RAPID COMMUNICATIONS

Molecular discreteness in reaction-diffusion systems yields steady states not seen
in the continuum limit
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We investigate the effects of the spatial discreteness of molecules in reaction-diffusion systems. It is found
that discreteness within the so-called Kuramoto length can lead to a localization of molecules, resulting in
novel steady states that do not exist in the continuous case. These states are analyzed theoretically as the fixed
points of accelerated localized reactions, an approach that was verified to be in good agreement with stochastic
particle simulations. The relevance of this discreteness-induced state to biological intracellular processes is
discussed.
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Many systems in nature that involve chemical reactiondant. In fact, this can even be the case if the total number of
can be studied with the help of reaction-diffusion equationsmolecules is large but spread out over a large area as well.
For certain processes, a relatively small number of suitably Therefore, a length scale should be considered such that it
chosen continuous macroscopic variables yields excellerdan serve as a benchmark for judging whether or not a con-
descriptive results. In biological systems, however, not onlytinuum approximation is applicable. To consider this prob-
is the variety of chemicals enormous, the number of moliem, the ratio between the reaction and diffusion rates is
ecules of each of the chemical species can range from theyportant, and a candidate for the length scale is the typical

relatively very large to the relatively very small. Now, if the gistance over which a molecule diffuses during its lifetime,
species with small numbers of molecules were irrelevant;

bviously. thei ; d be i 4 and | .e., before it undergoes reaction as defined by Kuramoto
obviously, their existence could be ignored and one cou i?,S]. For reference, let us briefly review the work.
focus on the species with large numbers of molecules th

can effectively be described by a continuous variable. How- Consider the reactioi.2]

ever, it should not really come as a surprise that it was found k K’
that, in general, species with small numbers of molecules A—X, 2X—B.
cannot be neglected and that certain functions in cells ca
critically depend on very small fluctuatiof,2]. Indeed, in

prior studies on reaction-diffusion systems some effects o , . :
fluctuations on pattern formation were fouridee, e.g., aratek’. The average concentrationXfat the steady state is

[3,4]). Stochastic differential equations are often used td”)=VKA/2k’, where, for simplicity,A is the concentration
study effects of fluctuations. of the chemicalA. Thus the average lifetime o at the

Of course, on a microscopic level, chemicals are comsteady state is estimated to be 1/(2k'(X))=1/y2kk'A.
posed of molecules, and the actual reactions occur betwedstppose thaX molecules diffuse with the diffusion constant
these molecules. Therefore, in principle, reaction events mus?. The typical length over which aX molecule diffuses in
be integers and change only discretely. In an analysis witfifs lifetime is then estimated to be
stochastic differential equations, though, the fluctuations are —
regarded as continuous changes. Clearly, this approximation =\2Dr, 1)
can only be valid if applied to fluctuations that involve suf- which is called the Kuramoto lengf9].

ficiently large numbers of molecules and should not be ap- - the Kyramoto length represents the relation between the
plied when relevant Che”?'c?" SPECIES are very rare. reaction rate and the diffusion rate. When the system size is
In order to address this issue, we previously studied themajier thanl, its behavior is dominated by diffusion, and

effects of discreteness in simple autocatalytic reaction neig,q4) fjyctuations rapidly spread throughout the system. Con-
work systems and reported discreteness-induced trans't'o'ﬁ%\stingly if the system size is much larger tharfluctua-

as well as drastic effects on concentratig®]. Akey fea-  iqng are localized only in a small part of the system, and
ture of these systems was, however, that the medium wWa§igiant regions fluctuate independently.

assumed to be well stired. In this reasoning, it is assumed that the average distance
In contrast, in a system with diffusion in space, the totalpenyeen molecules is much smaller tHaThus the actual
number of molecules may vary from point to point. By @s- giscreteness of the molecules can be ignored, and the con-
suming that the reaction is fast and the diffusion is slow,.entration of the chemical can be regarded as a continuous
locally, the discreteness of the molecules can become impo;,riaple. However. if the average distance between mol-
ecules is comparable to or larger thatocal discreteness of
molecules may not be negligible. Suppose a chendicalith
*Electronic address: togashi@complex.c.u-tokyo.ac.jp very low concentration, produces another chemBalThe

Ir}the concentration oA\ is set to be constanX is produced
at a constant ratk while decaying by the reactionx2- B at
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FIG. 1. (Color onling Time series oN; andN,. r=1,a=4,N  whereD; is the diffusion constant of;. The system is closed
=1000, L,=1000. (a) D=10, (b) D=100, (c) D=1000. Initially,  and thus the total concentratians conserved. For simplic-
(N1,N5,N3)=(250, 250,500 For D=10, X3 reaches 0, which cor- ity, we assumeD;=D for all i.
responds to the unstable fixed poi@t/3,c/3,0). The reaction-diffusion _equation _has fixed points at

(c1,¢,,¢3)=(0,0,0),(vac/(Va+1),c/(Va+1),0) for all x.
average lifetime oB is short, such that the Kuramoto length By performing a straightforward linear stability analysis, it is
of B is shorter than the average distance between adj&centshown that only the former is stable. Indeed, by starting from
molecules. With this setting, chemicBl molecules may be an initial condition withc;> 0, this reaction-diffusion equa-
considered as localized arourdmolecules. This is espe- tion always converges to the fixed poittt, 0,c).
cially so if the reactions involve second or higher orders of Next, in order to obtain insights into the case when the
B. Then, the localization of chemic& may drastically alter ~continuum limit cannot be taken, we carry out direct particle
the total rate of the reactions, and the effect of the locakimulations. Each molecule diffuses randomighowing
discreteness of the molecules may thus be rather significarBrownian motion in a one-dimensional space with periodic

In order to systematically investigate the effects of theboundary conditionglength L,). When two molecules are
local discreteness of the molecules, we consider a simpleithin a distanced, they react with a certain probability and
one-dimensional reaction-diffusion system with three chemithe total number of moleculg) is conserved.

cals(Xy, X5, andX3) and the following four reactions: First, we investigate the case wigx4 and show a time
K K _seri_es of the number of molecul®k of chemical specieX;
X+ Xgo Xo+ Xy, X+ Xq— 2Xg in Fig. 1. As can be seei; andN, do not converge to 0 but
to relatively large numbers. As can be expected, the final
ks ke cpncentrationg depend orandD, and fprxz it is depicted in
DXy Xp+ Xy, 2Xg— Xy + Xo. Fig. 2. Approximately, the concentration turns out to be pro-

portional toyr/D whenN;,N,<N.

Here, we assume that the first two reactions are much faster To elucidate the origin of this proportionality, we take a
than the others, i.e., the reaction constants satigfk, closer look at the Kuramoto length, which, of course, de-
>k3>k,. To be specific, we takk; =k,=100, ky=ar, and  pends on the molecule species. In the case ofxhenol-
k,=r (r>0, 1<a<100). ecules it is given by, =\D/50rcs, as the average lifetime of

In the continuum limit, ¢;(t,x), the concentration of X;is 1/10Gc¢c5. Here we consider the situatitdy , N, <N, so
chemical X; at timet and positionx, is governed by the that cy=c. In the discussion below, we assume that
reaction-diffusion equation for the system given by =yD/50rc=DL,/50rN.
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Using this length,, the density of the remaining, mol- 100 =51, p=10
ecules is found to be about 0.1 molecule peindependent St
of the parameters, as shown in Fig. 2. After relaxation, this 5 | — Theoretical o
density does not depend on the initial conditions, as long as
N;>1 is satisfied initially. Furthermore, the density is inde-
pendent of the system sitg, if L,>1,, so that the number
of remaining moleculebl, is simply proportional td_,. Con-
sequently, in this analysis one obtains a fimifeegardless of
the system size or initial conditions, which is clearly differ- | 2
ent from the continuum limit where, goes to 0. 1 10 100
In this system,X; molecules are produced by, mol- L2/l
ecules. If\,, the average distance betwe¥pn molecules is
smaller tharl,, the distributions oX; around neighboring,
molecules overlap each other significantly and one can re
gardX, to be uniformly d'St”bUted' !n contrast, i is much trials. The error bars show the standard deviation,dfetween the
larger tharl;, moleculesX, will localize around thex; mol-  yq)g) This is very close to the theoretical estimatiare1
ecules(the sizeL, > \,). Then, the reaction)® — X;+X, is +1/(2Vm) Ay,
accelerated when compared to the case that the same total
number ofX; molecules is uniformly distributed.
We define the acceleration factar(\,,1,) as the ratio gop4 276 _a- 15c2 +o(5cy), 9)
between the reaction rate with localiz¥g and the reaction C2 Cs
rate with uniformly distributedX;. If N,>1,, it is expected
thata> 1. Assuming that the distribution &, is continuous ~ With ¢;=cs+ dc; andc,=cs+ &¢,, and rewriting Egs(2) and
and represented by the concentratigfx) [13], the accelera- (3) with « in Eq. (9), we obtain
tion factor can be expressed as

(Cl) ~ (— 2ac,- 100 (3a-1)cg+ 100:)(5c1>
Lt f cidx &/ 2ac, - (3a-1)c, 8¢,

©) +0( 8¢y, 8c,). (10)

Acceleration Factor
=

FIG. 3. (Color onling The acceleration factat, plotted against
\o/11. We measure the relation from simulations with differer,
&nda (N=1000,L,=1000, sampled over 5080t <10 000, and ten

(c1)?

(L f c,dx)?
The Jacobi matrix has two negative eigenvalues, and the
For simplicity, we assume that the distribution of the lo- fixed point is stable(This is natural, since itv<<a, N, de-
calizedX; molecules is Gaussian with a standard deviation creases, leading to the increaseagfand vice versa.This
centered around th¥, molecules(which may overlap each fixed point(steady stateis distinct from that of the original
othen. Suppose that th&, molecules are randomly distrib- reaction-diffusion equatior(0,0,c).

uted over the system with an average distangewe then From Eq.(6), a becomes 4 when,/l;=6y m~10.6. In
obtain[14] our simulation witha=4, about 0.1X, molecule per; re-
mains, as shown in Fig. 2. In other words;/l;=10, in
1 1 . . ;
a=1l+—— 2= +— (6) good agreement with the estimate. By changimgve nu-
2V g 2\ -14C merically obtain the relation between thg/l; and the actual

acceleration factow, again agreemg well with the above
theoretical estimatea=1+1/(2Vm)-\,/1;, as shown in
Fig. 3.

In the estimate above, we consider the case where
N;,N,<N. On the other hand, iN is set to be smaller than
the estimated value dfl, at the steady staté|, increases to
satisfy the balance, and finally reaches the stgteN,=N,
N3;=0, which corresponds to the unstable fixed point of the

The rate of(X; — X,) ak4Nf a . reaction-diffusion equat|or{\ac/(\a+1) cl(\a+1) 0], as
The rate of(X; — X)) kN3  a’ (M shown in Fig. 1a). o i
The localization ofX; cannot be maintained without the
Following Eq.(7), the two reaction rates are balancedif  spatial discreteness of, molecules. In reaction-diffusion
takes a value such that=a is satisfied. Corresponding to equations, any pattern will disappear eventually when given
@=a, a fixed point appears at a sufficiently long evolution time, unless it is somehow sus-
- [ -1 tained. This is even the case when the initial distribution of
C1=Co=[2(@= Dval](=cd), ®) X, is discrete. But again, it is essential to recall that reaction-
provided c;,c,<<c3 and cz=c. The stability of this fixed diffusion equations are an approximation and in that sense an
point is analyzed, by linearizing Eq&) and(8) around the idealization. In reality, a single molecule itself can of course
fixed point. Noting that not be broadened by diffusion and the spatial discreteness of

On the other hand, the average lifetimeXgfmolecules is
much longer, so that the Kuramoto length ¥¢rmolecules is
longer thanh,. Consequently, the reactiorXz— X,+X; is
not accelerated by localization.

Provided thatN;,N,<N3, N;=N, due to the fast reac-
tions X,+ X3— X, + X; and X3+ X, — 2X3. As a result, the ra-
tio between the two reaction rates is given by
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X, molecules is always maintained. By itself, a molecule is a In so far as the conditiong) and(iv) are met, our result
diffusion-resistant pattern. does not depend on the details of the reactions, and should
The alteration of the steady state due to localization is nogenerally be valid for reaction-diffusion systems. We have
limited to the present type of reaction network. Provided thatarried out simulations of similar reaction-diffusion systems,
the following conditions are satisfied, discreteness may altesnd again the discreteness effect led to pattern formation that

the dynamics: , cannot be accounted for by Turing-type mechanigwith or
(i) ChemicalA generates another chemical spedes without noise.
(i) The lifetime ofB is short or the diffusion oB is slow Experimental verification of our results should be possible

so that the Kuramoto length @& is much smaller than the
average distance betwednmolecules.

(iii) The localization of moleculeB accelerates some
reactions.

The last condition is easily satisfied if speciBsis in-
volved in second- or higher-order reactions. Finally, if

by suitably designing a reaction system, with the use of, say,
microreactors or vesicles. Also, in biological cells, many
chemicals work at low concentrations on the order of 1 nM
or less. Furthermore, diffusion is sometimes restricted, e.g.,
due to surrounding macromolecules, and may be slow. In

(iv) the acceleration alters the densityAofnolecules, the such an environment, it is propable that t_he average Qistance
above acceleration mechanism may control the densi#y of Petween the molecules of a given chemical species is much
to produce a steady state. larger than the Kuramotp Iength_s of some of the oth_er che_m|-

As for the localization effect by the discreteness of cata€@l species. Indeed, biochemical systems contain various
lytic molecules, Shnerlet al. recently showed that it can higher-order reactions and positive feedback mechanisms
amplify autocatalytic reaction-diffusion proces$#6,11. In  that might naturally support the conditior{gi) and (iv)
their model, however, the density of the catalyst is fixed agbove.
an externally given value, and the concentration of the prod-
uct, localized around the catalyst, diverges in time. In our
mechanism, the density of the catalygt or X,) changes ACKNOWLEDGMENTS
autonomously and reaches a suitable value to produce the
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