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Relaxation, the Boltzmann-Jeans conjecture, and chaos
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Slow (logarithmig relaxation from a highly excited state is studied in a Hamiltonian system with many
degrees of freedom. The relaxation time is shown to increase as the exponential of the square root of the energy
of excitation, in agreement with the Boltzmann-Jeans conjecture, while it is found to be inversely proportional
to residual Kolmogorov-Sinai entropy, introduced in this Rapid Communication. The increase of the thermo-
dynamic entropy through this relaxation process is found to be proportional to this quantity.
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The study of the relaxation from highly excited states isThis form of the interaction is chosen so that there is an
important not only in physico-chemical systems, but also imattractive force tending to align the phases of all the pendula.
biological systems. It has been reported that excitations of he thermodynamic properties of this model in tihes 0, as
some protein molecules are maintained over anomalouslyell as the finite-size effect, are investigated in R§758].
long-time spangl]. Such behavior is relevant to enzymatic Here we mainly discuss the case with= 10, which is suf-
reactions, and in particular, to their biological functions, be-ficiently large to exhibit the thermodynamic properties, and
cause these molecules must maintain their excited stat®e results to be discussed are valid for a larger system. The
(brought about, say, by ATRo be able to proceed from one temperature of the system can be definedTas(2K)/N,
process to the next. which is a monotonically increasing function of the total

Typically, a Hamiltonian system with a sufficiently large energyE.
number of degrees of freedom relaxes to equilibrium. This As studied in Refs[6—9], each pendulum in this system
relaxation process, however, is not necessarily fast. For inexhibits small-amplitude vibration when the total energy is
stance, some Hamiltonian systems can exhibit logarithmismall, while, as the energy is increased, some pendula begin
cally slow relaxation from excited states, called Boltzmann-o display rotational behavior over many cycles. The relax-
Jeans conjecturéJC), which was first noted by Boltzmann ation of the rapidly rotating pendula into a vibrating assem-
[2], explored by Jeang3], Landau and Tellef4], and then bly is rather slow, since their average interaction with the
has been studied in terms of nonlinear dynanifgs In the  assembly almost cancels out over the slow time scale of the
BJ conjecture, the relaxation to equilibrium is required, butassembly, due to the rapid rotation. Here we concentrate on
existence of chaos is not explicitly assumed. On the othesuch slow relaxation of the rotational mode to the vibrational
hand, irreversible relaxation is often studied in relationshipmodes.
with chaos. In the present paper we study slow relaxation of The slow relaxation from a highly excited state is inves-
a type in agreement with the BJC, by using a Hamiltoniantigated systematically in the situation that the excited state is
dynamical system with a large number of degrees of freeprepared by applying an instantaneous kick to a certain pen-
dom, and explore its possible relationship with chaos. dulum in the system. An example of the relaxation process

We consider dynamics with the Hamiltonian following this kick is depicted in Fig. 1, where it is seen that

the kicked pendulum continues to rotate in isolation, main-

N taining a large energy. The relaxation tireis defined as

H=K+V= E% Z V(6,,9)), D)

1

describing a set of pendula, whargis the momentum of the . 05
ith pendulum. The potentidl is chosen so that each pair of pl )

pendula interacts only through their phase differef&é: 0
V(6,,0)= 5 {l—cot2m( G- 6} (2 08
0;,0))= 55—z 11— cos2m(6,— 6)))}.
2(2m7)°N J
(zm 0 5x10° 10°
Hence, the evolution equations for the momenrand the time

phased; are given by _ _ . .
FIG. 1. Time series of the momenpa(1l<i=<N) in the process

N of energy relaxation after an instantaneous kicktat0. Here,
No— in(2 _p. 0=n. E/N=0.0205,N=10, andE;=0.35. A is the time series of the
P 27N =1 sin2m(8i=6))) bi=Pi ® kicked pendulum.
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o—— ' ' ' other hand, in the regime of the small valuespthe relax-
ation process highly depends on the initial condition and it is
difficult to define average relaxation time. The hindrance of
relaxation is associated with the weakness of chaos, since the
o relaxation of the rotating pendulum stops when the dynamics
15005 001 0015 o 7 of the bulk is trapped to the vicinity of remnants of tori.
Ti2 o o Now, we study a possible relationship between the relaxation
& time and the chaotic dynamics of the bulk.
o & First let us consider the nature of the dynamics in the limit
10° | o a7 4 Eo—<e. In this case, the kicked pendulum is completely free
o from the bulk of vibrating pendula, whose collective motion
is simply that determined by the Hamiltonian of itd 1)
pendula. At a finite value oE,, the dynamics of the bulk
deviate from those in thEy— oo limit, due to the interaction
with the kicked pendulum. In order to quantify such devia-
FIG. 2. Ensemble average of the relaxation tifhe as a func- tion., we choose bulk states with energies distributed around
tion of the square root of the injected energy. Here, (A) E/N agiven E, and compute the Lya_punov _Sp_ectrlm(Eo) for
=0.0205 (T=0.019), @) E/N=0.0118 (T=0.008). The dotted various values OEO Note that, in the ||m|tE0—>.OO, )\N—Z
line represents)(Eq) =exp(15/2Ey). In the inset, in order to see — O corresponding to the free rotation of the kicked pendu-
the close up temperature dependencétgf, (tr)/g(E,) is plotted UM, while Ay_;=Ay=0 always holds due to the conserva-
as a function ofT for four values ofE,:E,=0.35 (+), 0.4 (O),  tion of the total momentum and energy.
0.45 (x), and 0.5 (0). The data are fit by the function Since the kinetic energl{, of the kicked pendulum fluc-
13 exp(135T) for small T. tuates and relaxes,;(Ep) is computed in the case thét,
satisfieg Eq—K,| < 8, with a small constané. Since the re-
the interval of time from the kick to the point of which laxation ofK, is very slow, this condition is satisfied over a
kinetic energy of the kicked pendulum first becomes smalletime sufficiently long to compute the local exponents. In or-
thanK/N. der to insure the convergence of the Lyapunov exponents,
The relaxation process depends on the endfgyim-  we take an ensemble average of such local exporié@is
ported by the kick and also on the state of the otNer1l (The existence of such time scale for the convergence is
pendula. Hereafter we call this assembly the “bulk.” The guaranteed by the slow relaxation, and indeed is confirmed
bulk state is parametrized by the total eneEyfor the tem-  numerically)
peratureT) of the system before the kidld0]. The values of the computed Lyapunov exponents increase
The mean relaxation timgg) over an ensemble of initial asEg decreases. The increased part of the Lyapunov expo-
conditions was computed by fixing and varyingE,. As  nents from those & ,— o limit characterizes the amplifica-
shown in Fig. 2, the relaxation time increases exponentialljtion of the chaotic instability due to the interaction between
with the kicked energ¥, [11] as the kicked pendulum and the bulk. With this in mind, we
define the residual Lyapunov spectra by

(tr) /9 (E0)

0.7 0.8 0.9 1

(tr)=exp(aEo), @) _
ANi(Eg)=Ni(Eg) — lim \i(Ep). 6)
for sufficiently large values oE,. Here(-) represents an Eo—

ensemble average andis a constant. When the value Bf
is fixed, (tg) decreases as a function Bf as is seen in the
figure.

From detailed numerical experiments, we find that the two
scaling relationships;

The above exponential form of the relaxation agrees with _ _
that given by the BJC, which describes the relaxation time My-2(Eo) = Ay -2(Eo) > expl — B1Eo). ®)
for a system consisting of two parts with very different fre- N-3
guencies as an exponential of the ratio of the two frequen- Ah(E.)= AN ocexq — E 7
cies. Assuming the separation of time scales of the kicked (Eo) .21 1 expl ﬁz\/—O) 0

pendulum and the bulk pendula, this exponential growth can
be obtained through the Fourier analysis of the interactiorold for sufficiently large values dt,. Here 8, is smaller
term, as shown by Landau and Tell@] (see alsd5]). than B,, as shown in Fig. @&).

In this argument, chaotic dynamics are not explicitly in-  Since\y_,=0 in the limit E;—o°, the scaling ofAy_»
cluded, while chaos is often relevant to the irreversible retepresents the decrease in the degree of chaos of the kicked
laxation to equilibrium. Actually, we have observed the ex-pendulum. The sum of the remaining positive Lyapunov ex-
ponential law(4) in numerical studies clearly, as long as the ponents, then, is expected to correspond to the Kolmogorov-
Hamiltonian dynamics for the given energyuniformly ex-  Sinai(KS) entropy of the bulk, and the increase in the degree
hibits chaotic behavior without remnants of Kolmogorov- of chaos of the bulk due to the interaction with the kicked
Arnold-Moser (KAM) tori. In this regime,(tg) decreases pendulum is given byAh. (Note that the increase of
with the energyE, as shown in the inset of Fig. 2. On the Lyapunov exponents is not due to the increase of the average
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ah f'\tz% -------- —— <
xN_z \\'\- - o 1 1 1 1
T 0.85 0.9 0.95 1
0.85 09 0.95 FIG. 4. (5K,)/ 87 for §7=0.01 (O) and 0.001 [0). The data
(2Eg)" suggest thadK, )/ 57 is independent of andK, , while indepen-
(b) dence from temperatufEis also numerically confirmed.
001 & % 1 relationship Eq(8) between the time scale for the relaxation
% and the residual KS entropy is reasonable.
Ah ‘f Next, we study dynamics on the long-time scale of the
% order of(tg). To compare the relaxation from various kicked
0.001 | T energiesE,, it is convenient to use the scaled time
' =t/{tr), where(tg) is a function ofEy. We note that the

2x10°

5x10°
{t&R)

10°

2x10°

time scale of relaxation decreases as the energy of the kicked
pendulum,K,, decreases. Then the above definition rof

implies 7=t/tg(K,) along the relaxation, wherk, is the
coarse-grained energy of the kicked pendulum over a long-

time scale andRocexp(a\/R—r).

Now, we derive an equation describing the relaxation of
K, on the time scale of. We have computed the difference
oK, over the time stepsr for many samples of orbits start-
ing from a givenK,. As shown in Fig. 4, the data are
satisfactorily fit by (6K,)/é67=—C, with a constantC
(=0.035) for various values df, andE. Then the coarse-

FIG. 3. (a) Dependence oky_, (O) andAh () on E, for
E/N=0.0205 (T=0.019). The data are fit by the lines\y_,
cexp(4.1y2E,) and Ahaxexp(15/2E,). (b) (tg) as a function of
Ah for E/N=0.0205 (T=0.019). To calculate the Lyapunov Spec-
trum \;(Ey), we adopt the criterion|Ey—K,|<8, with &
=0.00375. The calculatexi(E,) is found to converge for smad.

velocity in the bulk. Indeed, we have numerically confirmed
;?:r;tPheag?? S]e;r?itrl;riteEof t?oe) bulke for finifg s not shifted grained equation for the relaxation is obtaineddds /d+
0.

SinceAh is associated with the dynamics of the bulk and _n; ?HGNISEES dthztng]el 'rr;]te.gat(.:rt:Onar?ger;%};ﬁre]tvﬁzncghnesgrulg_
how it is affected by the energy absorbed from the kicked? : penduium | _' y AINg v
pendulum, we expect that it is related to the relaxation time'oln of energy, we gehd E/dqf;_c' Th_us,r\]/wtr(; reglard ftohthe
(tg) [13]. Indeedw in Eq.(4) and B, in Eq.(7) appears to be relaxation process, the difference in the details of the dy-
equal from our numerical results. The relationship betweer?amlcal properties of the system under different conditions

: g . _are eliminated by considering the scaled timewhile the
§it(;erzs?1ri];Ah 's plotted in Fig. &), which supports the rela dynamics and properties of the bulk seem to be strongly

dependent on the value & From the above equation, for
the original time variablé, K, decays in the logarithmic time
scale.

Now it is possible to consider the entropy increase of the
k occurring during the relaxation. Since we have assumed
atpat the slow change of the bulk part can be described by the
Slow change of thermodynamic quantities, the increase of the
entropy of the bulk is estimated as

Ah“(tR>7l. (8)

Thus, we find that the degree of chaos is closely related t%ul
the relaxation time scale.

The relationship between the relaxation and the residu
KS entropyAh can be roughly explained as follows: In a
Hamiltonian system, for every orbit, there exists a time-
reversed orbit, obtained by changing the sign opall How-
ever, because of the interaction with the kicked element, to
obtain the time-reversed orbit of the bulk, a slight modifica-
tion of each pendulum, in addition to the simple reversed of ] ] o
each of their momentay;— —p; , is needed. Since the KS WhereT is thg temperature of the bqu._Thls _re_Iatlon is ob-
entropyh is a measure of the time rate of loss of the infor- tained by noting that the process here is sufficiently slow to
mation concerning the initial conditions as an orbit evolves define these thermodynamic quantities on a coarse-grained
the measure of orbits that can be considered the reverséine scale. .
orbit of some given orbit over a timé decreases with ~ Sincer=t/trxAht, by Eq.(8), the relation
exp(—ht). Therefore, the time scale for the irreversible relax-
ation is proportional to the inverse of the KS entropy differ- ds

S ) —oxAh (10
ence between the original and the reversed orbits. Hence, the dt

dS dSdE C

dr dEdr T’ ©
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for the relaxation process is obtained from E®). The pro- entropy of the bulk interacting with the kicked element and
portionality in Eq.(10) relates two kinds of directed motion that of the isolated bulk. By rescaling time by, the excited
towards equilibriumAh corresponds to the amplification of energy is found to relax at a rate that is independent of the
chaos in the equienergy surface of the bulk, whe&slt energy of the kicked element and the bulk. Finally, we find
represents the growth of this equienergy surface towardgvidence that the rate of entropy generation is proportional to
equilibrium. It should also be noted that this relationshipthe residual KS entropy. S

holds not near the equilibrium state of the total system but Although these three relationships were found through

for the nonlinear relaxation process from a highly exciteg?umerical study of the Hamiltoniafl), we expect that they

state. hold generally for relaxation processes in Hamiltonian sys-
ibility has been extensively studigd3—15. A relationship

between the thermodynamic entropy and the irreversible in(-:'ted bulk vanishes. Ir_1deed, we have numerically found that
. Eqgs.(4) and(8) are valid also for a coupled pendulum model

) o With the nearest-neighbor coupling on a square lattice. It is

case that an external operation causes a transition from Ori]ﬁﬁportant to examine the universality of the three relation-

equilibrium state to another. We believe that our relationShips we have found, and also to study their relevance in
between the residual KS entropy and the thermodynamic er}'egard to intramolecular relaxation processes, including ap-

tropy is related to it, although ours applies to the Spor‘t"’memﬁlication to the energy transduction carried out by biological

relaxation. . . . ._molecular motors.
To sum up, we have obtained the following relationship

between the relaxation timég, and the energy supplied by The authors are grateful to S. Sasa and T. S. Komatsu for
an external kick,Eq:tgxexplEo). Then, this relaxation stimulating discussions. This research was supported by
time tg is found to be proportional to the inverse of the Grants-in-Aids for Scientific Research from JSPS and the
residual KS entropy, that is, the difference between the KRREIMEI Research Resources of JAERI.
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