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We investigate the effects of the spatial discreteness of molecules in reaction-diffusion systems. It is found
that discreteness within the so-called Kuramoto length can lead to a localization of molecules, resulting in
novel steady states that do not exist in the continuous case. These states are analyzed theoretically as the fixed
points of accelerated localized reactions, an approach that was verified to be in good agreement with stochastic
particle simulations. The relevance of this discreteness-induced state to biological intracellular processes is
discussed.
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Many systems in nature that involve chemical reactions
can be studied with the help of reaction-diffusion equations.
For certain processes, a relatively small number of suitably
chosen continuous macroscopic variables yields excellent
descriptive results. In biological systems, however, not only
is the variety of chemicals enormous, the number of mol-
ecules of each of the chemical species can range from the
relatively very large to the relatively very small. Now, if the
species with small numbers of molecules were irrelevant,
obviously, their existence could be ignored and one could
focus on the species with large numbers of molecules that
can effectively be described by a continuous variable. How-
ever, it should not really come as a surprise that it was found
that, in general, species with small numbers of molecules
cannot be neglected and that certain functions in cells can
critically depend on very small fluctuations[1,2]. Indeed, in
prior studies on reaction-diffusion systems some effects of
fluctuations on pattern formation were found(see, e.g.,
[3,4]). Stochastic differential equations are often used to
study effects of fluctuations.

Of course, on a microscopic level, chemicals are com-
posed of molecules, and the actual reactions occur between
these molecules. Therefore, in principle, reaction events must
be integers and change only discretely. In an analysis with
stochastic differential equations, though, the fluctuations are
regarded as continuous changes. Clearly, this approximation
can only be valid if applied to fluctuations that involve suf-
ficiently large numbers of molecules and should not be ap-
plied when relevant chemical species are very rare.

In order to address this issue, we previously studied the
effects of discreteness in simple autocatalytic reaction net-
work systems and reported discreteness-induced transitions
as well as drastic effects on concentrations[5,6]. A key fea-
ture of these systems was, however, that the medium was
assumed to be well stirred.

In contrast, in a system with diffusion in space, the total
number of molecules may vary from point to point. By as-
suming that the reaction is fast and the diffusion is slow,
locally, the discreteness of the molecules can become impor-

tant. In fact, this can even be the case if the total number of
molecules is large but spread out over a large area as well.

Therefore, a length scale should be considered such that it
can serve as a benchmark for judging whether or not a con-
tinuum approximation is applicable. To consider this prob-
lem, the ratio between the reaction and diffusion rates is
important, and a candidate for the length scale is the typical
distance over which a molecule diffuses during its lifetime,
i.e., before it undergoes reaction as defined by Kuramoto
[7,8]. For reference, let us briefly review the work.

Consider the reaction[12]

A→
k

X, 2X→
k8

B.

If the concentration ofA is set to be constant,X is produced
at a constant ratek while decaying by the reaction 2X→B at
a ratek8. The average concentration ofX at the steady state is
kXl=ÎkA/2k8, where, for simplicity,A is the concentration
of the chemicalA. Thus the average lifetime ofX at the
steady state is estimated to bet=1/s2k8kXld=1/Î2kk8A.
Suppose thatX molecules diffuse with the diffusion constant
D. The typical length over which anX molecule diffuses in
its lifetime is then estimated to be

l = Î2Dt, s1d

which is called the Kuramoto length[9].
The Kuramoto lengthl represents the relation between the

reaction rate and the diffusion rate. When the system size is
smaller thanl, its behavior is dominated by diffusion, and
local fluctuations rapidly spread throughout the system. Con-
trastingly, if the system size is much larger thanl, fluctua-
tions are localized only in a small part of the system, and
distant regions fluctuate independently.

In this reasoning, it is assumed that the average distance
between molecules is much smaller thanl. Thus the actual
discreteness of the molecules can be ignored, and the con-
centration of the chemicalX can be regarded as a continuous
variable. However, if the average distance between mol-
ecules is comparable to or larger thanl, local discreteness of
molecules may not be negligible. Suppose a chemicalA, with
very low concentration, produces another chemicalB. The*Electronic address: togashi@complex.c.u-tokyo.ac.jp
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average lifetime ofB is short, such that the Kuramoto length
of B is shorter than the average distance between adjacentA
molecules. With this setting, chemicalB molecules may be
considered as localized aroundA molecules. This is espe-
cially so if the reactions involve second or higher orders of
B. Then, the localization of chemicalB may drastically alter
the total rate of the reactions, and the effect of the local
discreteness of the molecules may thus be rather significant.

In order to systematically investigate the effects of the
local discreteness of the molecules, we consider a simple
one-dimensional reaction-diffusion system with three chemi-
cals (X1, X2, andX3) and the following four reactions:

X2 + X3→
k1

X2 + X1, X3 + X1→
k2

2X3

2X2→
k3

X2 + X1, 2X1→
k4

X1 + X2.

Here, we assume that the first two reactions are much faster
than the others, i.e., the reaction constants satisfyk1,k2
@k3.k4. To be specific, we takek1=k2=100r, k3=ar, and
k4=r (r .0, 1,a!100).

In the continuum limit, cist ,xd, the concentration of
chemical Xi at time t and positionx, is governed by the
reaction-diffusion equation for the system given by

] c1

] t
= − 100rsc1 − c2dc3 − rsc1

2 − ac2
2d + D1

]2c1

] x2 , s2d

] c2

] t
= rsc1

2 − ac2
2d + D2

]2c2

] x2 , s3d

] c3

] t
= 100rsc1 − c2dc3 + D3

]2c3

] x2 , s4d

whereDi is the diffusion constant ofXi. The system is closed
and thus the total concentrationc is conserved. For simplic-
ity, we assumeDi =D for all i.

The reaction-diffusion equation has fixed points at
sc1,c2,c3d=s0,0,cd ,sÎac/ sÎa+1d ,c/ sÎa+1d ,0d for all x.
By performing a straightforward linear stability analysis, it is
shown that only the former is stable. Indeed, by starting from
an initial condition withci .0, this reaction-diffusion equa-
tion always converges to the fixed points0,0,cd.

Next, in order to obtain insights into the case when the
continuum limit cannot be taken, we carry out direct particle
simulations. Each molecule diffuses randomly(showing
Brownian motion) in a one-dimensional space with periodic
boundary conditions(length Lx). When two molecules are
within a distancedr they react with a certain probability and
the total number of moleculessNd is conserved.

First, we investigate the case witha=4 and show a time
series of the number of moleculesNi of chemical speciesXi
in Fig. 1. As can be seen,N1 andN2 do not converge to 0 but
to relatively large numbers. As can be expected, the final
concentrations depend onr andD, and forX2 it is depicted in
Fig. 2. Approximately, the concentration turns out to be pro-
portional toÎr /D whenN1,N2!N.

To elucidate the origin of this proportionality, we take a
closer look at the Kuramoto length, which, of course, de-
pends on the molecule species. In the case of theX1 mol-
ecules it is given byl1=ÎD /50rc3, as the average lifetime of
X1 is 1/100rc3. Here we consider the situationN1,N2!N, so
that c3<c. In the discussion below, we assume thatl1
=ÎD /50rc=ÎDLx/50rN.

FIG. 1. (Color online) Time series ofN1 andN2. r =1, a=4, N
=1000, Lx=1000. (a) D=10, (b) D=100, (c) D=1000. Initially,
sN1,N2,N3d=s250,250,500d. For D=10, X3 reaches 0, which cor-
responds to the unstable fixed points2c/3 ,c/3 ,0d.

FIG. 2. (Color online) Average concentration ofX2, for different
r andD (a=4, N=1000,Lx=1000, sampled over 5000, t,10 000,
and ten trials. The error bars show the standard deviation between
the trials). The dotted lines correspond to 0.1 molecule per the
Kuramoto lengthl1=ÎD /50r for eachr.
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Using this lengthl1, the density of the remainingX2 mol-
ecules is found to be about 0.1 molecule perl1, independent
of the parameters, as shown in Fig. 2. After relaxation, this
density does not depend on the initial conditions, as long as
Ni @1 is satisfied initially. Furthermore, the density is inde-
pendent of the system sizeLx, if Lx@ l1, so that the number
of remaining moleculesN2 is simply proportional toLx. Con-
sequently, in this analysis one obtains a finitec2 regardless of
the system size or initial conditions, which is clearly differ-
ent from the continuum limit wherec2 goes to 0.

In this system,X1 molecules are produced byX2 mol-
ecules. Ifl2, the average distance betweenX2 molecules is
smaller thanl1, the distributions ofX1 around neighboringX2
molecules overlap each other significantly and one can re-
gardX1 to be uniformly distributed. In contrast, ifl2 is much
larger thanl1, moleculesX1 will localize around theX2 mol-
ecules(the sizeLx@l2). Then, the reaction 2X1→X1+X2 is
accelerated when compared to the case that the same total
number ofX1 molecules is uniformly distributed.

We define the acceleration factorasl2, l1d as the ratio
between the reaction rate with localizedX1 and the reaction
rate with uniformly distributedX1. If l2@ l1, it is expected
thata@1. Assuming that the distribution ofX1 is continuous
and represented by the concentrationc1sxd [13], the accelera-
tion factor can be expressed as

a =
kc1

2l
kc1l2 =

Lx
−1E c1

2dx

sLx
−1E c1dxd2

. s5d

For simplicity, we assume that the distribution of the lo-
calizedX1 molecules is Gaussian with a standard deviationl1
centered around theX2 molecules(which may overlap each
other). Suppose that theX2 molecules are randomly distrib-
uted over the system with an average distancel2, we then
obtain [14]

a = 1 +
1

2Îp
·

l2

l1
= 1 +

1

2Îp · l1c2

. s6d

On the other hand, the average lifetime ofX2 molecules is
much longer, so that the Kuramoto length forX2 molecules is
longer thanl2. Consequently, the reaction 2X2→X2+X1 is
not accelerated by localization.

Provided thatN1,N2!N3, N1<N2 due to the fast reac-
tions X2+X3→X2+X1 andX3+X1→2X3. As a result, the ra-
tio between the two reaction rates is given by

The rate ofsX1 → X2d
The rate ofsX2 → X1d

<
ak4N1

2

k3N2
2 <

a

a
. s7d

Following Eq.(7), the two reaction rates are balanced ifN2
takes a value such thata=a is satisfied. Corresponding to
a=a, a fixed point appears at

c1 = c2 = f2sa − 1dÎpl1g−1s=csd, s8d

provided c1,c2!c3 and c3=c. The stability of this fixed
point is analyzed, by linearizing Eqs.(6) and (8) around the
fixed point. Noting that

a = 1 +
sa − 1dcs

c2
= a −

a − 1

cs
dc2 + osdc2d, s9d

with c1=cs+dc1 andc2=cs+dc2, and rewriting Eqs.(2) and
(3) with a in Eq. (9), we obtain

Sċ1

ċ2
D = S− 2acs − 100c s3a − 1dcs + 100c

2acs − s3a − 1dcs
DSdc1

dc2
D

+ osdc1,dc2d . s10d

The Jacobi matrix has two negative eigenvalues, and the
fixed point is stable.(This is natural, since ifa,a, N2 de-
creases, leading to the increase ofa, and vice versa.) This
fixed point (steady state) is distinct from that of the original
reaction-diffusion equation,s0,0,cd.

From Eq.(6), a becomes 4 whenl2/ l1=6Îp<10.6. In
our simulation witha=4, about 0.1X2 molecule perl1 re-
mains, as shown in Fig. 2. In other words,l2/ l1<10, in
good agreement with the estimate. By changinga, we nu-
merically obtain the relation between thel2/ l1 and the actual
acceleration factora, again agreeing well with the above
theoretical estimatea=1+1/s2Îpd ·l2/ l1, as shown in
Fig. 3.

In the estimate above, we consider the case where
N1,N2!N. On the other hand, ifN is set to be smaller than
the estimated value ofN2 at the steady state,N2 increases to
satisfy the balance, and finally reaches the stateN1+N2=N,
N3=0, which corresponds to the unstable fixed point of the
reaction-diffusion equation,fÎac/ sÎa+1d ,c/ sÎa+1d ,0g, as
shown in Fig. 1(a).

The localization ofX1 cannot be maintained without the
spatial discreteness ofX2 molecules. In reaction-diffusion
equations, any pattern will disappear eventually when given
a sufficiently long evolution time, unless it is somehow sus-
tained. This is even the case when the initial distribution of
X2 is discrete. But again, it is essential to recall that reaction-
diffusion equations are an approximation and in that sense an
idealization. In reality, a single molecule itself can of course
not be broadened by diffusion and the spatial discreteness of

FIG. 3. (Color online) The acceleration factora, plotted against
l2/ l1. We measure the relation from simulations with differentr, D,
anda (N=1000,Lx=1000, sampled over 5000, t,10 000, and ten
trials. The error bars show the standard deviation ofc2 between the
trials). This is very close to the theoretical estimationa=1
+1/s2Îpd ·l2/ l1.
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X2 molecules is always maintained. By itself, a molecule is a
diffusion-resistant pattern.

The alteration of the steady state due to localization is not
limited to the present type of reaction network. Provided that
the following conditions are satisfied, discreteness may alter
the dynamics:

(i) ChemicalA generates another chemical speciesB.
(ii ) The lifetime ofB is short or the diffusion ofB is slow

so that the Kuramoto length ofB is much smaller than the
average distance betweenA molecules.

(iii ) The localization of moleculeB accelerates some
reactions.

The last condition is easily satisfied if speciesB is in-
volved in second- or higher-order reactions. Finally, if

(iv) the acceleration alters the density ofA molecules, the
above acceleration mechanism may control the density ofA
to produce a steady state.

As for the localization effect by the discreteness of cata-
lytic molecules, Shnerbet al. recently showed that it can
amplify autocatalytic reaction-diffusion processes[10,11]. In
their model, however, the density of the catalyst is fixed as
an externally given value, and the concentration of the prod-
uct, localized around the catalyst, diverges in time. In our
mechanism, the density of the catalyst(A, or X2) changes
autonomously and reaches a suitable value to produce the
discreteness effect. Hence, the effect of discreteness is con-
trolled by the discreteness itself, leading to a steady state.
Indeed, theoretical estimates for the concentrations based on
the self-consistent fixed point of acceleration due to the lo-
calization agree well with numerical results.

In so far as the conditions(i) and (iv) are met, our result
does not depend on the details of the reactions, and should
generally be valid for reaction-diffusion systems. We have
carried out simulations of similar reaction-diffusion systems,
and again the discreteness effect led to pattern formation that
cannot be accounted for by Turing-type mechanisms(with or
without noise).

Experimental verification of our results should be possible
by suitably designing a reaction system, with the use of, say,
microreactors or vesicles. Also, in biological cells, many
chemicals work at low concentrations on the order of 1 nM
or less. Furthermore, diffusion is sometimes restricted, e.g.,
due to surrounding macromolecules, and may be slow. In
such an environment, it is probable that the average distance
between the molecules of a given chemical species is much
larger than the Kuramoto lengths of some of the other chemi-
cal species. Indeed, biochemical systems contain various
higher-order reactions and positive feedback mechanisms
that might naturally support the conditions(iii ) and (iv)
above.
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