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Abstract When a certain input–output mapping is

memorized, the neural dynamics provide a prescribed

neural activity output that depends on the external input.

Without such an input, neural states do not provide mem-

orized output. Only upon input, memory is recalled as an

attractor, while neural activity without an input need not

fall on such attractor but can fall on another attractor

distinct from the evoked one. With this background, we

propose that memory recall occurs as a bifurcation from the

spontaneous attractor to the corresponding attractor

matching the requested target output, as the strength of the

external input is increased. We introduce a neural network

model that enables the learning of such memories as

bifurcations. After the learning process is complete, the

neural dynamics are shaped to generate a prescribed target

in the presence of each input. We find that the capacity of

such memory depends on the timescales for the neural

activity and synaptic plasticity. The maximal memory

capacity is achieved at a certain relationship between the

timescales, where the residence time at previous learned

targets during the learning process is minimized.

keywords Neural network � Bifurcation �
Associative reward–penalty � Multiple timescales

1 Introduction

The ability to learn appropriate responses to stimuli from

the environment is one of the most important features of

the brain. On the basis of the advances made in neurosci-

ence over the past decades, it is now generally accepted

that the output responses to input stimuli are memorized by

the synaptic plasticity. Various neural network models

have been proposed to study how a synaptic strength pat-

tern is formed to memorize given input–output (I/O)

mappings. In most of these studies [1–5], inputs are sup-

plied as the initial states for neural activity, whose temporal

evolution results in the generation of desired outputs. Thus,

a dynamical system without inputs is not taken into

account, and spontaneous activity is only considered to be

noise. However, recent experimental studies have shown

that structured spontaneous neural activity exists even in

the absence of external stimuli and that such spontaneous

activity is related to the cognitive function [6–9].

Upon external stimuli, such neural activity is modified

to provide appropriate response neural activities [10].

Considering these experiments, we proposed a novel per-

spective for the memorization of I/O mappings [11]. If a

neural system memorizes an I/O mapping, the spontaneous

dynamics are modulated by a memorized input to provide a

required target output. In other words, the input changes

the flow structure of the neural dynamical system to gen-

erate the corresponding target output. This change in flow

is mathematically formulated as the bifurcations of

attractor upon input.

In the present paper, we use a layered neural network

model to show that this idea of ‘‘memories as bifurcations’’

is indeed realized. In particular, we discuss the dependence

of the learning process on the neural and synaptic time-

scales: the timescales for neural activity and the plasticities

of both forward and backward synapses. We find that there

is an optimal relation among these timescales, in order for

the system to have a maximum memory capacity. This

relation states that the timescale for neural activity is
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smaller than that for the backward synaptic plasticity and

that the timescale for the backward synaptic plasticity is

smaller than that for the forward one. We discuss how this

timescale relationship is relevant to the formation of flow

of neural dynamical system to achieve appropriate bifur-

cations for memories.

The structure of this paper is as follows: In the second

section, we describe the model used in the paper. We adopt

reinforcement learning in a three-layered network, which is

composed of two rules, Hebbian (strengthening with

‘‘reward’’) and anti-Hebbian (weakening with ‘‘punish-

ment’’) synaptic changes. We describe the dynamics of

neural activity and the synaptic dynamics, i.e., the change

in synaptic strength by reinforcement learning. The next

section shows the results of the model described in the

preceding section; these results include the typical behavior

of our model and a demonstration of ‘‘memories as bifur-

cations.’’ In particular, how the neural and synaptic

dynamics change depending on the relationship between

their timescales is analyzed in depth. In the last section, we

discuss the implications of the results for learning and

memory in our brain and the significance of the multiple

timescales.

2 Model

We construct a neural network model for learning based

on the following two conditions that satisfy the biologi-

cal requirements for the normal process of the brain

function. (1) Different error information for each indi-

vidual neuron should not be required. In other words,

individual error information is used commonly for all

neurons. In contrast, in the error back-propagation algo-

rithm [5], one of the most popular learning algorithms

for neural networks, information corresponding to each

of the output neurons is required. In biological learning

with a neural system, however, it is difficult to transmit

the specified information to each neuron. (2) I/O map-

pings should be learned sequentially, one-by-one, i.e., a

new I/O mapping should be learned only after the pre-

vious mapping has been learned, while preserving the

previously learned mappings. In contrast, in most learn-

ing algorithms for neural networks, numerous mappings

are simultaneously and iteratively learned by gradually

changing the synaptic strength until all of the mappings

are memorized.

To satisfy the above-mentioned requirements, we

introduce a layered network model consisting of input,

hidden, and output layers, along with a reinforcement

learning algorithm known as the associative reward–pen-

alty (ARP) algorithm (Fig. 1) [4, 12]. In this model, several

I/O mappings are learned one-by-one using only a single

error signal, which is given as the distance between the

activity pattern of the output neurons and a prescribed

target output pattern. During the learning process, the

synaptic strength is changed in accordance with the Heb-

bian and anti-Hebbian rules, switching based on the mag-

nitude of the error signal (Fig. 1).

To be specific, we adopt the following model with

N neurons in each layer. Three types of synapses are

considered: forward synapses (FSs), backward synapses

(BSs), and mutually inhibiting intralayer synapses (ISs).

FSs connect the neurons in the input layer to those in the

hidden layer and the neurons in the hidden layer to those in

the output layer. BSs connect the neurons in the output

layer to those in the hidden layer, while ISs connect the

neurons within a given layer (a hidden layer or output

layer).

2.1 Neural dynamics

The neural activity in the input layer is determined by an

input pattern, I, a vector whose element takes the value 0 or

1; the magnitude of this vector (input strength) is g (1). The

neural activities in the other layers change, as shown by the

rate coding model (2, 3):
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Fig. 1 Schematic representation of network architecture of our

model. In this study, we use a three-layered model with input,

hidden, and output layers. There are three kinds of synaptic

connections in the network: forward synapses (FSs) represented with

the blue lines, backward synapses (BSs) with the red lines, and

inhibitory synapses (ISs) with the gray lines. FSs and BSs are

modified during learning in accord with the error signal (the green
line) between the output activity and target output activity, while ISs

are fixed
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xi ¼ gIi ðI 2 f0; 1gÞ ðinput layerÞ ð1Þ

sNA _xi ¼ 1=ð1þ expð�buhid
i þ hÞÞ � xi ðhidden layersÞ

ð2Þ

sNA _xi ¼ 1=ð1þ expð�buout
i þ hÞÞ � xi ðoutput layersÞ

ð3Þ

where xi is the firing rate of neuron i, and ui is the input

current applied to neuron i. The input current is given by

ui
hid =

P
j=1
N Jij

FS xj
in ?

P
j=1
N Jij

BS xj
out ?

P
j=i JIS xj

hid for

the neurons in the hidden layer and ui
out =

P
j=1
N Jij

FS

xj
hid ?

P
j=i JIS xj

out for the neurons in the output layer.

Here, Jij
FS(Jij

BS) is the strength of the forward (backward)

synapse from a pre-synaptic neuron, j, to a post-synaptic

neuron, i. JIS is the strength parameter for the mutually

inhibiting IS; this parameter assumes a fixed and identical

value for all synapses except Jii
IS = 0 for all i. The

parameters are set at sNA = 1, b = 43, h = 2.5, g = 1.0,

JIS = - 1.0, and N = 10.

For each input pattern, we prescribe a target output pat-

tern, n, as an N-dimensional vector whose element takes the

value 0 or 1. Sparse input and target patterns, in which only

one neuron is activated, are chosen. By describing the neural

activity in the output layer as the N-dimensional vector

Xout, the learning task moves the error, E = |Xout - n|2/N,

closer to zero, as measured by the Euclidean norm.

2.2 Synaptic dynamics

Synaptic plasticity is necessary for learning in neural net-

work models. We adopt two schemes for the synaptic

plasticity: multiple timescales and the ARP algorithm for

reinforcement learning [4, 12]. First, the timescale of the

plasticity of FSs sFS is different from that of the plasticity

of BSs sBS. Second, the synapse pattern that generates the

target output pattern is strengthened, in accordance with

the Hebbian rule; A connection between the active neurons

is strengthened, and, otherwise, it is unchanged or

depressed. On the other hand, the synapse pattern that does

not generate the target output pattern is weakened as per

the anti-Hebbian rule; A connection between the active

neurons is depressed, and, otherwise, it is unchanged or

strengthened. In accordance with the ARP algorithm, the

synaptic dynamics depend on the activities of the pre- and

post-synaptic neurons as well as on the R determined from

error signal E:

sp _Jp
ij ¼ Rpðxi � rÞxj ðJ� 0Þ ðp ¼ FS or BSÞ ð4Þ

RFS ¼ 1 for E� e
�1 for E [ e

�

RBS ¼ 0 for E� e
�1 for E [ e

�

ð5Þ

Here, r is the spontaneous firing rate (set at 0.1), and e is

the error threshold, set at 10-3. The sign of R changes with

the magnitude of the error signal, E, between the output

pattern and target pattern. When the output pattern is close

to the target pattern, i.e., E ¼ jXout � nj2=N� e; the

synaptic plasticity follows the Hebbian rule, which is

derived by substituting RFS = 1 and RBS = 0 in (4). This

plasticity stabilizes the ongoing neural activity pattern.

Note that during this stabilization process, only the strength

of the FS varies, and hence, memories of the I/O mappings

are embedded in the FSs. In contrast, when the output

pattern is distant from the target pattern, i.e., E [ e; the

synaptic plasticity follows the so-called anti-Hebbian rule,

and the ongoing neural activity pattern is destabilized. Note

that with the above form, (xi - r)xj, the synapse shows

only negligible changes when its pre-synaptic neuron, j, is

in a low-firing state. In our model, we require only a single

error term for all of the neurons; this is in strong contrast to

error back propagation, which requires the computation of

a large number of error terms, i.e., as many error terms as

output neurons.

In most neural network studies, only two timescales are

considered: one for neural activities and the other for

synaptic plasticity. In this study, we consider a variety of

timescales for synaptic plasticity and introduce two time-

scales for the plasticities of the FSs and BSs. As will be

shown later, I/O mappings are successfully memorized

when the difference between the timescales is appropriate.

3 Results

3.1 Learning process

We first show that this model can be used to learn I/O

mappings. Our learning process is composed of two phases.

The neural activity varies to search a desired target when

far from it (E [ e) and stabilizes when matching it (E\e).
Figure 2 shows the learning process for two I/O mappings.

When the error is large, the present neural activity becomes

unstable by the anti-Hebbian rule (5), and hence, the neural

activity itinerates among different patterns (0 \ t \ 350).

It searches the target pattern during this itineration. We

term this period the ‘‘search’’ phase in what follows. At

t*350, the magnitude of the error decreases to a sufficient

extent when the output dynamics are within the neighbor-

hood of e: Once this occurs, the neural activity is stabilized

as per the Hebbian rule (Eq. 5), and the output activity

remains close to the target (350 \ t \ 800). In this model,

only one neuron in the output layer is active in each of the

target patterns (the neurons highlighted by the blue and

green bars in Fig. 2a), along with one neuron in the hidden
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layer. We term such neurons in the output and hidden layer

the ‘‘target’’ neuron and ‘‘relay’’ neuron, respectively,

corresponding to each input. Note that the relay neurons

are not prescribed before the learning process but are

determined as a result of the learning process, in contrast to

the target neurons.

Thus, the activated synapses are continuously strength-

ened until a new target is presented, so that the present

target is memorized. This period is called the ‘‘stabiliza-

tion’’ phase, and the process to learn one I/O mapping,

which is composed of a single search phase and stabiliza-

tion phase, is called the ‘‘learning step.’’ At t*800, we

switch to a new input and the corresponding target pair to

learn this. At that time, the distance between the output

activity and target pattern increases again, and therefore,

the search process progresses on the basis of the anti-

Hebbian rule (800 \ t \ 1,200). In this manner, the neural

activity can reach the target by switching between the

anti-Hebbian and Hebbian rules alternately for synaptic

plasticity, depending on the error. Now, we successively

provide new input–target pairs after the time interval of the

stabilization phase, which is sufficiently long for learning

an I/O mapping. See [11] for details about the numerical

results and analysis of the present model.

3.2 Memories as bifurcations

In the present study, the system learns I/O mappings suc-

cessively, as stated in the above section. Generally, it is not

easy to memorize numerous mappings through successive

learning processes, because after memorizing one map-

ping, the learning process for the next I/O mapping and the

resulting synaptic change may destroy the previous mem-

ory. We thus check whether the system can memorize

several I/O mappings in our model, and if possible, we then

analyze how these mappings are memorized in the neural

dynamical system.

First, we define ‘‘memory’’ based on the viewpoint that

‘‘memories as bifurcations.’’ From this viewpoint, the input

is not initial state, but acts as a control parameter that

causes bifurcation in the neural dynamical system (Fig. 3).

In this paper, we investigate how the dynamical system is

changed as the strength of the input, g, is changed from 0

(corresponding to the spontaneous dynamical system) to 1

(corresponding to the evoked dynamical system). If the

system memorizes an I/O mapping, the evoked dynamical

system at g = 1 has a fixed-point attractor that matches the

target output pattern and is attracted globally from most

initial neural activities. In other words, the attractor of

concern in the evoked dynamical system has a sufficiently

larger basin. Here, we set the criterion that the basin vol-

ume is larger than half of the phase space. Note that this

attractor matching the target pattern need not be an

attractor in the spontaneous dynamical system. In fact,

many of the learned targets in the spontaneous dynamical

system are not attractors in our model. The nature of the

spontaneous dynamical system is independent of the defi-

nition of memory.

By adopting this definition, we analyze the number of

memories by successively carrying out the learning pro-

cesses for the I/O mappings. We find that by setting the

parameters in our model appropriately, the number of

memories (memory capacity) is near N, which is the

maximum possible number for the set of I/O mappings in

the sparse coding. In the next subsection, we analyze this

dependence of the number of memories on the parameters,

(a)

(b)

Fig. 2 Dynamics of neural activities during learning for two input–

output (I/O) mappings. One learning process for two I/O mappings is

shown. I/O mappings are learned in the search phase by the anti-

Hebbian rule (0 \ t \ 350, 800 \ t \ 1200) and in the stabilization

phase by the Hebbian rule (350 \ t \ 800,1200 \ t \ 1700). Here,

we set sNA = 1, sBS = 8, and sFS = 64. As initial states for the

network, we assign the synaptic strength a random value between 0

and 1, except in the case of the ISs, and the neural variable a random

value between 0 and 1. a A raster plot of neurons in the output layer.

In this model, only one neuron in the output layer is active in each of

target patterns, called the ‘‘target’’ neuron. The target neurons for two

I/O mappings are highlighted by the blue and green bars. The red bar

represents the time in which the neural activity is high (xi [ 0.9).

b Time series of the amplitude of the error signal, E, between the

output activity and target pattern. The blue and green bars above the

time series represent a time in which the first and second (I/O)

mappings are learned, respectively

728 Neural Comput & Applic (2012) 21:725–734

123

Author's personal copy



especially the timescale parameters, sNA, sBS, and sFS

(2–4), to find the optimal values.

In order to understand how memories are embedded, we

analyze the dynamical systems after each learning step

with a fixed pattern of synaptic strength (i.e., the system is

not learning at this time). After learning the given I/O

mappings, the neural activity orbits are examined, first in

the absence of inputs and then in their presence. Figure 4

displays orbits after learning four and seven I/O mappings.

After four I/O mappings are learned (Fig. 4a(i)), the neural

activity in the output layer in the absence of any input

shows transient itinerant dynamics over three patterns that

are close to three of the target patterns, until it finally

converges to a fixed point. In general, there can be several

attractors in the neural dynamics, and which attractors are

reached depends on the initial conditions of the neural

activities. However, many orbits from different initial

states also come close to each of the learned targets (see

[11]).

In Fig. 4a(ii), an example of neural activity orbits in the

absence of inputs is displayed after seven I/O mappings are

learned. In this case, the attractor is a limit cycle that iti-

nerates over the targets in the cyclic order 2, 6, 3, 4, and 5.

In both cases, the target patterns do not exist as fixed-point

attractors without inputs. Upon the application of the input,

the fixed point or limit cycle collapses, and instead, the

corresponding target pattern becomes a stable fixed-point

attractor. Hence, a memorized output pattern is generated

as a result of bifurcation.

The number of attractors varies through the learning

process. As the learning progresses further, the number of

fixed-point attractors first increases but then decreases as

the learning steps increase beyond three. These attractors

are replaced by one or more limit cycle attractors, while the

total number of attractors itself decreases. This is because

the limit cycle globally covers the phase space, with little

room left for other attractors (Fig. 4b).

3.3 Dependence of memory capacity on timescales

for synaptic plasticity and neural activity

In this subsection, we discuss the dependence of the

memory capacity on the timescale relationships. In our

model, there are two timescales for the synaptic plasticity,

in contrast to most neural network models, which only use

one timescale. We focus on the dependence of the memory

capacity on three timescales (including one timescale for

neural activity): sNA for changes in the neural activity, and

sBS and sFS for the plasticities of the BSs and FSs,

respectively. We study the dependence by varying sBS with

fixed sNA and sFS. Here, we set sNA = 1 and sFS = 64 in

the following analysis.

We measure the memory capacity and find that it

reaches the maximum possible number, N, under the sparse

coding case, when the condition sNA � sBS � sFS is sat-

isfied (Fig. 5). This implies that with a single synaptic

timescale (sFS = sBS), as is used with the usual learning

models, this high capacity is not realized.

This relationship for the timescales requires the fol-

lowing explanation for the optimal learning. In our model,

a smaller value of either sFS or sBS determines the time-

scale of the search phase, because the search for the target

is possible only on the basis of the change in the flow

structure by the anti-Hebbian rule. Further, sFS determines

the timescale of the memory decay, because the memory

information is embedded in the FSs (5). Because the

Fig. 3 Schematic representation of ‘‘memories as bifurcations.’’ The

lower panels represent the neural dynamics without inputs (sponta-

neous dynamics) whereas the dynamics upon different inputs (evoked

dynamics) are given in the upper panels, where fixed-point attractors

are selected through bifurcations so that the corresponding output

patterns are generated. The learning process changes the neural

system both with and without input by the synaptic plasticity. When

viewing ‘‘memories as bifurcations,’’ there are two types of parameter

changes: one for the input strength (recall process) and the other for

the synaptic plasticity (learning process). The spontaneous and

evoked dynamics are modified through the learning process, so that

the adaptive bifurcation from the spontaneous dynamics to a fixed-

point attractor matching the target is formed upon the input

Neural Comput & Applic (2012) 21:725–734 729
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timescale for the search phase should be sufficiently

smaller than the memory decay time, sBS� sFS is required

to preserve the previous memory during the search phase.

Next, we consider the relationship between sNA and sBS.

sNA determines the timescale for the neural dynamics under

a given fixed flow structure. If sNA was larger than or of the

same order as sBS, the phase structure would be modified

before the neural activity changes, which would hinder the

approach to the target pattern. In fact, the total search time

decreases rapidly with an increase in the timescale of the

BS plasticity, as will be shown in the next subsection.

Hence, sNA � sBS is required. Accordingly, the relation-

ship sNA� sBS� sFS is required for an effective search for

a new target without destroying the previous memory.

3.4 Dependence of learning process on timescales

for synaptic plasticities

We next discuss how the learning process depends on the

timescale relationship. Figure 6 shows the neural activity

dynamics during the learning process for the fifth I/O

mapping. The time series of neural activities are plotted for

three different timescale values for the backward synapses:

sBS = 1 (sNA = sBS � sFS), sBS = 19 (sNA�sBS �
sFS, near the peak of the capacity curve), and sBS = 128

(sNA � sBS & sFS). Figure 6a displays the raster plot of

the output layer neurons. After successive changes in the

firing of the neurons, only the fifth output neuron keeps on

firing, which corresponds to the target pattern. When the

neural activity converges to a target pattern, a single neu-

ron in the hidden layer is activated, which is called a relay

neuron, as defined in the above section. To examine the

transient process before converging to a target, we plot the

neural activity of a target output neuron and the corre-

sponding relay neuron in the hidden layer in Fig. 6b. As

shown, there are epochs where both the output and relay

neurons are kept activated. During each of these epochs,

the neural activity pattern stays close to that of the corre-

sponding learned pattern. As shown in the figure, this

residence at the learned pattern lasts longer as sBS is

(a)

(b)

Fig. 4 Analysis of changes in flow structure of spontaneous neural

activity during learning process. a Temporal evolution of neural

activity in the output layer. The neural activity in the output layer is

projected from the N-dimensional space consisting of the neural

activities of the neurons in the output layer to a three-dimensional

space by obtaining the products of the output activity and target

output pattern. The gray line represents the orbit in the phase space of

the dynamical system without inputs, while each colored line

represents the orbit in the phase space in the presence of a different

input. The circles in the phase space represent the targets. (i) Neural

dynamics after learning four I/O mappings. Each axis represents the

product of the neural activity and corresponding target output pattern.

Each of the targets is stable in the presence of the corresponding

input, whereas in the absence of input, it does not exist or is unstable.

(ii) Neural dynamics after learning seven I/O mappings. Each axis

represents the product of the neural activity and corresponding

combined target patterns ui in the figure. The limit cycle is an

attractor in the absence of inputs (the gray line) and is broken in the

presence of each input. Each of the targets is stable in the presence of

the corresponding input, just as in (i). Some transient orbits with input

starting with the initial states on the broken limit cycle are shown.

b Changes in the number of attractors during the learning process.

The numbers of fixed-point attractors (the green line), limit cycle

attractors (the blue line), and total attractors (the red line) in the

absence of inputs are plotted as a function of the number of learning

steps, i.e., the number of learned targets
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increased, while the frequency of visiting each learned

pattern is larger as sBS is decreased.

Now, we will study how the residence time, i.e., the

average time span for the residence at a target pattern,

depends on the timescales for the synaptic plasticity. This

residence time is related to the memory capacity for the

following reason. In the search phase, the output activity

changes from one pattern to another, and the activity may

come close to one of the previously learned target patterns.

Because this pattern differs from the current target pattern,

the attraction to this pattern embedded in the synapses may

be destroyed by the anti-Hebbian rule. In general, the

longer the output pattern stays close to a state corre-

sponding to a previously learned target pattern, the stronger

is this destabilization. Hence, the degree of the destabili-

zation of the previous memory increases with the residence

time at the corresponding pattern.

The dependence of the residence time on timescale sBS

is plotted in Fig. 7. The residence time at each target is

defined as the time span in which the activities of both the

output target neuron and relay neuron remain larger than a

given threshold, with a value of 0.5 used here (see the

caption of Fig. 6). As shown in Fig. 7, this single residence

time increases roughly in proportion to sBS.

Through the learning process, there are many residences

at the previous targets. Thus, the accumulated residence

time is also dependent on the total search time, which is the

time span required for the search phase through the entire

learning process. The dependence of the total search time

on sBS is plotted in Fig. 7, which shows that it increases

with a decrease in sBS.

Considering the fact that the accumulated residence time

increases with both the (single) residence time and the total

search time, the accumulated residence time is expected to

increase for both small and large sBS. We compute this

total accumulated time and also plot it also in Fig. 7. As

shown, it has a sharp drop at the intermediate value of

sBS, at about 16, which agrees well with the optimal value

of sBS required to achieve the maximum memory capacity.

Thus, the timescale relationship for synaptic plasticity for

the optimal memory capacity is explained as the minimum

accumulated residence time.

The residence time at each target depends on the order

in which the target is learned. It is expected that the resi-

dence time at an older learned target is short, whereas that

at a newer learned one is long. Thus, we analyze this

dependence. Figure 8 shows the residence times at each of

the learned targets during the learning process of the tenth

I/O mapping. This residence time is plotted for three sBS

values. The residence times for the few targets that were

memorized most recently are rather high for sBS = 1 and

sBS = 128. During this long residence time, it is easy for

the memories to be destabilized. Thus, only slight traces of

the earlier targets remain, which is why the residence time

at the earlier learned target is smaller. In fact, the residence

times at the previous target patterns decrease rapidly in the

case of sBS = 1 or 128. In contrast, the residence times in

the case of sBS = 19 remain at almost the same level,

except for the two latest targets. This result shows that a

greater record of a learned target remains in the case of

sBS = 19 than for sBS = 1 and 128.

4 Discussion and conclusion

In the present paper, we investigated the dependence of the

memory capacity on timescales on the basis of a novel

dynamical system model for the memory [11]. In this

model, the learning process shapes the ‘‘appropriate’’ flow

structure of the spontaneous neural dynamics through

successive presentations of inputs and their corresponding

outputs. Memory recall is achieved as a result of the

bifurcation of neural dynamics from an attractor of the

spontaneous activity to that evoked by the external input

matched with the target pattern. Specifically, we adopted a

layered network model with multiple synaptic timescales

and the adaptive reward-penalty (ARP) algorithm. As a

result, we found that an appropriate relationship has to be

satisfied among the timescales of the changes in the neural

activity and that of the plasticities of the FSs and BSs, in

Fig. 5 Memory capacity. Memory capacity is a function of the

timescale for the backward synapses, sBS. The other two timescales,

sNA and sFS, are fixed at sNA = 1 and sFS = 64. The values are

computed from the averages for over 100 learning processes for each

sBS. The error bar indicates the standard deviations. For the learning

processes computed here, we set the synaptic strengths of the FSs and

BSs to 0 as initial conditions for the network for simplicity, in

contrast to the case in Fig. 2, and set the neural activities at random

values between 0 and 1, just as in Fig. 2. The randomness of the

initial state of the neural activities causes the variability of the

learning process. We also set such initial values in Figs. 7 and 8
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order to achieve the maximum number of memorized

patterns. In this section, we discuss the possible relevance

of our results to biological learning: First, the implemen-

tation of the present learning mechanism in the biological

brain, and second, the functional meaning of the multiple

synaptic timescales.

4.1 Biological implementation of learning mechanism

Here, we discuss the possibility of implementing the

architectures of our model in the brain.

(1) Multiple timescales: The timescales of the synaptic

dynamics represent the magnitudes of the synaptic

plasticities such as long-term potentiation and long-

term depression, and these plasticities depend on the

number and/or type of receptors for the neural

transmitters in our brain. Hence, the timescales for

the synaptic plasticities are related to the number and/

or type of these receptors. When two areas (say

between the hippocampus and prefrontal cortex) are

mutually connected, the forward and backward syn-

aptic connections may have different characteristics,

and hence, their plasticities may differ.

Recall that in our model, a proper relationship has to

be satisfied among the timescales of the changes in

the FSs and BSs and in the neural activity, to achieve

the maximum number of memorized patterns. On the

basis of the above argument, it is suggested that such

a difference in the plasticities may be implemented by

the possible difference between the number distribu-

tion and/or types of receptors in the neurons for the

(a)

(b)

Fig. 6 Neural dynamics for three timescales for synaptic plasticities.

The neural dynamics through the learning process of the fifth I/O

mapping are shown for the three timescales for the plasticity of the

BSs: sBS = 1, sBS = 19, and sBS = 128. a A raster plot of all the

neurons in the output layer. The red bar represents the time during

which the neural activity is high (xi [ 0.5). The vertical axis

represents neuron index i, which is activated at the i-th target, in

the order of learning. Here, the fifth neuron on this index is the target

neuron for the fifth I/O mapping (the magenta raster plot), and the

first to fourth neurons in the index are the target neurons of the

previously learned I/O mappings (the red raster plot). In contrast,

the other neurons in the output layer are not yet learned target neurons

(the gray raster plot). After the transient time, the fifth neuron

remains activated, which implies that the learning process of the

memory is completed. b Neural activities in the hidden and output

layers are shown. Plotted are the neural activities of the first output

neuron (corresponding to the first target neuron) and the ‘‘relay’’

neuron in the hidden layer, which is the neuron that is kept activated

in the stabilization phase of learning the corresponding I/O mapping.

(See Sect. 3.1 for a definition of the relay neuron.) In other words, this

neuron receives input from the current active input neuron and

outputs to the target output neuron. Magnified views of the middle

panels are given in the lower panels. We define the residence time as

the time in which the activities of both the target and relay neuron are

higher than a threshold (we set this at 0.5 here). This threshold is

represented by the dashed line in the lowest panel
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forward and backward connections between the given

areas.

(2) Adaptive reward-penalty: In our model, the synap-

tic plasticity is switched between Hebbian and anti-

Hebbian rules by the ARP algorithm, depending on

the magnitude of the error signal. In our brain, neural

modulators such as dopamine, serotonin, norepineph-

rine, and acetylcholine may give rise to this error

signal. In particular, dopamine modulates the synaptic

plasticity at the hetero-synaptic connection [13] and is

broadly projected onto the cerebral cortex. Further-

more, the activity of dopamine neurons is related to

the extent to which the response matches the request

[14]. Hence, dopamine can act as a global error signal

carrier. Thus, it is suggested that the switching

between positive and negative plasticities, corre-

sponding to that between the Hebbian and anti-

Hebbian rules in our model, is regulated by the

concentration of dopamine.

4.2 Function of multiple timescales

In general, the timescale for memory decay should be

larger than that used when searching for the appropriate

neural patterns for a new memory. In our model, the former

timescale is given by the plasticity of the FSs, while the

latter is given by that of the BSs. Indeed, it is necessary in

our model that the timescale for the plasticity of the FSs be

much larger than that for the BSs.

We expect that this postulate for such multiple time-

scales is rather general for successive learning. Recently,

Fusi et al. [15] proposed a meta-plasticity-based model,

which may involve multiple timescales similar to those in

our model. They suggested that a meta-plasticity mecha-

nism would be needed for simultaneous robustness and

flexibility.

Generalizing our present results, we propose that the

effective plasticity timescales for synapses are different for

different roles.
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