PHYSICAL REVIEW E, VOLUME 63, 036218
Sensitive boundary condition dependence of noise-sustained structure
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Sensitive boundary condition dependefBED) is reported in a convectively unstable system with noise,
where the amplitude of generated oscillatory dynamics in the downstream depends sensitively on the boundary
value. This BCD is explained in terms of the decre@sdaxation of the comoving Lyapunov exponent
(characterizing the convective instabiliifom upstream to downstreaf. Fujimoto and K. Kaneko, Physica
D 129 203(1999]. It is shown that a fractal BCD appears if the dynamics that represent the spatial change of
the fixed point includes transient chaotic dynamics, and if appropriate intensity of noise is presented. By
considering as an example a one-way-coupled map lattice, this theory for BCD is demonstrated.

DOI: 10.1103/PhysReVE.63.036218 PACS nunier05.45.Ra, 05.40.Ca

[. INTRODUCTION In this paper we consider the simple case of a discrete
system in one spatial dimension of the kind described above.
Study of dynamical system with spatial asymmetry is gen-As a simple example, we adopt a one-way coupled map lat-
erally important in open fluid flow, chemical reaction with tice (OCML) [5—11] with noise:
flow, electric circuit system, as well as in intracellular sig- _ _ - _
naling system with successive autocatalytic reactions. In Xn=(1—€)f(Xn_1)+ €f (Xn_1) + 75 ()
such system, downstream dynamics may depend sensitiveH ] ) ) o ) )
on theboundarycondition rather thainitial condition. Such ~ Feren is a discrete time step,is the index denoting ele-
boundary condition dependence will be important generallynents (=1,2, .. .M=system sizg and 7 is a white noise

in spatially extended dynamical systems, as well as in bioSatisfying ({7, 7)) =0>8,m;, With ((---)) representing
logical systems. an ensemble average 1) [12]. A fixed boundary condi-

To consider this problem, convective instability plays antion x° is adopted and thésensitive dependence of the
important role, since it causes amplification of a disturbancélownstream dynamics oxf is studied. The use of a CML
along flow[1-3]. If a system is convectively unstabl€U), here is just for convenience for illustration. The results and
a small disturbance at an upstream position is amplified antheory we present are straightforwardly adapted to the case
transmitted downstream. Due to this property, spatiotempcoof coupled ordinary differential equatiot®DE).
ral structure with a large amplitude can be generated in the
downstream by a tiny fluctuation in the upstream. Such Il. MECHANISM OF BOUNDARY DEPENDENCE
structure is referred to as noise-sustained stru¢&s [3].

Convective instability is quantitatively characterized by a )
—ax‘ (—1<x<1). The parametera and e are chosen so

co-moving Lyapunov exponent, , i.e., the Lyapunov expo- i ) i
nent observed in an inertial system moving with the velocitythat in the noiseless case all elements are attracted to fixed

v [4,5]. If max,\, is positive for a given state, the state is POINtS Xln:XI*_ for any initial and boundary conditior{s.e.,
convectively unstable. This condition is compared to that fothe fixed points(in time) are AS in the downstreanThis
linear instability, impliesh,>0. Absolute stability(AS),  atraction to fixed points is realized in the strong coupling
which implies stability along any flod,2], is guaranteed by regime (see Ref.[9]). The values of the fixed points can
the condition max,<0. (With respect to an attractor, the depend on the lattice site numbgee., can be functions of
co-moving Lyapunov exponent is used as an indicator ofPacg and set of pointgx, } form a spatially periodic pat-
chaos: chaos with convective instability is characterized by, as show in Fig. 1. When noise is added, however, it can
the positivity of max\, . However, with respect to a state, it be amplified in the downstream to create oscillating motion
is generally used to characterize its stabiity. (see Fig. 2 if the upstream fixed points are convectively
In a system with convective instability and noise, we haveunstable[3].
shown that the downstream dynamics depend on the bound- Whether or not this noise-sustained structure is formed in
ary condition at the upstream. Such behavior exhibiting somée downstream depends on the boundary vatend the
threshold-type dependence on the boundary condition wagoise strength. As a rough measure for the amplitude of the
identified and analyzed in connection with the change of thélownstream oscillation, the root mean squaiRMS)
convective instability along the floi6]. In the present pa- v{xp—(xy,))* is computed, wheré- - - is the temporal av-
per, we demonstrate thaensitiveBCD of the downstream erage. As shown in Fig. 3, the RMS has a threshold-type
dynamics can appear in a class of noisy open-flow systemslependence ory. Such a BCD has been observed in a one-
and we clarify the condition for this appearance. way coupled ODH6]. The mechanism responsible for the
sensitive BCD clarified in that study is universal and can be
summarized as follows: A change ¥9 causes a change in
*Electronic address: fujimoto@complex.c.u-tokyo.ac.jp the value of upstream fixed point§ , which, in turn, causes

In the present case we choose the logistic rgp =1
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i FIG. 3. BCD of the RMS and,—i4(+,0=2x10"*) for the

downstream dynamics. NSS appears araxhe0.52 and 0.97. Ex-
cept these two regions for the boundary vakjgin the downstream
falls on fixed points. Different lines correspond to different noise
intensities: ¢=2x107%(00),2X 10-3(0),2x 10" *(A). With the
increase in the strength of the noise, the size of the region in which

FIG. 1. The patternxi* and\S(i). The upper figure displays the
fixed-point patterrxi* in the absence of noise, while the lower fig-
ure displays the spatial pattern¥(i). Two sets of plots are over-
laid for different values of the boundary?=0.52 (solid line with

) and 0.60(dotted line withO). For the lower figurez}zo)\s(i NSS is found increases. In the regigs-i >0 (for 0=2%10"%),

_ 0_— i is differ- ) . ; .
)12 (X for x —.0.52, o fpr 0.60) is also plotted. T.hIS.dIf'fer there exists noise-sustained structure. Het€).842, and the fixed
ence reflects the difference in the downstream dynamics in the Ca?ﬁ)int pattern is spatially period 2.

with noise. For the boundary value faP=0.60 no oscillation is
generated in the downstreafsince the CU region is narrow, as

. . ) T - . . 1-
discussed in the textwhile oscillation is generated in the down- iy = (1= &)loalf'(x )|+ eloalf'(x 1| +lo
stream forx°=0.52, as shown in Fig. 3. Hera=1.8, e=0.83. o(1)=(1=e)log " (x, )|+ elog|t' (x, )] 9 1-v
— v
a change in the degree of convective instability. Accordingly +log €(1-v) 3)
the downstream dynamics, generated through the spatial am- v(l—e)

plification of noise, can be different for different values of

x0. A relevant quantity, characterizing the amplification of a dis-

In the present case this mechanism is quantitatively andurbance per lattice site is given by the spatial instability
lyzed as follows: The spatial fixed points dynamics are de€xponent>(i) [13],

scribed by the spatial recursive equat{& , (i)
i
AS(i)= maxUT.

v

4

X, =(1—e)f (X, )+ ef(xi b

_ —1+V1t4a(l-e)(1-ae(x, )?)
- 2a(l1—e)

In Fig. 1,A(i) is also plotted as a function of the lattice site
number. For both the boundary valug$=0.52 ) and
x°=0.60 (O), convective instability exists in the upstream,
as indicated by 5(i). (Here the downstream pattern has spa-
tial period 2, and\S(i) also oscillates with this period. For
this reasony ,_I\S(i — /) /2, the average over the spatial
period, is also plotted.For xX°=0.60, AS(i) (or the average
over the spatial perigdoecomes negative at a smaller lattice

)

while the co-moving Lyapunov exponexj(i) of each fixed
point X, [6,10] is given by

50 ,"WWWYW'WVTV"V‘V

45 NW"‘W",’{Q@A site number than the case fet=0.52. In fact, as discussed
I D is d : N i
BA0RAR AT, below, this difference in the convergence ratexs{i) is
E35 %’AW relevant to the BCD of the downstream dynamics.
S0 Since we have assumed that the fixed point pattern is AS
225 in the downstream, the noise has to be amplified at a lattice
520 point where the fixed point remains CU, in order for NSS to
o115 be formed. First, we estimate the lattice pdipt defined as
10 the site where the convective instability is lost; in other

5

0
30000 30020 30040 30060 30080 30100 30120 30140

n : time step

FIG. 2. Spatiotemporal plot of NSS witlr=2Xx10"%, a

=1.8,6=0.83, andx®°=0.52. Herexin is plotted for every second

lattice site.

words, the site where the fixed poix{,; changes from CU to
AS. Recall that the<i* approach a periodic pattern in the
downstream in the absence of noise. Denoting this spatial
period byL, the lattice point, is given by the point such
that =L _t\S(i — /)/L is positive fori<i, and negative for
i=i,. As can be also expected by considering Figs. 1 and 3,
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iy is strongly correlated with the relaxation scale of the spa-

tial map. If the convergence of the spatial map to its attractor,, 01

is more rapid,i,, is generally smaller(See Fig. 1: for ex-
ample,i,= 12 forx°=0.60 indicated by®, while i ,= 36 for
x°=0.52 indicated byx .)

On the other hand, the scalgrequired for the amplifica-
tion of a tiny noise tdO(1) can be estimated by

o £ 110 1

Then, the conditioi6] for the formation of NSS is simply
given by

g
;1 AS(i) (5)

=

0. (6)

In Fig. 3, we have plotted,—iy and the RMS of down-
stream dynamics as function of the boundary vatlieThe

iy—ig

numerical results clearly support the conclusion that the con-

dition for NSS is given byi,—i4=0. Although this condi-
tion concerns only the sign of —igy, the amplitude of the
NSS is also highly correlated with the value igf-ig4, as
shown in Fig. 3. In the case of Fig. 3, the downstream AS
dynamics are of spatial period 2, where NSS appears aroun
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FIG. 4. (a) shows BCD of the RMS ok (O) andi,—iq

(X), with €=0.9108, spatial period= 4, and 0=2x10"*. (b)
shows BCD of the RMS 0k?® with ¢=0.928198, spatial period
=16, ando=2Xx 108, For each, the lower figure is the blow-up of

atthe upper figure, and each figure represents 5000 data points taken
at equal intervals.

IIl. SENSITIVE BOUNDARY CONDITION DEPENDENCE

For the case of spatial period 4, as shown in Fi@),4
there are many undulations, and this BCD has a self-simil
fine structure, to be shown as fract@éee the blow-up of
Fig. 4@]. The complexity of this self-similar structure of the
BCD increases with the period, as shown in Fi(p)4or the ~ noise intensity, as shown in Fig. 7. It takes its maximal value
case of spatial period 16. With this self-similar structure, aat the medium level of noise intensity. If the intensity of the
small difference in the boundary value results in a large difnoise is too small, NSS is difficult to be formed, while if it is
ference in the downstream dynamics. too large, the parameter domain to give each NSS is broad-

Note that the loss of convective instability in the down- ened as shown in Fig. 3 and Fig. 6, and the neighboring
stream (for the noiseless capés necessary to have such domains are fused successively with the increase of noise
BCD. If the downstream without noise is CU, then the BCDintensity, leading to the decrease in the number of undulation
becomes weaker as the distance from the boundary increas#sthe BCD. Accordingly, the BCD is most complex at some
and in an infinitely large system, this BCD eventually diesfinite noise intensity, where the number of undulation in the
away completely. To check the convective instability of theBCD, shown in Fig. 4, of downstream amplitude takes a
downstream, we have computed Lyapunov exponent of thexaximal value. The noise intensity that gives a peak of com-
spatial map in Eq(2) [8] and the spatial instability exponent plexity in Fig. 7 depends og. This is explained in terms of
\S of the fixed points averaged over 16 lattice points at théhe e dependence of the convective instabiit)(<0) at the
downstream. In Fig. 5, we are plotted as a function of coudownstream, shown in Fig. 5. As’ increases toward 0, the
pling strengthe. Since the absolute stability of the down- (downstream region with convective instability is longer.
stream is necessary to have BCD, it exists only at separatddence,i, (accordinglyi,—ig) gets larger. As shown in Egs.
intervals in the parameter spalcsd]. (5) and(6), the increase df,— i gives the same influence on

In Fig. 6, dependence of RMS on the noise strength anthe dynamics as the increase®fHence the noise intensity
boundary condition is plotted. The region in which the NSSthat gives the most complex BCD, is shifted to a smaller
with a large value of RMS form a tongue-like structures. Forvalue, as shown by the shift froex 0.9108(solid line with
a smallo, say, less than=10" 2 NSS is not formed for any X) to e=0.928198(dotted line withO) in Fig. 7.
boundary condition. Inr=10"3 some tongues merge as Fig. We now discuss the origin of such sensitive BCD. As
6(b) and the complexity of the BCD decreases. Note that theeen from Fig. 4, this BCD is due to the complicated struc-
complexity of the boundary condition dependence, measuretiire of the BCD ofi,—iy. Here,igy has a rather smooth
by the number of ups and downs in the boundary conditiordependence ox?, and the complicated structure is due
dependence, takes its maximal value at the medium level ahainly to i,. In fact, there are(infinitely) many local
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FIG. 5. Lyapunov exponent of the spatial map in E).(dotted IO'01
line) and the spatial Lyapunov exponent averaged over some range 10
of lattice points=2> \S(i—/)/2 (i>1) (solid line3 are plotted as -16
a function ofe for the noiseless case=0. Here, temporally fixed 0.50 0.53

points are spatially period &SP2 for €<0.898, spatially period 4 Boundary Gondiiion

(SP4 for 0.898<€<0.922, spatially period §SP§ for 0.92< e L

. . - FIG. 6. The RMS of downstream dynamics is plotted as a func-
<0.926, and spatial chaotic far>0.931_. The spatial Lyapunov ion of noise strengthr (vertical axig a)r/1d boundarF;/ condition®
exponent shows that the attracted spatial pattern SP2 is absomte?xorizontal axis, with e 0.9108. The value of the RMS is plotted
stable (AS) for 0.822<¢<0.867, and the SP4 pattern is AS for ' - ' ) .
0.90 €< 0.913, while the spatial chaosat-0.931 is always con- by the gray scale, where the darkest pixel shows the case with

vectively unstable. There are separated parameter regions in whi MS~1, and the brlghEelit the value less than”fl._o(b_) IS a
the downstream is absolutely stable. ow-up of (a). For o0~10"-°, the downstream dynamics is a fixed

point for any boundary value of°. On the other hand, for a large

] ) ) . ) value of o around 10° some tongues merge with each other as
maxima ofi, considered as a function &, in analogy to  shown in(b).

the plot ofi,—ig4 in Fig. 4a). ) ) N )

Recall that the scalg, is highly correlated with the dura- (With topological chads sensitive BCD is expected to be a
tion of the transient process of the spatial map &, i.e., ~ 9eneral phenomenon. It should be stressed that although the
the number of steps required for an orbit. It is generated bynechanism here is based on the fractal basin in the spatial
the dynamics of the map starting fromi and falling into a  Map, the sensitive dependence is explained as a dependence
periodic attractor. When the period of the attractor of theon theboundary conditiorrather than the initial condition
map g(x) is L, there arelL stable fixed points for the map [16]
x—g“(x). Each stable fixed point corresponds to a different
phase of the periodic attractor of the spatial nggR). For

each value of the initial conditior” in the spatial map, the |y conclusion, we have demonstrated the existence of a

fixed point to which theg"(x) map is attractedi.e., the  sensitive BCD of noise-sustained structure in a system char-
phase of the cycle in the mag{x)] is different.

IV. CONCLUSION

When multiple attractors coexist, it is often the case that §40 S000q, £-0.928198 0 ]800
the basin structure for each attractor is fra¢teB]. This is 535 el 2 09108 4200
true for g-(x), and here there can be infinitely many basin =~ ' s
boundary points. For the spatial period 2 case, there are 4 w0 600

yp p p , = w

such points, while there are infinitely many points and the 525 500
basin boundary is fractal for the case of spatial periddrd gzo g 400%
highep. Note that at unstable fixed points@f(x), the phase 215 3002
of the attracted cycle slips. Successive preimages of such “210 200%
fixed points are nothing but the basin boundary of the map = I
g“(x), with which fractal basin boundary is formed. 25 100%
For each basin boundary point, the number of transient 2 010-15 167 1% 10° 10° 10 0 3

steps before the attraction of an orbit to an attractor diverges.
Hence,i, takes a local maximum at each point. These points

correspond to the local minima of the tongues in Fig. 6. G, 7. The noise strength dependence of the number of the
Accordingly, there are infinitely many local maxima iqf, undulation in BCD. We have computed the BCD given in Fig. 4 for
organized in a self-similar manner. Now, the sensitive deeach noise intensity, using 10000 data points taken at equal inter-
pendence o’ is understood resulting from a fractal basin vals, and then counted the number of undulafioms and downsin
boundary in the spatial map. Since this formation of a fractathe figure. Plotted are the data for the spatial periogatd line
basin boundary is rather common in one-dimensional mapwith X) and 16(dotted line withO), corresponding to Fig. 4.

noise intensity
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acterized by convective instability in the upstream. The ori-Convective instability in open flow is observed in a wide
gin of boundary condition sensitivity is found to be the com-variety of systems with fluctuations, including chemical re-
plex transient dynamics in the spatial map, which lead to action networkg12,17], optical networkq 18], traffic flow,
fractal basin boundary. Accordingly, the sensitive BCD isneural networl{19], and open fluid flow. Sensitive BCD is
generally expected as long as the spatial map exhibits top@xpected to be observed in an such systems. In particular,
logical (or transient chaos. The analysis presented here carsensitive BCD in chemical reaction networks may be impor-
be extended to the case in which, in the absence of noise, thant in understanding diverse responses in signal transduction
downstream does not possess fixed points, but, rather posystems of cells.
sesses a stable cycle.

Although we have studied the sensitive BCD for the sim-
plest case with a CML, our analysis can be straightforwardly
extended to systems of coupled ODEs and of partial differ- This work is partially supported by Grants-in-Aid for Sci-
ential equations. It can also be extended to a system with antific Research from the Ministry of Education, Science,
bi-directional coupling, as long as there is spatial asymmetryand Culture of Japafl1CE2006 and 1183704
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