
Adaptation to Optimal Cell Growth through Self-Organized Criticality

Chikara Furusawa

Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan

Kunihiko Kaneko

Research Center for Complex Systems Biology, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
(Received 22 October 2011; published 15 May 2012)

A simple cell model consisting of a catalytic reaction network is studied to show that cellular states are

self-organized in a critical state for achieving optimal growth; we consider the catalytic network dynamics

over a wide range of environmental conditions, through the spontaneous regulation of nutrient transport

into the cell. Furthermore, we find that the adaptability of cellular growth to reach a critical state depends

only on the extent of environmental changes, while all chemical species in the cell exhibit correlated

partial adaptation. These results are in remarkable agreement with the recent experimental observations of

the present cells.
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Cells flexibly change their intracellular states with
respect to environmental changes, so that they can sustain
cellular growth under a variety of environmental condi-
tions. Experimental analysis of microorganisms suggested
that metabolic reactions can be organized to achieve opti-
mal or nearly optimal growth under various environmental
conditions [1]. Although environmental adaptation is gen-
erally explained by using signal transduction machineries
as lac operon [2], it is difficult to imagine that such
regulatory networks are prepared by evolution against un-
expected environmental changes. Hence, it is natural to
expect that cells will exhibit a rather generic, ubiquitous
process of environmental adaptation, even in their primi-
tive form. Given that all cellular processes are a result of
complex chemical dynamics of catalytic reactions, to dis-
cuss the generic adaptation process of (primitive) cells, it is
important to study how such a system with complex cata-
lytic reaction networks can adapt to environmental changes
and maintain optimal or nearly optimal growth.

In this Letter, we show that a simple active transport of
nutrients enables generic adaptation toward a state with
optimal growth, by simulating a simple cell model with a
catalytic reaction network [3]. In our previous study [4],
we showed that recursive cellular reproduction with opti-
mal growth is achieved by controlling the flow rate of the
nutrients, and we found that such optimal growth is
achieved at a ‘‘critical’’ cellular state, in which the rank
distribution of chemical abundance obeys a power law with
exponent �1 (i.e., Zipf’s law). Here, by introducing a
simple active transport of nutrients, we show that the
cellular dynamics are able to sustain optimal cellular
growth by self-organization into a critical state [5].

In this study, we adopt a simple model of a reproducing
cell with intracellular catalytic reaction networks that
transform nutrient chemicals into other chemical species
that exhibit catalytic activity [4,6]. Let us consider a cell

consisting of N chemical species. The state of this cell can
be represented by a set of chemical concentrations
(x0; x1; . . . ; xN�1), where xi is the intracellular concentra-
tion of chemical species i. Depending on whether an
enzymatic reaction occurs from i to j, catalyzed by some
other chemical ‘, the reaction path is connected as ðiþ
‘ ! jþ ‘Þ. The rate of increase in xj and decrease in xi
through this reaction is given by xix‘. For the sake of
simplicity, all the reaction coefficients have been set to 1.
The connection paths of this catalytic network have been
chosen randomly, where for all combinations of substrate i
and product j the reaction path is randomly connected with
a fixed probability �.
Next, some chemicals are supplied from the environ-

ment as nutrients. The transport of the chemical nutrients
into the cell is activated with the aid of some other
chemicals, i.e., ‘‘transporters.’’ Here, the uptake flux of
the ith chemical from the environment is assumed to be
represented by Fi ¼ Sxwi

�, where the with chemical acts

as the transporter for chemical i and xwi
is the concen-

tration of the with chemical. Parameter S denotes the
concentration of the nutrient chemicals outside the cell
and is a transport constant. Parameter � represents the
higher-order effect in the nutrient transportation. If this
parameter is greater than 1, the transporter catalysis is of
a higher order, which corresponds to the formation of
multimeric complex of the transporter. It should be noted
that the cell volume increases with the abundance of
chemicals within the cell. For the sake of simplicity, we
assume that the cell volume is directly proportional to the
total abundance of chemicals in the cell. The concentra-
tion of each chemical species is diluted with an increase
in the cell volume by the nutrient transport. This assump-
tion corresponds to imposing restriction

PN�1
i¼0 xi ¼ const,

which can be set to 1 by appropriately normalizing the
concentration variables.
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To summarize these processes, the dynamics of the
intracellular concentration of the ith chemical, where i is
in the range i ¼ 0; 1; . . . ; N � 1, are represented as

dxi
dt

¼ XN�1

j;‘¼0

Wji‘xjx‘ �
XN�1

j0;‘0¼0

Wij0‘0xix‘0

� xi
XN�1

j¼0

FjðþFiÞ; (1)

where Wij‘ is 1 if reaction iþ ‘ ! jþ ‘ occurs; other-

wise, it is 0. The third term with the sum of nutrient uptake
flux gives the constraint of

P
N�1
i¼0 xi ¼ 1 because of the

volume growth. The last term is added only for the nu-
trients, and it represents their transportation into a cell from
the environment. For simplification purposes, we consider
a cell with only one nutrient chemical and a corresponding
transporter, whose concentrations are x0 and x1, respec-
tively. Here, the cell growth rate is equal to the (total)
nutrient uptake F0 ¼ Sx�1 . We also assume that the nutrient
chemical does not exhibit catalytic activity and cannot be
the transporter.

Before describing the results of the present model, we
note that, in the earlier model that did not include a trans-
porter as in the case when � ¼ 0, we found that the
transition occurred at a certain critical value of S, beyond
which the cell could no longer grow continuously [4].
When the nutrient uptake rate exceeds the critical value,
chemical reactions that transform the nutrient into other
chemical substances, including catalysts, cannot follow the
nutrient uptake. In such a case, the reaction network sus-
taining ‘‘metabolism’’ becomes unstable, which in turn
eventually ceases the cell growth. This finding indicates
that the critical nutrient uptake rate corresponds to the
maximal capacity of the reaction network to assimilate
the nutrient for recursive reproduction. Results of our study
indicate that, at the critical nutrient uptake rate, the chemi-
cal abundance distribution obeys a power law, which is
maintained by a hierarchical organization of enzymatic
reactions. Furthermore, it should be noted that a maximal
growth rate is achieved at this critical nutrient uptake rate.

Here, we numerically study the present model with
� � 1 by considering a variety of randomly chosen net-
works. Figure 1 shows a plot of the nutrient uptake F0 (that
corresponds to the growth rate) at the steady state against
parameter S for the cases with � ¼ 2. For most cases, the
system reaches a unique fixed-point attractor (see Fig. S1
[7] for exceptional cases). As shown in this figure, the
nutrient uptake F0 with a low concentration (S < 10�3)
increases proportionally with S, indicating that the concen-
tration of transporter x1 is almost unchanged. In contrast,
when the concentration of the nutrients in the environment
is high (S > 1), the nutrient uptake is sustained at a certain
level, irrespective of S. This result implies that the
concentration of the transporter decreases with an increase

in S, in proportion to S�1=�. On the other hand, x0 increases

with S, and it was numerically found that x1 / ð1� x0Þ�,
where � depends on each network wherein � ranges from
2 to 5 (see the inset in Fig. 1). It is important to note that, in
this region, the nutrient uptake is almost identical to the
optimal nutrient uptake achieved only at the critical
nutrient uptake for � ¼ 0 (denoted by the dotted line).
In other words, over a wide range of parameter S, the
cellular dynamics including the transporter concentration
are self-regulated to achieve the critical state with an
optimal-growth rate. This self-regulation of the transporter
concentration is always achieved for any network and for
any value of � � 1, as long as the environmental nutrient
concentration is higher than some value (Fig. S1 [7]).
The phenomenon of self-regulation to achieve criticality

is explained as follows. When S is increased and when the
nutrient uptake exceeds the critical level for reproduction,
the nutrient concentration in a cell is too large; therefore,
there is no room for producing all other non-nutrient
chemicals [4]. Hence, the concentration of the transporter
also decreases, which in turn causes the nutrient uptake
rate to decrease down to the critical value. Here, the
nutrient uptake regulates both the flow of chemical reaction
from the nutrient and the dilution of chemical concentra-
tion due to the cellular growth. By achieving a balance
between the production and dilution of the chemicals by
negative feedback through the transporter concentration,
the adaptive dynamics toward a state with a nearly optimal
growth are self-organized.
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FIG. 1 (color online). Adaptive dynamics of nutrient uptake.
(a) Nutrient uptake F0 plotted as a function of the environmental
nutrient concentration S. The results of ten randomly generated
reaction networks are overlaid. The dotted line denotes the
maximal nutrient uptake for the case � ¼ 0, beyond which the
cell can no longer grow continuously. The parameters were set as
N ¼ 10 000, � ¼ 2:5� 10�2, and � ¼ 2. (b) The concentration
of transporter x1 is plotted as a function of the total concentration
of non-nutrient chemicals 1� x0. The relationships obtained by
ten random networks shown in (a) are presented. The solid line
represents a slope of 2 for reference.
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Figure 2 shows a plot of the rank-ordered distributions of
the chemical concentrations obtained by a specific network
for � ¼ 2, where the ordinate shows the chemical concen-
tration xi and the abscissa shows the rank determined by
the magnitude of xi. When the nutrient concentration S is
low, the internal reaction dynamics progress faster than the
flow of the nutrient from the environment, all the chemicals
have nearly identical concentrations, and the influence of S
is limited to a finite range of chemical species. For S > 10,
where the nutrient uptake is close to the critical level, the
distributions start to approximately follow a power law.
Although the less abundant chemicals (e.g., rank >5000)
exhibit some deviation, the exponent of the power law is
close to �1 [8]. Indeed, such a power law was observed at
the critical point with the maximal nutrient uptake in our
previous study for � ¼ 0. This power law distribution with
exponent �1 is attributed to the hierarchical organization
of catalytic reactions, in which chemicals with low con-
centrations are produced from those with high concentra-
tions [4]. In the present model, this power law holds as
long as S is sufficiently high so that the nutrient uptake
is self-regulated to a critical level. This confirms the self-
organization of a cellular state to a critical state with
optimal nutrient uptake.

This self-regulation to the critical state is also estimated
by a simple ‘‘mean-field’’ calculation, by assuming the
hierarchical flow of chemical reactions. Here, we consider
a hierarchical layer of chemical species from the nutrient,
as L0 ! L1 ! L2 ! . . .Lk, where L0 denotes the nutrient
chemical within the cell and Li denotes a set of chemical
species synthesized from Li�1 chemicals. We introduce mi

that denotes the mean concentration of Li chemicals and
assume that the concentrations of all enzymatic chemicals
can be approximated by an identical mean-field value

ð1�m0Þ=N, the mean concentration of all non-nutrient
chemicals [9]. Based on this mean-field approximation and
by assuming that the transporter chemicals belong to the
kth layer, we obtain

dm0=dt ¼ Sm�
k � ðM=NÞð1�m0Þm0 � Sm�

km0; (2)

dmj=dt¼ðM=NÞ½ð1�m0Þmj�1�ð1�m0Þmj��Sm�
kmj;

(3)

where j ¼ 1; . . . ; k andM ¼ �N denotes the mean number
of reaction paths from each chemical. The last term in this
equation represents the dilution of each chemical, attributed
to the flow of nutrients. Then, we assume the steady state
of chemical concentrations, i.e., dmj=dt ¼ 0 for j ¼
0; 1; . . . ; k. From dm0=dt ¼ 0, we obtain F0 ¼ Sm�

k ¼
ðM=NÞM0 ¼ �m0. By substituting it into Eq. (3) and
assuming dmj=dt ¼ 0, we get mj¼mj�1ð1�m0Þ. By iter-

atively applying this relationship, we get mk¼m0ð1�m0Þk.
From these equations, the steady values of F0, mk, and m0

are obtained as functions of S. In particular, when S is large,
mk / ð1�m0Þk follows; this result is consistent with the
numerical observation shown in Fig. 1(b) [10]. Furthermore,
we obtain F0 � �, indicating that the nutrient uptake F0

is independent of the nutrient concentration when S is
large. Indeed, this relationship F0 � � does not differ
much from the numerical observation, as shown in Fig. 1.
In the Supplemental Material [7], we provide an explanation
for the power law distribution of chemical abundance with
exponent �1, as shown in Fig. 2, by considering the
conservation of chemicals and by using the above mean-
field approximation.
The self-regulation of the nutrient uptake rate to the

critical value indicates that adaptive dynamics restore the
nutrient uptake to the original level after environmental
changes [11]. Figure 3 shows the adaptive dynamics of the
nutrient uptake F0 against the change in S from S0 to S00.
The response profile of F0 to the environmental changes
depends only on ratio S00=S0. This type of adaptive re-

sponse, termed fold-change detection, was recently con-
firmed in cellular responses [12]. Simple models of gene
regulation or catalytic reaction involving few chemical
components have been proposed to show such a type of
adaptive dynamics [13,14]. In the present case, this fold-
change detection is also shown from the mean-field equa-
tion in the large S limit. For example, let us consider the
relaxation dynamics of Eqs. (2) and (3) with k ¼ 2 toward

the fixed point [m0 � 1� ð�=SÞ1=2�, m2 � ð�=SÞ1=�
ð1� �=�ð�=SÞ1=2�]. (Because m1 ¼ 1�m0 �m2, there
are only two independent variables.) For large S, the
eigenvalues of the Jacobi matrix around the fixed point

are given by ���ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8=�

p Þ=2 and are independent
of S. On the other hand, when S is changed from S0 to S00,
the initial change in the nutrient uptake F0 ¼ Sm�

k is

solved from Eq. (1) to give 1=F0ðtÞ � ðS0=S00Þ=F0ð0Þ ¼
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FIG. 2 (color online). Rank-ordered concentration distribution
of chemical species. Distributions for different values of S are
superimposed by using different colors. The solid line has a
slope of �1 for reference. The other parameter values are
identical to those shown in Fig. 1.
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ð1� S0=S
0
0Þt (for small t and large S0). Thus, the time

course F0ðtÞ depends only on the fold change S00=S0; there-
fore, fold-change detection is demonstrated by using the
mean-field approximation.

This perfect adaptation of the nutrient uptake (i.e., the
cellular growth rate), as shown in Fig. 3, is supported by a
large number of catalytic reactions through negative feed-
back control by a transporter. Besides the growth rate, the
concentrations of all the chemical components (that are
neither a nutrient nor a transporter) are changed to support
the collective adaptive dynamics of the growth rate, against
the change in S. It should be noted that, even though all the
chemical components do not show perfect adaptation to
return to the original value as in the case of the growth rate,
in general, all the chemical components show partial adap-
tation [15], as shown in Fig. S2 [7]. It is interesting to note
that such a partially adaptive response is observed for many
gene expressions against environmental changes [16].

In conclusion, we have demonstrated that a cellular
system consisting of a catalytic network shows optimal
growth against environmental changes when nutrients are
actively transported into the system with the help of a
catalyst. It should be emphasized that the results reported
herein are independent of the details of the modeling. They
are also true for different kinetic forms in the catalytic
reaction, different topologies of the reaction network such
as the scale-free [17], and distributed reaction coefficients.
For example, we confirmed that the use of Michaelis-
Menten reaction kinetics with distributed coefficients
does not change the present results, as long as a certain
fraction of the reactions is in the linear regime. In fact,
existing organisms would adopt sophisticated machineries
in metabolic reactions, transcription, and translation.
However, the self-organizing behavior for the adaptive

growth regulation proposed herein emerges as long as the
nutrient uptake dynamics are related to the intracellular
dynamics and thus are expected to generally exist behind
such sophisticated regulatory reaction processes. In fact, it
is well known that the nutrient uptake in microorganisms is
generally regulated by the intracellular reaction dynamics,
such as a phosphotransferase system [18], which maintains
a balance between the nutrient uptake and the metabolic
activity. Furthermore, the synthetic activity of transporter
proteins is also linked to the metabolic activity, and such
processes generally include the higher-order effect as
dimer and tetramer formation, proving that parameter
� � 2 in our model. Furthermore, it is interesting to note
that this adaptation to optimal growth, power law in abun-
dance distribution (Zipf’s law), adaptive response with
fold-change detection, and partial adaptation of many
gene expressions are indeed generally observed in the
present cells, supporting our hypothesis. We expect that
the present self-organized criticality to the optimal-growth
state will ubiquitously underlie the flexible and robust
adaptation in cellular systems.
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Supplementary Text: A sketch of an explanation on Zipf’s law from the mean-

field analysis

The origin of power-law in abundances is due to hierarchical organization of abundances

of chemicals. Although complete explanation on the organization of power-law is out of the

scope of the simple “mean-field” calculation, here we provide a sketch for the explanation.

From the mean-field analysis in the text, we get that the mean concentration of a chemical

at k-th layer obeys mk = m0(1 − m0)
k. On the other hand, at each k-th layer, there are

∼ (ρN)k chemical species. Hence, the ranking of the chemical at k-th layer, denoted by

rk, in the order of abundances increases as rk ∼ (ρN)k when ρN is enough large, and thus

k = log(rk)/ log(ρN). From these equations, we obtain m(rk) = m0(1 − m0)
log(rk)/ log(ρN),

where m(rk) represents the chemical concentration of rk-th ranked chemical. Thus,

logmk = logm0 − α log(rk) (S1)

with α = − log(1 − m0)/ log(ρN), so that the abundances against the ranking follows a

power law with the exponent α.

Note that the total abundances of chemicals at each layer is roughly given by m0C
K with

C = (1−m0)(ρN). The total sum of the abundances up to the maximal layer K should be

1−m0, so that

m0C
(CK − 1)

C − 1
∼ (1−m0). (S2)

Now, if C > 1, the left hand side of eq.(S2) diverges as K increases, and eq.(S2) cannot be

satisfied. On the other hand, if C < 1, eq.(S2) in the large K limit would imply m0C/(1−

C) = 1 − m0, which could be satisfied only if ρN = 1, i.e., no branching at all between

layers. Thus, for the self-consistency condition to satisfy eq.(S2) for the multiple branching

case (i.e., ρN > 1), C = (1 − m0)ρN ∼ 1 would be demanded, so that α ∼ 1. Hence

the Zipf’s law follows. Basically it is a result of the hierarchical organization of chemical

reaction and the conservation law. Here, we note that this is a “self-consistency” argument,

and whether the hierarchical organization in the mean-field approximation is unique in the

original equation is not answered.

This approximation would be oversimplified, since in reality, the concentration of each

chemical in a given layer is not identical, but differs by each element, depending on the abun-

dances of the chemical that catalyzes its synthesis. Then, we need to take the hierarchical

1



organization not only as the substrate but also as the catalyst into account. Although this

is beyond simple mean-field approximation, it might be expected that the above power-law

abundances is also preserved within each layer, as the abundance of the catalyst follows

the power law according to the above argument. Thus, Zipf’s law across all chemicals is

expected, even though complete derivation for it would possibly require advanced technique

such as renormalization group.
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Supplementary Figures
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Fig. S 1: Adaptive dynamics of the nutrient uptake under different values of parameter α. This

parameter α represents the higher order effect in the nutrient transportation, which is introduced

to investigate the effect of the strength of negative feedback on the adaptive behavior. In the figure,

scaled nutrient uptake F0 = S(Nx1)
α is plotted for easy comparison of results with different α. As

shown in the figure, when α ≥ 2, the nutrient uptake F0 is maintained close to the critical value,

denoted by the dotted line, for wide ranges of the environmental nutrient concentration S. When

α = 1, the nutrient uptake decreases for most networks as S increases to a considerably high level,

where the attractor ceases to be a fixed-point attractor. The concentrations of chemicals exhibit

periodic or chaotic oscillation, which reduces the (average) nutrient uptake from the optimal value.

This result suggested that the introducing a higher order effect increases the parameter range

within which the self-regulation to the optimal growth is achieved.
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Fig. S 2: Relationship between the short-term response and the final concentration change after

the environmental nutrient concentration S is changed. The other parameter values are identical

to those used in Fig.1. The short-term response is obtained as the concentration ratio of chemicals

between before (t < 0) and soon after changing S as S = 100 → 200 (t = 1500 in Fig. 3). The final

concentration change is calculated as the ratio between before changing S and after the dynamics

stabilize to a fixed-point in the new environment. The log10-transformed concentration ratios are

plotted. The solid line has a slope of 1 for reference. Recall that if perfect adaptation occurs,

the points lie on the horizontal axis, whereas if adaptation does not occur, the points lie on the

reference line with a slope of 1. Here, the points lie between these two lines, implying partial

adaptation; these points are fitted around a slope of 0.66, suggesting that all chemicals show a

common trend in partial adaptation.
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