long as
��1.

Now, we consider an ensemble of elements, each of which
follows the same equation �1� as single-element dynamics,
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and introduce interaction among such elements. For ex-
ample, consider N cells, each of which has identical gene
expression dynamics. Then the global behavior of an en-
semble of these cells is represented by the above intracellular
dynamics and interaction among them. Instead of xi, we need
to study the dynamics of the variable xi�k�, the state of the ith
component �e.g., ith gene� of the kth element �cell�. Here we
take the simplest form of interaction, diffusive, global cou-
pling, to all elements �cells�. Now, the model we discuss is
written as

ẋi�k� = tanh�� �
j=0

M−1

Jijxj�k� − �i� − xi�k� + Di�x̄i − xi�k��

�2�

with k=1,2 , . . . ,N, and x̄i= �1/N���=1
N xi��� is the average

value of the ith component over all elements, while Di is the
strength of this diffusive coupling over elements. We use the
present mean-field model �global coupling� as an idealized
basic system.

Of course, another choice in the coupling form is spatially
local interaction, such as the nearest-neighbor diffusion cou-
pling among elements located on a lattice. Here, we use the
above global interaction, because we are interested in the
basic properties of coupled threshold dynamics and state dif-
ferentiation. In general, with the choice of spatially local
interaction, differentiation of state values by elements ap-
pears more easily, while the mechanism to be described for
the global interaction works even for the local interaction
case.

In a biological context, this type of model was discussed,
for instance, by Mjolsness et al. �12� and Salazar-Ciudad
et al. �13�, in relationship with the problem of cell differen-
tiation, where these authors chose the interaction Jij and �lo-
cal� cell-cell interaction to meet a specific biological situa-
tion. Here, we are interested in general features of this class
of models, so that we have chosen the simplest situation, as
described above. In a physics context, the above model �with
local coupling� was studied analytically and numerically by
Hansel and Sompolinsky �14�, as a model for spatiotemporal
chaos, where their interest is focused on the limit with M
→�, and fully chaotic behavior. Our interest in the present
paper lies in the differentiation into distinct stable states
�mostly fixed points� for a system with a relatively small M.

III. GENERATION OF NOVEL STATES BY TRANSIENT
TRUNCATION MECHANISM

The single-element dynamics �1� �or the model �2� with
Di=0 for all i� can have multiple attractors in general, which
are either a fixed-point, a limit-cycle, or a strange attractor.
To discuss the interaction-induced generation of novel states
other than the attractor�s� of the single-element dynamics �1�,
however, it would be better to study the case with only one
attractor at first.

In fact, the behavior of a coupled dynamical system has
been studied extensively, when an element system has only
one limit-cycle or chaotic attractor. If the attractor is a limit
cycle, synchronization among elements often occurs through

the coupling, while, if the attractor is chaotic, clustering of
elements into several states can occur �3,4�. In the latter case,
state values are differentiated by elements, as a result of the
instability of the homogeneous �synchronized� state, while
the differentiation is understood as symmetry breaking. In-
deed, in our model �2�, such clustering is generally observed
when the single-element dynamics �1� shows chaotic or os-
cillatory dynamics.

On the other hand, if the attractor of single-element dy-
namics �1� is a fixed point, a homogeneous state of the fixed
point over all elements is always stable in the present diffu-
sive coupling system. Then, the generation of novel states
other than the fixed point is not possible by the symmetry-
breaking mechanism. However, we have found several ex-
amples in which the coupled system �2� exhibits differentia-
tion of state values, when started from initial conditions far
from a homogeneous state. Inhomogeneous states with
xi�k��xi�j� are observed, for some network Jij, and for some
values of �Di	, and ��i�.

An example of such behavior is shown in Figs. 1 and 2,
where M =5. The corresponding single-element dynamics �1�

FIG. 1. �Color online� Time series of x2 of the threshold dynam-
ics model with M =5. �a� Overlaid time series of single-element
dynamics �1�, from ten initial conditions chosen randomly. From all
initial conditions, a single, fixed-point attractor is reached. �b� Time
series of the coupled dynamics model �2� overlaid for 30 elements
chosen from N=100 elements, for a single initial condition. Other
than the original fixed point of �a�, another fixed-point state is
reached, which is stabilized by the interaction. The matrix J and
parameter values are chosen as shown in the text.
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has only a fixed-point attractor. Here we choose

J =

+ − − + +

− − − + +

+ − − − +

+ + − + +

− + − + +
� �3�

where + denotes 1 and − denotes −1, �= �0.14,−0.75,0.71,
−0.78,0.32�, and D= �0.95,0.027,0.30,0.18,0.95�, while

several other choices of J, Di, and ��i� give rise to similar
behavior. The time series of x2 of a single-element dynamics
�1� are plotted in Fig. 1�a� by taking a variety of initial con-
ditions, which shows the relaxation to a single, fixed-point
attractor. In Fig. 1�b�, the time series of x2�k� over several
elements are plotted. One can see differentiation of final state
values into two fixed-point values, one of which corresponds
to the original fixed-point value of the single-element dy-
namics �1�, although the value of the fixed point is slightly
shifted, due to the coupling term. The other fixed-point
value, on the other hand, does not have a corresponding
value in the single-element dynamics.

Corresponding to these time series, we have plotted a
two-dimensional projection of orbits from the five-
dimensional phase space. Figure 2�a� again shows the single-
element dynamics �1� without interaction. Each line repre-
sents the time evolution of �x0 ,x4� starting from different
initial conditions, while Fig. 2�b� shows the evolution of the
coupled system �2�, where an orbit from a single initial con-
dition is plotted, with each line as an orbit of each element.
One can again see clearly that a novel attracting state �N�
other than the original fixed-point attractor xi�k�=xi

* �O� is
created through the interaction.

Recall that the homogeneous state with xi�k�=xi
* for all

elements k is always stable. Indeed, when the initial condi-
tion is set so that the states of all elements are located near
this fixed point, the attractor xi�k�=xi

* is always reached. In
this sense, the present mechanism differs distinctly from the
clustering or other mechanisms based on spontaneous sym-
metry breaking. In addition to the stable homogeneous state,
there appears a macroscopic state consisting of both the ele-
ments at the original fixed point and a novel fixed point,
when the initial condition of elements is set far from homo-
geneity. (In most examples, we choose a random initial con-
dition where xi�k� is taken randomly from �−1,1�.) Here the
novel fixed point N is stabilized by the coupling with other
elements located at O.

Indeed, by taking a variety of networks Jij, we have ob-
served several examples of formation of such novel state�s�,
and found a common mechanism. The mechanism of the
generation of novel state�s� other than the original fixed-
point attractor is explained as follows.

Consider the case in which a single unit dynamics has
long-winding transient trajectories before they reach the
original unique fixed point �O�, as shown in Fig. 2�a�. During
the transient process, the orbit has �a few� turning points at
which the motion of xi�t� is slowed. While some elements
have reached the original fixed point fast, others are still on
the route to it. At some turning points, the relaxation of an
element take a course once going farther away from the
original fixed point O. On the other hand, diffusive coupling
with elements that have already reached the original final
fixed point drives the transient element toward it �see Fig. 3
for a schematic representation�. This coupling suppresses the
relaxation of single-element dynamics toward the original
fixed point. When the directions of the original relaxation
and the attraction to the original fixed point are opposite, the
two driving forces may balance each other around a turning
point where the motion is stagnated �see stagnation point S in

FIG. 2. �Color online� The trajectory of the model correspond-
ing to Fig. 1. (x0�k� ,x4�k�) is plotted as a projection on a two-
dimensional plane from the five-dimensional phase space. �a�
Single-element dynamics corresponding to Fig. 1�a�. Overlaid plot
from 25 initial conditions. All the orbits are attracted to the fixed
point denoted by O. �b� Coupled dynamics model corresponding to
Fig. 1�b�. Overlaid plot for 30 elements chosen from N=100. The
orbits are either attracted to the original attractor shown as O �green
circle�, or to a novel fixed-point state denoted by N �represented by
a violet circle�. The latter is stabilized by the interaction. About
one-third of the elements are attracted to N, while the others are
attracted to the original attractor O. Note that the location of the
state corresponding to the original attractor is slightly shifted by the
coupling term with the elements at the novel state.
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Fig. 3�. Then, the relaxation to the original fixed point is
truncated, and some elements remain around this stagnation
point, to create an interaction-induced novel state, as shown
in Figs. 2 and 3.

This transient truncation mechanism works under the fol-
lowing conditions.

The loci of transient orbits are restricted within a low-
dimensional manifold: If the transient trajectories cover a
high-dimensional region in the phase space, orbits from dif-
ferent elements approach the original attractor from a variety
of directions, and the transient truncation by diffusion cou-
pling does not work effectively. When the transient trunca-
tion mechanism works, many points reach the original attrac-
tor, taking a specific course restricted within a low-
dimensional region in the phase space, as displayed in Fig. 2.
Contraction to the low-dimensional manifold is so strong
that each element is located within a low-dimensional mani-
fold, as shown schematically in Fig. 3 �as thick red arrows
toward A�.

The transient orbit has one or several turning points. At
some turning point, the single-element motion stagnates
where the orbit stays for a long time, so that the driving force
by the single-element dynamics is weak there. Hence, the
diffusive coupling to the original fixed point is sufficient to
stop the original relaxation course. See Fig. 2 for example.

The direction of transient orbit around this stagnation
point is roughly opposite to the direction to the original fixed
point, attracted by the diffusive coupling. Then, the orbit is
trapped around this stagnation point, as shown in Fig. 2.

Since the interruption of transient dynamics is caused by
the diffusive coupling to the elements already fallen on the
original fixed point, the degree of interruption depends on
the number of such elements, which is denoted by Nf.

To study how the stability of the novel state changes with
Nf, we have computed the largest eigenvalue of the Jacobi
matrix of the evolution equation at this novel fixed point �N�
induced by coupling. If the eigenvalue is negative, this novel
fixed-point state is stable. This eigenvalue depends on the
number Nf �or more generally, on the ratio Nf /N�. We have
plotted this eigenvalue against the ratio 1−Nf /N, i.e., the
fraction of the elements at the novel state. As shown in Fig.

4, the eigenvalue is negative only if Nf is larger than some
threshold, while it decreases with increase of Nf. In other
words, the novel state is sustained only under the existence
of a moderate number of the elements at the original fixed
point. Existence of the threshold number for Nf is natural,
since the new state is sustained by an “attractive force” to the
original fixed point.

According to the above mechanism, the appropriate
strength of diffusion coupling is necessary to stabilize the
novel state. Indeed, the present transient truncation mecha-
nism works only for a given range of diffusion constants. If
it is too small, the attraction to the original fixed point is too
weak to interrupt the relaxation course of the single-element
dynamics, so that all the elements fall on the original fixed
point. On the other hand, when the diffusion coupling is too
large, the diffusion coupling dominates so that all the ele-
ments take the same value. Then, the dynamics follow the
single-element dynamics �1�, so that all elements fall on the
original fixed point. �See Fig. 5 for the diffusion constant
dependence of the existence of the novel state, where Di is
changed by keeping the proportion among the Di’s �i.e., fix-
ing Di /Dj��.

IV. GENERALIZATION

We have studied the behavior of the model �2� by taking a
variety of networks and by changing N and M, to find that
the generation of novel states by the mechanism of the last
section is general. We have computed the fraction of the
networks that show the generation of novel state�s� from
fixed-point attractor�s�, by the above mechanism. The frac-
tion of the network �and � j� for such behavior remains at 1–
5 %, when M is changed from 8 to 64. Here, we have com-
puted 100 networks for each M, and the transient truncation

FIG. 3. �Color online� Schematic representation of transient
truncation mechanism. Original relaxation of single-element dy-
namics takes a course A→B→S→O, while the interaction with
elements near O hinders the relaxation from A to S.

FIG. 4. �Color online� Dependence of the stability of the novel
state upon Nf, the number of elements located at the original fixed-
point attractor. By using the same model for Figs. 1 and 2, we have
computed the largest eigenvalue of the Jacobi matrix of the novel
fixed-point state, by fixing the number of elements at the original
attractor at Nf. Here the eigenvalue is plotted as a function of �N
−Nf� /N, i.e., the fraction of the number of elements at the novel
state. When the eigenvalue exceeds zero, the state is no longer
stabilized, and the exponent is not computed. Different symbols
correspond to different sets of diffusion coupling Di, which is
changed by fixing D1 /D0=0.448, D2 /D0=0.19, D3 /D0=0.078,
D4 /D0=0.052, and changing only D0, as shown in the figure.
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mechanism from fixed point attractor�s� is observed for 1–5
networks among them. We also note that the present mecha-
nism also works, even if the coupling Jij is sparse, in the
sense that many Jij’s are set at 0. For example, we have
observed the novel state generation by transient truncation,
with a similar fraction, for a system with Jij =0 for 70% of
the matrix.

Another type of nontrivial behavior of the coupled system
�2� is clustering of elements into different phases of oscilla-

FIG. 5. �Color online� Fraction of elements falling on the novel
state is plotted against the strength of diffusion coupling. The frac-
tion is measured over 50 randomly chosen initial conditions. Diffu-
sion strength Di is changed by fixing Di /D0 and varying D0, in the
same way as in Fig. 4, and changing only D0 as shown. The fraction
is plotted against D0. For D0�0.1 and D0�100, the novel fixed-
point state does not exist, and all the elements fall on the original
fixed point.

FIG. 6. �Color online� Fraction of networks that exhibit oscilla-
tory dynamics for single-element dynamics. For each value of M,
we have chosen 100 networks with randomly chosen Jij, and carried
out the simulation without coupling, to check if there is a limit
cycle or a chaotic attractor. For the corresponding coupled system,
clustering of elements into a few groups is observed with the in-
crease of the coupling strength, and then a synchronized state over
elements appears for the further increase of coupling, as is studied
in globally coupled maps �3�. N is fixed at 128.

FIG. 7. �Color online� The trajectories (x0�k��t� ,x4�k��t�) are
plotted, as a projection on a two-dimensional plane from the
M-dimensional phase space �M =10�. �a� Single-element dynamics
�1�, overlaid plot over 20 initial conditions. �b� Coupled dynamics
model �2� corresponding to �a�, with the coupling values D
= �0.20,0.27,0.66,0.41,0.26,0.15,0.32,0.29,0.096,0.33�. Final
states are plotted for all 100 elements. The original fixed-point at-
tractors are shown as O1 and O2. In �a�, there are winding transient
orbits that fall on the attractor O1 or O2. In �b�, a novel limit cycle
is generated. �c� The trajectories of a coupled dynamical system
with the same set of Jij and ��i�, but a different set of Di, i.e., D
= �0,0.30,0.0037,0 ,0.79,0 ,0 ,0.0070,0.80,0.0028�. With the cou-
pling, novel fixed-point states A and B are generated, besides the
original fixed points, instead of the limit cycle in �b�. Trajectories of
12 elements among 100 are plotted. The matrix J and parameter
values are chosen as shown in the text.
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tions, when the single element shows �chaotic� oscillation, as
was discussed in globally coupled maps �3�. The fraction of
networks showing the clustering also increases with M, as
shown in Fig. 6. This is natural, since chaotic behavior is
more frequently observed in a single-element dynamics �14�.
In other words, the network only with fixed-point attractors
for single-element dynamics decreases with M. Hence,
among the networks having only fixed-point attractors, the
fraction showing the transient truncation mechanism slightly
increases with M �15�.

Although the generation of coupling-induced novel
state�s� is common to the networks above, it is often more

complicated than the simple example in the last section
where the original single-element dynamical system has only
a single, fixed-point attractor.

Even if the single-element dynamics has multiple attrac-
tors, the transient truncation mechanism still works. Indeed,
when M is large, we observed the case in which novel states
are generated by coupling in addition to the original multiple
attractors. For example, when there are two fixed-point at-
tractors in the original dynamics, other fixed-point or limit-
cycle states are stabilized due to the coupling, as a result of
transient truncation. An example is shown in Fig. 7, where
we choose

J =

− − + + + + − − − +

+ − + − + + + + − +

+ + − + + + − + − +

+ + + + + − − − − −

− − − + − + − + + +

− + − + − − + + + −

− − − + + + − + − −

+ − − − + − − − − +

+ + − − + + − + − +

− + + − − + − + − −

� �4�

with �= �−0.27,0.98,0.22,−0.25,−0.92,0.63,0.44,0.64,
0.74,−0.73�.

In this example, there are two fixed points, denoted by O1
and O2, in the original single-element dynamics �1�. There
are transient trajectories that have a few turning points, and
that are attracted to O2, as shown in Fig. 7�a�. With the
coupling to elements located at O1 and O2, the transient
trajectory is truncated, and a limit cycle is generated for the
remaining elements, as shown in Fig. 7�b�. This truncation is
possible only if the numbers of elements at O1 and O2 are
within some range, but the range is rather broad, so that the
coupling-induced limit-cycle state is observed just by start-
ing from random initial conditions. Furthermore, we have
observed this type of novel limit-cycle state in a variety of
networks.

Formation of multiple novel states is also possible in
some networks �and with suitable choice of diffusion�. In
Fig. 7�c�, we show an example of formation of two fixed-
point states, by using the same network as in Figs. 7�a� and
7�b�, but by taking a different set of diffusion couplings
�D0 ,D1 , . . . ,DM−1� given in the figure caption. Here, two
fixed-point states A and B are generated around two stagna-
tion points. By starting from some initial conditions, both of
these two stagnation points become stable due to the inter-
action with other elements.

Here, the novel fixed-point state A exists under the pres-
ence of B; otherwise the elements located around A cannot

stay there, but move toward B. Hence there is ordering be-
tween A and B. The latter states are necessary for the former,
but not vice versa. Generally, when there are several stagna-
tion points S1,S2, . . . , along a low-dimensional transient or-
bit, and coupling-induced novel states are formed accord-
ingly as N1,N2, . . . , there is ordering with regards to their
existence, as N1 exists under the presence of N2,N3, . . ., and
N2 exists under N3,N4, . . . , and so forth.

In some other networks, novel states A and B mutually
stabilize each other; the state A exists under the presence of
elements at B, and vice versa. By removing all elements
taking the state A, elements taking the state B become un-
stable and are absorbed into the original fixed point, and
removing the elements taking B also results in the destabili-
zation of the state A.

Finally, the original attractor of the single-element dy-
namics need not necessarily be a fixed point. The mechanism
of the transient truncation can work even if the original at-
tractor is not a fixed point, but a limit cycle, as long as there
are stagnation points along the transient orbits satisfying
conditions �1�–�3� in the last section.

V. SUMMARY AND DISCUSSION

In the present paper we have studied a coupled threshold
dynamics model, to find emergence of novel states stabilized
by the coupling. Although we have adopted just a simple
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global diffusive coupling which tends to homogenize all the
element values, there appears differentiation of the state val-
ues, induced by the coupling. The mechanism of the genera-
tion of novel states is explained as the truncation of transient
orbits that are located on a low-dimensional manifold in the
phase space. The interaction with the elements that have
fallen on the original attractor suppresses the relaxation pro-
cess of the remaining elements at some stagnation point, to
make it a novel fixed point �or a limit cycle�.

The transient truncation mechanism is based just on the
existence of winding transient orbits on a low-dimensional
manifold, with several turning points. Hence, the coupling-
induced formation of novel stable states by this mechanism
is not restricted to the present model. It should be generally
possible in coupled dynamical systems, with the above class
of transient orbits at a single-element level.

Still, we have not found such differentiation in the previ-
ous studies on coupled dynamical systems in which a much
simpler element is adopted �such as the logistic map �3��. At
least, one can conclude that the present transient truncation
appears more frequently in the coupled threshold dynamics
model given by Eq. �2�. We expect that this is because of the
typical nature of transient orbits in �1�. Indeed, in threshold
dynamics, each variable tends to approach either 1 or −1. At
some points with xi�1 or −1 for some i’s, the change in the
variable values is slowed, and then the trajectory departs
from them. The transient dynamics of a single element often
involve such switchings between +1 and −1 with stagnation
of motion. Thus the requirement on transients discussed in
Sec. III is more easily satisfied in the present model than in
coupled oscillators or coupled chaos.

Another clear example of such stagnation is a heteroclinic
cycle �17–19�. Although the heteroclinic cycle itself is not a
transient orbit to a fixed point required here, slight structural
perturbation on the heteroclinic cycle can lead to transient
orbits on low-dimensional manifold with some stagnation
points. At this point, it is interesting to recall that a class of
threshold-network dynamics can generally produce hetero-
clinic cycles �20�.

Of course, generation of novel states is important in the
study of biological cell differentiation. As the number of
cells increases through the developmental process, they in-
teract with each other, and some cells start to exhibit differ-
ent gene-expression patterns. Indeed, the spontaneous cell
differentiation process has been discussed theoretically as
isologous diversification �5,6�.

Considering that Eq. �1� is a simplified form of gene-
expression dynamics, the present mechanism of state differ-
entiation may be relevant to cell differentiation, since novel
states stabilized by the �cell-cell� interaction have gene-

expression patterns distinct from those of the original attrac-
tor. Indeed, mutual stabilization and hierarchical ordering of
cell types, observed in the present model, may be important
to the discussion of robustness and irreversibility in the cell
differentiation process �16�. Here, it is interesting to note that
long transient dynamics on a low-dimensional manifold has
recently been observed in a gene network model constructed
from biological data �21�.

To close the paper, we again note that inclusion of spa-
tially local interaction in the present study is quite straight-
forward. In a one-dimensional lattice, one can adopt a
nearest-neighbor diffusive interaction model as given by

ẋi�k� = tanh�� �
j=0

M−1

Jijxj�k� − �i� − xi�k�

+ di� xi�k + 1� + xi�k − 1�
2

− xi�k�� . �5�

In this case, generation of novel states by the present
mechanism works. Without coupling �i.e., by taking di=0�,
only a homogeneous state with a stable fixed point exists,
while with coupling spatially inhomogeneous pattern ap-
pears, depending on the initial condition. “Spots” of novel
states are distributed with some distance, leading to spatial
configuration of differentiated elements �see Fig. 8 as an
example�. Note again that this pattern formation is not a
result of symmetry breaking as in the Turing pattern �22�.
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