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Periodic lattices of chaotic defects
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A type of lattice in which chaotic defects are arranged periodically is reported for a coupled map
model of open flow. We find that temporally chaotic defects are followed by spatial relaxation to
an almost periodic state, when suddenly another defect appears. The distance between successive
defects is found to be generally predetermined and diverging logarithmically when approaching a
certain critical point. The phenomena are analyzed and shown to be explicable as the results of a

boundary crisis for the spatially extended system.

PACS number(s): 05.45.+b, 47.27.Cn

For their extremely rich phenomenology and their far
reaching significance in the study of universal proper-
ties in complex systems, coupled map lattices (CML’s)
have drawn much interest in recent years. Among the
most widely studied CML’s are lattices of coupled logis-
tic maps since these are of fundamental importance for
gaining and deepening the understanding of spatially ex-
tended dynamical systems [1-8].

In this paper, we investigate the dynamics of a one-
way coupled logistic lattice (OCLL), which is conceptu-
ally closely related to open flow systems and therefore
relevant for the general study of turbulence (e.g., in tech-
nological applications like jet engines), pipe flow, and
data traffic. In such systems, performance may criti-
cally depend on nonlinear effects and consequently it is
of great importance to obtain insights into the underlying
universal mechanisms. Indeed, we believe that some of
our findings may experimentally be verified, as possibly
in Ohtsuka and Ikeda’s optical system with distributed
nonlinear elements [9] or pipe flow [10].

In a previous paper [11], we reported the discovery of
spatial chaos with temporal periodicity and analyzed the
stability of the spatial patterns with a spatial map which
enabled us to predict certain types of nontrivial down-
flow behavior. In principle, our analysis was restricted
to large coupling strengths though. In the present pa-
per, we will investigate small coupling strengths which in
contrast to larger ones yield extremely rich temporal dy-
namics. We report the discovery of a fascinating type of
lattice in which evenly spaced chaotic defects form a pe-
riodic pattern. It is shown that this phenomenon can be
completely explained by considering a low-dimensional
map, and that it is related to a boundary crisis.

The model under investigation can be expressed as

xiﬂ—l =(1- f)f('”:z) + ef(a:ffl), (1)

where n is the discrete time, 7 the discrete space, € the
coupling constant, and f the logistic map which has the
nonlinearity o as its parameter [4]. We choose a fixed
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boundary condition set to 1.0 throughout, but the exact
value does not influence the results in a qualitative way.

A rough phase diagram indicating the main patterns
relevant to this paper is given in Fig. 1. The lower gray
area stretching from a = 1.6 to a = 2.0 is the so-called
zigzag region which mostly, except for the lower bound-
ary, has a spatial and temporal periodicity of 2. The two
temporal phases are furthermore spatially exactly out of
phase and consequently there are only two fixed points
z} and z3 that can easily be found as

— 2¢)2 _

w,{2:1i\/4(1 2€)2a + 4e 3 @)

’ 2(1 — 2€)x

For a 2 1.76 we observed the occurrence of coherent
zigzag structures within the chaotic sea which are like
islands that appear, disappear, grow, and shrink. Hence
the corresponding area is marked as “Zigzag Islands.”

Our main discovery here is that for a < 1.76, above the
zigzag regime, lattices emerge with evenly spaced defects
whose internal dynamics is chaotic when starting from
random initial conditions. An example is shown in Fig. 2,
where the distance between successive defects is 20 lattice
sites.

We would like to stress here that this periodicity is in
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FIG. 1. Rough phase diagram for Eq. (1). The lines are
only intended for indicating the approximate region in which
the patterns occur. The exact boundaries may depend on
both the boundary and initial conditions.
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FIG. 2. Defect lattice in which the distance between defects
is 20 lattice sites. The nonlinearity is & = 1.7 and the coupling
strength is € = 0.115 95.

the spatial direction, and that the periodicity can be very
long. As is shown in Fig. 3, we find that the distance be-
tween defects diverges logarithmically when approaching
a critical value €, =~ 0.11525 beyond which the system
is attracted to the zigzag solution for all initial condi-
tions. The distance between defects throughout a lattice
is nearly constant and increases in basic steps of 1 when
approaching e, (from a minimum of three sites). Since
there are two phases, this yields lattices in which either
most of the successive defects are in the same phase, or
the phases alternate.

In order to obtain an impression of the extent to which
the chaotic motion of the defects is localized, the station-
ary Lyapunov exponents corresponding to Fig. 2, which
can immediately be found as the eigenvalues of the prod-
uct of Jacobi matrices [4]

N =In(1—¢€) + = Zlnf(a:n) (3)
are depicted in Fig. 4. Due to the upper triangle of the
Jacobi matrix being zero for Eq. (1), there is no mixing
and the ith exponent represents the local chaoticity of
the zth site.

As can readily be seen from Figs. 2 and 4, the chaotic
motion is generally localized at one lattice site, while
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FIG. 3. Distance between successive defects versus € — €.
with €. = 0.115 25. The nonlinearity is & = 1.7, and 2.5 x 10°
time steps were discarded for each point calculated.
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FIG. 4. Stationary Lyapunov exponents corresponding to
Fig. 2. The product of 10 000 Jacobi matrices was taken.
For each defect, there is only one lattice site with a positive
Lyapunov exponent. The nonlinearity is @ = 1.7 and the
coupling strength is e = 0.115 95.
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it is damped in the down-flow direction. The surprising
aspect here is that the last site before a new defect shows
neither any significant remnant motion, nor a substantial
deviation from the zigzag solution which is known to be
absolutely stable. That is to say, it is not only stable
in the stationary frame, but also in any comoving frame
6,11].

This is also clearly visible in the spatial return map
[2,3] given in Fig. 5, where the straight lines indicate
that there is only a very weak correlation between the
value of a site prior to the defect and the defective site
itself. In other words, the zigzag solution is stable to at
least several percent of global and thus also local noise
(here, by global noise we indicate the case that noise is
added at every lattice site, and by local noise the case
that noise is only added to one specific site), but in the
defect lattice we first see damping to far within the basin
of the stable zigzag pattern and then suddenly another
defect at a certain (minimum) distance.

In order to obtain a quantitative estimate on how close
to the zigzag pattern the lattice is, we plotted z2%* — *
versus space in Fig. 6 with 7 shifted such that the defect
is at site ¢ = 1. The average of 1000 samples per ev-
ery second time step was taken of the sites following the
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FIG. 5. Spatial return map of Fig. 2 with 50 second it-
erates overlaid. The straight lines clearly indicate that the
lattice sites preceding chaotic ones all have (nearly) the same
constant amplitudes. The nonlinearity is = 1.7 and the
coupling strength is € = 0.115 95.
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FIG. 6. Distance between the defect lattice and the zigzag
pattern. The numbers indicate the values of the coupling
constant €, and the nonlinearity is a = 1.7.

first defect after a spatial transient of 100 sites. What is
notable is that, when approaching the critical value e,
we do not see a decay in the damping rate as is the case
for the usual critical phenomena. Instead we see that
a perturbation remains decaying exponentially to z* re-
gardless of the proximity to €.. Consequently, there must
be some threshold related to the phenomenon itself which
is lowered.

The notion of (initially) counterintuitive behavior is
reinforced further by our finding that the addition of a
sufficiently large (but not too large) amount of global
noise drives the entire lattice to the zigzag attractor in-
stead of increasing the irregular dynamics, while a small
amount of noise leads to a decrease in the distance be-
tween defects (i.e., an increase in the density of defects).
We furthermore wish to stress that Fig. 2 is not a “lucky”
special case, but the general final state for the given pa-
rameters when starting from random initial conditions.

Hence we have several apparently opposing tendencies,
i.e., we obtain localized chaos instead of chaotic motion
countering regularity, sites well in the basin of the zigzag
attractor are followed by a defect instead of a regular
site, and, an increase of global noise yields more regular-
ity instead of less regularity. In order to unravel these,
we analyze the phenomena described above by employing
the fact that the sites just before a defect virtually as-
sume the values of the zigzag pattern. The second iterate
of Eq. (1) can then be approximated as

Tniz = (1= F (1~ &) f(a}) +ef (23)) + ef(z}), (4)

where z} and z} are the stable zigzag solutions.

This enables us to plot ¢, , as a function of z}, as in
Figs. 7 and 8 which depict the situations just before and
just after the critical point €.. From these figures we can
infer that for ¢ > €. there are two distinct basins: one
for a chaotic attractor and one for the fixed point of the
zigzag pattern, while for € < ¢, there is only one basin.
At €. we therefore have a boundary crisis [12] at which
the boundary of the chaotic attractor (not the boundary
of the basin of the chaotic attractor), in this case given
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FIG. 7. Plot of Eq. (4) before the critical point

€. ~ 0.115 25. The nonlinearity is @ = 1.7 and the cou-
pling constant is € = 0.12. The dotted line indicates the first
50 iterates of 0.0.

by the second iterate of the origin, touches an unstable
fixed point.

We find that the pattern formation of the lattice can
be associated with the following scenario. When starting
from random initial conditions, some lattice sites will be
attracted to the zigzag attractor. Let us assume z‘~! is
one such site. The question arising now is under what
circumstances will z* be a defect? If ¢ < €. we have
only one basin of attraction, and (eventually) all defects
will disappear. If € > €., however, we find two distinct
basins, implying that a site in the chaotic basin is (at
least initially) a defect.

Since the gap between the chaotic attractor and the
basin boundary of the zigzag attractor is quite narrow
for € > €., a small modulation of z~! will create leaks
to the zigzag basin. If such a leak exists, z* cannot be
a defect and it will eventually be attracted to the zigzag
solution.

The zigzag pattern is a periodic attractor with a neg-
ative Lyapunov exponent however. Accordingly, modu-
lation will be damped in the down-flow direction until
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FIG. 8. Plot of Eq. (4) after the critical point €, ~ 0.115 25.
The nonlinearity is @ = 1.7 and the coupling constant is
€ = 0.11. The dotted line indicates the first 25 iterates of
0.0.
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at some site the modulation is too small to create leaks
to the basin of the periodic attractor. If at this stage
we have a site in the chaotic basin it will form a defect.
When starting from random initial conditions, this will
almost always be the case, and we obtain a periodic lat-
tice.

A consequence of the presented scenario is that only
the minimum distance between defects is determined.
This can easily be verified by choosing a zigzag pattern
as initial condition with defects inserted at selected sites.
If the distance between two successive defects is larger
than the minimum distance, nothing will happen, while
if the distance between two successive defects is smaller
than the minimally allowed distance, the down-flow de-
fect will be pushed away. It should be mentioned here
that it is not possible for a defect to be annihilated when
located between (nearly) zigzag sites. This is due to the
fact that a defect contains only one chaotic site and thus
separates two zigzag regions with opposite phases (this is
independent of the issue whether the sites preceding two
defects are in the same phase since the distance can be
even or uneven), and consequently, if the site of a defect
leaks to the basin of the periodic attractor, automati-
cally the next down-flow site ends up in the basin of the
chaotic attractor.

Since the gap between the edge of the chaotic attrac-
tor and the unstable fixed point is approximately pro-
portional to € — €., we have that the threshold ¢ below
which the chaotic motion must be damped (in order for
the motion to be weak enough to allow the next site to
be a defect) is also proportional to € — €. as can also
immediately be inferred from Fig. 6. The Lyapunov ex-
ponent of the zigzag pattern is more or less constant close
enough to €., implying that §* oc exp(—k|A|) with §* the
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size of a perturbation at a distance k from the perturba-
tion. Hence the minimum distance k from a perturbation
(and thus the minimum distance in the defect lattice) for
which we have that 6* < ¢ is given by k o In(e — €.),
yielding indeed the observed logarithmic divergence of
the distances between defects.

In the present paper we have only studied the fully up-
flow coupled case. We have confirmed however that the
inclusion of a small down-flow coupling term (i.e., cou-
pling to site z**) does not affect our results qualita-
tively. We believe that this is a further indication that
this mechanism of pattern formation may be universal
and can be encountered elsewhere.

In the diffusively coupled logistic lattice, Brownian mo-
tion of defects has been reported [2] in a region of pa-
rameter space slightly above the regular zigzag regime.
Although we could not observe any defect lattices, we
nevertheless believe that the Brownian motion too is the
result of a boundary crisis, the only difference with the
one-way coupled case being that leaks always exist to
some extent, allowing the defect to move to the right or
left.

In conclusion, we found a type of lattice in which
chaotic defects occur periodically when starting from ran-
dom initial conditions. The encountered phenomena con-
stitute a mechanism of pattern formation which was suc-
cessfully analyzed and associated with a boundary crisis.
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