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Relaxation, the Boltzmann-Jeans conjecture, and chaos
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Slow ~logarithmic! relaxation from a highly excited state is studied in a Hamiltonian system with many
degrees of freedom. The relaxation time is shown to increase as the exponential of the square root of the energy
of excitation, in agreement with the Boltzmann-Jeans conjecture, while it is found to be inversely proportional
to residual Kolmogorov-Sinai entropy, introduced in this Rapid Communication. The increase of the thermo-
dynamic entropy through this relaxation process is found to be proportional to this quantity.
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The study of the relaxation from highly excited states
important not only in physico-chemical systems, but also
biological systems. It has been reported that excitations
some protein molecules are maintained over anomalo
long-time spans@1#. Such behavior is relevant to enzymat
reactions, and in particular, to their biological functions, b
cause these molecules must maintain their excited s
~brought about, say, by ATP! to be able to proceed from on
process to the next.

Typically, a Hamiltonian system with a sufficiently larg
number of degrees of freedom relaxes to equilibrium. T
relaxation process, however, is not necessarily fast. For
stance, some Hamiltonian systems can exhibit logarith
cally slow relaxation from excited states, called Boltzman
Jeans conjecture~BJC!, which was first noted by Boltzman
@2#, explored by Jeans@3#, Landau and Teller@4#, and then
has been studied in terms of nonlinear dynamics@5#. In the
BJ conjecture, the relaxation to equilibrium is required, b
existence of chaos is not explicitly assumed. On the ot
hand, irreversible relaxation is often studied in relations
with chaos. In the present paper we study slow relaxation
a type in agreement with the BJC, by using a Hamilton
dynamical system with a large number of degrees of fr
dom, and explore its possible relationship with chaos.

We consider dynamics with the Hamiltonian
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i , j 51

N

V~u i ,u j !, ~1!

describing a set of pendula, wherepi is the momentum of the
i th pendulum. The potentialV is chosen so that each pair o
pendula interacts only through their phase difference@6,7#:

V~u i ,u j !5
1

2~2p!2N
$12cos„2p~u i2u j !…%. ~2!

Hence, the evolution equations for the momentumpi and the
phaseu i are given by

ṗ j5
1

2pN (
i 51

N

sin„2p~u i2u j !…, u̇ j5pj . ~3!
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This form of the interaction is chosen so that there is
attractive force tending to align the phases of all the pend
The thermodynamic properties of this model in theN→`, as
well as the finite-size effect, are investigated in Refs.@7,8#.
Here we mainly discuss the case withN510, which is suf-
ficiently large to exhibit the thermodynamic properties, a
the results to be discussed are valid for a larger system.
temperature of the system can be defined asT[^2K&/N,
which is a monotonically increasing function of the tot
energyE.

As studied in Refs.@6–9#, each pendulum in this system
exhibits small-amplitude vibration when the total energy
small, while, as the energy is increased, some pendula b
to display rotational behavior over many cycles. The rela
ation of the rapidly rotating pendula into a vibrating asse
bly is rather slow, since their average interaction with t
assembly almost cancels out over the slow time scale of
assembly, due to the rapid rotation. Here we concentrate
such slow relaxation of the rotational mode to the vibratio
modes.

The slow relaxation from a highly excited state is inve
tigated systematically in the situation that the excited stat
prepared by applying an instantaneous kick to a certain p
dulum in the system. An example of the relaxation proc
following this kick is depicted in Fig. 1, where it is seen th
the kicked pendulum continues to rotate in isolation, ma
taining a large energy. The relaxation timetR is defined as

FIG. 1. Time series of the momentapi (1< i<N) in the process
of energy relaxation after an instantaneous kick att50. Here,
E/N50.0205, N510, andE050.35. A is the time series of the
kicked pendulum.
©2001 The American Physical Society05-1
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the interval of time from the kick to the point of whic
kinetic energy of the kicked pendulum first becomes sma
thanK/N.

The relaxation process depends on the energyE0 im-
ported by the kick and also on the state of the otherN21
pendula. Hereafter we call this assembly the ‘‘bulk.’’ Th
bulk state is parametrized by the total energyE ~or the tem-
peratureT) of the system before the kick@10#.

The mean relaxation timêtR& over an ensemble of initia
conditions was computed by fixingE and varyingE0. As
shown in Fig. 2, the relaxation time increases exponenti
with the kicked energyE0 @11# as

^tR&}exp~aAE0!, ~4!

for sufficiently large values ofE0. Here ^•& represents an
ensemble average anda is a constant. When the value ofE0
is fixed, ^tR& decreases as a function ofE, as is seen in the
figure.

The above exponential form of the relaxation agrees w
that given by the BJC, which describes the relaxation ti
for a system consisting of two parts with very different fr
quencies as an exponential of the ratio of the two frequ
cies. Assuming the separation of time scales of the kic
pendulum and the bulk pendula, this exponential growth
be obtained through the Fourier analysis of the interac
term, as shown by Landau and Teller@4# ~see also@5#!.

In this argument, chaotic dynamics are not explicitly i
cluded, while chaos is often relevant to the irreversible
laxation to equilibrium. Actually, we have observed the e
ponential law~4! in numerical studies clearly, as long as t
Hamiltonian dynamics for the given energyE uniformly ex-
hibits chaotic behavior without remnants of Kolmogoro
Arnold-Moser ~KAM ! tori. In this regime,^tR& decreases
with the energyE, as shown in the inset of Fig. 2. On th

FIG. 2. Ensemble average of the relaxation time^tR& as a func-
tion of the square root of the injected energyE0. Here, (n) E/N
50.0205 (T50.019), (d) E/N50.0118 (T50.008). The dotted
line representsg(E0)[exp(15A2E0). In the inset, in order to see
the close up temperature dependence of^tR&, ^tR&/g(E0) is plotted
as a function ofT for four values ofE0 :E050.35 (1), 0.4 (s),
0.45 (3), and 0.5 (h). The data are fit by the function
13 exp(2135T) for small T.
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other hand, in the regime of the small values ofE, the relax-
ation process highly depends on the initial condition and i
difficult to define average relaxation time. The hindrance
relaxation is associated with the weakness of chaos, since
relaxation of the rotating pendulum stops when the dynam
of the bulk is trapped to the vicinity of remnants of tor
Now, we study a possible relationship between the relaxa
time and the chaotic dynamics of the bulk.

First let us consider the nature of the dynamics in the lim
E0→`. In this case, the kicked pendulum is completely fr
from the bulk of vibrating pendula, whose collective motio
is simply that determined by the Hamiltonian of its (N21)
pendula. At a finite value ofE0, the dynamics of the bulk
deviate from those in theE0→` limit, due to the interaction
with the kicked pendulum. In order to quantify such dev
tion, we choose bulk states with energies distributed aro
a givenE, and compute the Lyapunov spectruml i(E0) for
various values ofE0. Note that, in the limitE0→`, lN22
50 corresponding to the free rotation of the kicked pend
lum, while lN215lN50 always holds due to the conserv
tion of the total momentum and energy.

Since the kinetic energyKr of the kicked pendulum fluc-
tuates and relaxes,l i(E0) is computed in the case thatKr
satisfiesuE02Kr u,d, with a small constantd. Since the re-
laxation ofKr is very slow, this condition is satisfied over
time sufficiently long to compute the local exponents. In o
der to insure the convergence of the Lyapunov expone
we take an ensemble average of such local exponents@12#.
~The existence of such time scale for the convergence
guaranteed by the slow relaxation, and indeed is confirm
numerically.!

The values of the computed Lyapunov exponents incre
as E0 decreases. The increased part of the Lyapunov ex
nents from those atE0→` limit characterizes the amplifica
tion of the chaotic instability due to the interaction betwe
the kicked pendulum and the bulk. With this in mind, w
define the residual Lyapunov spectra by

Dl i~E0![l i~E0!2 lim
E0→`

l i~E0!. ~5!

From detailed numerical experiments, we find that the t
scaling relationships;

lN22~E0!5DlN22~E0!}exp~2b1AE0!, ~6!

Dh~E0![ (
i 51

N23

Dl i}exp~2b2AE0! ~7!

hold for sufficiently large values ofE0. Hereb1 is smaller
thanb2, as shown in Fig. 3~a!.

SincelN2250 in the limit E0→`, the scaling oflN22
represents the decrease in the degree of chaos of the ki
pendulum. The sum of the remaining positive Lyapunov e
ponents, then, is expected to correspond to the Kolmogo
Sinai~KS! entropy of the bulk, and the increase in the deg
of chaos of the bulk due to the interaction with the kick
pendulum is given byDh. ~Note that the increase o
Lyapunov exponents is not due to the increase of the ave
5-2
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velocity in the bulk. Indeed, we have numerically confirm
that the temperature of the bulk for finiteE0 is not shifted
from that in the limitE0→`.!

SinceDh is associated with the dynamics of the bulk a
how it is affected by the energy absorbed from the kick
pendulum, we expect that it is related to the relaxation ti
^tR& @13#. Indeeda in Eq. ~4! andb2 in Eq. ~7! appears to be
equal from our numerical results. The relationship betwe
^tR& andDh is plotted in Fig. 3~b!, which supports the rela
tionship

Dh}^tR&21. ~8!

Thus, we find that the degree of chaos is closely relate
the relaxation time scale.

The relationship between the relaxation and the resid
KS entropyDh can be roughly explained as follows: In
Hamiltonian system, for every orbit, there exists a tim
reversed orbit, obtained by changing the sign of allpi . How-
ever, because of the interaction with the kicked element
obtain the time-reversed orbit of the bulk, a slight modific
tion of each pendulum, in addition to the simple reversed
each of their momenta,pi→2pi , is needed. Since the KS
entropyh is a measure of the time rate of loss of the info
mation concerning the initial conditions as an orbit evolv
the measure of orbits that can be considered the reve
orbit of some given orbit over a timet decreases with
exp(2ht). Therefore, the time scale for the irreversible rela
ation is proportional to the inverse of the KS entropy diffe
ence between the original and the reversed orbits. Hence

FIG. 3. ~a! Dependence oflN22 (s) and Dh (h) on E0 for
E/N50.0205 (T50.019). The data are fit by the linesDlN22

}exp(4.1A2E0) and Dh}exp(15A2E0). ~b! ^tR& as a function of
Dh for E/N50.0205 (T50.019). To calculate the Lyapunov Spe
trum l i(E0), we adopt the criterionuE02Kr u,d, with d
50.00375. The calculatedl i(E0) is found to converge for smalld.
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relationship Eq.~8! between the time scale for the relaxatio
and the residual KS entropy is reasonable.

Next, we study dynamics on the long-time scale of t
order of^tR&. To compare the relaxation from various kicke
energiesE0, it is convenient to use the scaled timet
5t/^tR&, where^tR& is a function ofE0. We note that the
time scale of relaxation decreases as the energy of the kic
pendulum,Kr , decreases. Then the above definition oft

implies t5t/tR(K̃r) along the relaxation, whereK̃r is the
coarse-grained energy of the kicked pendulum over a lo

time scale andtR}exp(aAK̃r).
Now, we derive an equation describing the relaxation

K̃r on the time scale oft. We have computed the differenc
dKr over the time stepsdt for many samples of orbits start
ing from a givenKr . As shown in Fig. 4, the data ar
satisfactorily fit by ^dKr&/dt52C, with a constantC
(.0.035) for various values ofKr andE. Then the coarse-
grained equation for the relaxation is obtained asdKr /dt
52C. Noting that the interaction energy between the bu
and the kicked pendulum is tiny and recalling the conser
tion of energy, we getdE/dt5C. Thus, with regard to the
relaxation process, the difference in the details of the
namical properties of the system under different conditio
are eliminated by considering the scaled timet, while the
dynamics and properties of the bulk seem to be stron
dependent on the value ofE. From the above equation, fo
the original time variablet, Kr decays in the logarithmic time
scale.

Now it is possible to consider the entropy increase of
bulk occurring during the relaxation. Since we have assum
that the slow change of the bulk part can be described by
slow change of thermodynamic quantities, the increase of
entropy of the bulk is estimated as

dS

dt
5

dS

dE

dE

dt
5

C

T
, ~9!

whereT is the temperature of the bulk. This relation is o
tained by noting that the process here is sufficiently slow
define these thermodynamic quantities on a coarse-gra
time scale.

Sincet5t/tR}Dht, by Eq. ~8!, the relation

dS

dt
}Dh ~10!

FIG. 4. ^dKr&/dt for dt50.01 (s) and 0.001 (h). The data
suggest thatdKr&/dt is independent ofdt andKr , while indepen-
dence from temperatureT is also numerically confirmed.
5-3
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for the relaxation process is obtained from Eq.~9!. The pro-
portionality in Eq.~10! relates two kinds of directed motio
towards equilibrium:Dh corresponds to the amplification o
chaos in the equienergy surface of the bulk, whereasdS/dt
represents the growth of this equienergy surface towa
equilibrium. It should also be noted that this relationsh
holds not near the equilibrium state of the total system
for the nonlinear relaxation process from a highly excit
state.

The relationship between chaotic dynamics and irreve
ibility has been extensively studied@13–15#. A relationship
between the thermodynamic entropy and the irreversible
formation loss was proposed by Sasa and Komatsu in
case that an external operation causes a transition from
equilibrium state to another. We believe that our relat
between the residual KS entropy and the thermodynamic
tropy is related to it, although ours applies to the spontane
relaxation.

To sum up, we have obtained the following relationsh
between the relaxation time,tR , and the energy supplied b
an external kick,E0 :tR}exp(aAE0). Then, this relaxation
time tR is found to be proportional to the inverse of th
residual KS entropy, that is, the difference between the
.
t.

hi
a
-

it
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entropy of the bulk interacting with the kicked element a
that of the isolated bulk. By rescaling time bytR , the excited
energy is found to relax at a rate that is independent of
energy of the kicked element and the bulk. Finally, we fi
evidence that the rate of entropy generation is proportiona
the residual KS entropy.

Although these three relationships were found throu
numerical study of the Hamiltonian~1!, we expect that they
hold generally for relaxation processes in Hamiltonian s
tems under the condition that in the limit of high excitatio
the interaction between the excited elements and the u
cited bulk vanishes. Indeed, we have numerically found t
Eqs.~4! and~8! are valid also for a coupled pendulum mod
with the nearest-neighbor coupling on a square lattice. I
important to examine the universality of the three relatio
ships we have found, and also to study their relevance
regard to intramolecular relaxation processes, including
plication to the energy transduction carried out by biologi
molecular motors.

The authors are grateful to S. Sasa and T. S. Komatsu
stimulating discussions. This research was supported
Grants-in-Aids for Scientific Research from JSPS and
REIMEI Research Resources of JAERI.
to
h
sly

re-

,
.

@1# A. Ishijima, et al., Cell 92, 161 ~1998!.
@2# L. Boltzmann, Nature~London! 51, 413 ~1895!.
@3# J.H. Jeans, Philos. Mag.6, 279 ~1903!; 10, 91 ~1905!.
@4# L. Landau and E. Teller, Physik. Z. Sowjetunion11, 18

~1936!.
@5# G. Benettin, L. Galgani, and A. Giorgilli, Commun. Math

Phys. 121, 557 ~1989!. O. Baldin and G. Benettin, J. Sta
Phys.62, 201 ~1991!.

@6# T. Konishi and K. Kaneko, J. Phys. A25, 6283~1992!.
@7# M. Antoni and S. Ruffo, Phys. Rev. E52, 2361~1995!.
@8# V. Latora, A. Rapisarda, and S. Ruffo, Phys. Rev. Lett.80, 692

~1998!.
@9# Y.Y. Yamaguchi, Prog. Theor. Phys.95, 717 ~1996!.

@10# Although the energy of the bulk increases with relaxation, t
parametrization is appropriate, at least in the lowest-order
proximation for largeE0, since the bulk and the kicked pen
dulum spend most of the relaxation time around the state
s
p-

is

in just after the kick~see Fig. 1!.
@11# N. Nakagawa and K. Kaneko, J. Phys. Soc. Jpn.69, 1255

~2000!.
@12# In preparation for the simulation, the pendula are allowed

evolve for a sufficiently long time from an initial state wit
total energyE. Then one pendulum is kicked, instantaneou
increasing its kinetic energy from nearly 0 toE0.

@13# For a pioneering study in which Lyapunov exponents are
lated to relaxation, see the work of Krylov inWorks on the
Foundation of Statistical Physics~Princeton University Press
Princeton, NJ, 1979!, pp. 193–206; Also see K. Shinjo and S
Sasada, Phys. Rev. E54, 4685~1996! for a possible relation-
ship between directional motion and Lyapunov exponents.

@14# M. Dzugutov, E. Aurell, and A. Vulpiani, Phys. Rev. Lett.81,
1762 ~1998!.

@15# S. Sasa and T.S. Komatsu, Phys. Rev. Lett.82, 912 ~1999!.
5-4


