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Sensitive boundary condition dependence of noise-sustained structure
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Sensitive boundary condition dependence~BCD! is reported in a convectively unstable system with noise,
where the amplitude of generated oscillatory dynamics in the downstream depends sensitively on the boundary
value. This BCD is explained in terms of the decrease~relaxation! of the comoving Lyapunov exponent
~characterizing the convective instability! from upstream to downstream@K. Fujimoto and K. Kaneko, Physica
D 129, 203~1999!#. It is shown that a fractal BCD appears if the dynamics that represent the spatial change of
the fixed point includes transient chaotic dynamics, and if appropriate intensity of noise is presented. By
considering as an example a one-way-coupled map lattice, this theory for BCD is demonstrated.
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I. INTRODUCTION

Study of dynamical system with spatial asymmetry is g
erally important in open fluid flow, chemical reaction wi
flow, electric circuit system, as well as in intracellular si
naling system with successive autocatalytic reactions.
such system, downstream dynamics may depend sensit
on theboundarycondition rather thaninitial condition. Such
boundary condition dependence will be important gener
in spatially extended dynamical systems, as well as in b
logical systems.

To consider this problem, convective instability plays
important role, since it causes amplification of a disturba
along flow@1–3#. If a system is convectively unstable~CU!,
a small disturbance at an upstream position is amplified
transmitted downstream. Due to this property, spatiotem
ral structure with a large amplitude can be generated in
downstream by a tiny fluctuation in the upstream. Su
structure is referred to as noise-sustained structure~NSS! @3#.

Convective instability is quantitatively characterized by
co-moving Lyapunov exponentlv , i.e., the Lyapunov expo
nent observed in an inertial system moving with the veloc
v @4,5#. If maxvlv is positive for a given state, the state
convectively unstable. This condition is compared to that
linear instability, impliesl0.0. Absolute stability~AS!,
which implies stability along any flow@1,2#, is guaranteed by
the condition maxvlv,0. ~With respect to an attractor, th
co-moving Lyapunov exponent is used as an indicator
chaos: chaos with convective instability is characterized
the positivity of maxvlv . However, with respect to a state,
is generally used to characterize its stability.!

In a system with convective instability and noise, we ha
shown that the downstream dynamics depend on the bo
ary condition at the upstream. Such behavior exhibiting so
threshold-type dependence on the boundary condition
identified and analyzed in connection with the change of
convective instability along the flow@6#. In the present pa-
per, we demonstrate thatsensitiveBCD of the downstream
dynamics can appear in a class of noisy open-flow syste
and we clarify the condition for this appearance.
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In this paper we consider the simple case of a discr
system in one spatial dimension of the kind described abo
As a simple example, we adopt a one-way coupled map
tice ~OCML! @5–11# with noise:

xn
i 5~12e! f ~xn21

i !1e f ~xn21
i 21 !1hn

i . ~1!

Here n is a discrete time step,i is the index denoting ele
ments (i 51,2, . . .M5system size!, andh is a white noise
satisfying ^^hn

i hm
j &&5s2dnmd i j , with ^^¯&& representing

an ensemble average (s!1) @12#. A fixed boundary condi-
tion x0 is adopted and the~sensitive! dependence of the
downstream dynamics onx0 is studied. The use of a CML
here is just for convenience for illustration. The results a
theory we present are straightforwardly adapted to the c
of coupled ordinary differential equations~ODE!.

II. MECHANISM OF BOUNDARY DEPENDENCE

In the present case we choose the logistic mapf (x)51
2ax2 (21,x,1). The parametersa and e are chosen so
that in the noiseless case all elements are attracted to fi
points xn

i 5x
*
i for any initial and boundary conditions@i.e.,

the fixed points~in time! are AS in the downstream#. This
attraction to fixed points is realized in the strong coupli
regime ~see Ref.@9#!. The values of the fixed points ca
depend on the lattice site number~i.e., can be functions of
space!, and set of points$x*

i % form a spatially periodic pat-
tern, as show in Fig. 1. When noise is added, however, it
be amplified in the downstream to create oscillating mot
~see Fig. 2! if the upstream fixed points are convective
unstable@3#.

Whether or not this noise-sustained structure is formed
the downstream depends on the boundary valuex0 and the
noise strength. As a rough measure for the amplitude of
downstream oscillation, the root mean square~RMS!
A^xn

i 2^xn
i &&2 is computed, wherê•••& is the temporal av-

erage. As shown in Fig. 3, the RMS has a threshold-ty
dependence onx0. Such a BCD has been observed in a on
way coupled ODE@6#. The mechanism responsible for th
sensitive BCD clarified in that study is universal and can
summarized as follows: A change inx0 causes a change i
the value of upstream fixed pointsx

*
i , which, in turn, causes
©2001 The American Physical Society18-1
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a change in the degree of convective instability. Accordin
the downstream dynamics, generated through the spatial
plification of noise, can be different for different values
x0.

In the present case this mechanism is quantitatively a
lyzed as follows: The spatial fixed points dynamics are
scribed by the spatial recursive equation@9#

x
*
i 5~12e! f ~x

*
i !1e f ~x

*
i 21!

5
211A114a~12e!„12ae~x

*
i 21!2

…

2a~12e!

[g~x
*
i 21!, ~2!

while the co-moving Lyapunov exponentlv( i ) of each fixed
point x

*
i @6,10# is given by

FIG. 1. The patternsx
*
i andlS( i ). The upper figure displays th

fixed-point patternx
*
i in the absence of noise, while the lower fig

ure displays the spatial pattern oflS( i ). Two sets of plots are over
laid for different values of the boundary,x050.52 ~solid line with
h) and 0.60~dotted line withs). For the lower figure( l 50

1 lS( i
2l )/2 (3 for x050.52, d for 0.60) is also plotted. This differ-
ence reflects the difference in the downstream dynamics in the
with noise. For the boundary value forx050.60 no oscillation is
generated in the downstream~since the CU region is narrow, a
discussed in the text!, while oscillation is generated in the down
stream forx050.52, as shown in Fig. 3. Here,a51.8, e50.83.

FIG. 2. Spatiotemporal plot of NSS withs5231023, a
51.8,e50.83, andx050.52. Herexn

i is plotted for every second
lattice site.
03621
y
m-
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-

lv~ i !5~12e!logu f 8~x
*
i !u1e logu f 8~x

*
i 21!u1 logU12e

12vU
1 logUe~12v !

v~12e!
Uv

. ~3!

A relevant quantity, characterizing the amplification of a d
turbance per lattice site is given by the spatial instabi
exponentlS( i ) @13#,

lS~ i !5max
v

lv~ i !

v
. ~4!

In Fig. 1,lS( i ) is also plotted as a function of the lattice si
number. For both the boundary valuesx050.52 (h) and
x050.60 (s), convective instability exists in the upstream
as indicated bylS( i ). ~Here the downstream pattern has sp
tial period 2, andlS( i ) also oscillates with this period. Fo
this reason,( l 50

1lS( i 2l )/2, the average over the spati
period, is also plotted.! For x050.60, lS( i ) ~or the average
over the spatial period! becomes negative at a smaller latti
site number than the case forx050.52. In fact, as discusse
below, this difference in the convergence rate oflS( i ) is
relevant to the BCD of the downstream dynamics.

Since we have assumed that the fixed point pattern is
in the downstream, the noise has to be amplified at a lat
point where the fixed point remains CU, in order for NSS
be formed. First, we estimate the lattice pointi u , defined as
the site where the convective instability is lost; in oth
words, the site where the fixed pointx

*
i changes from CU to

AS. Recall that thex
*
i approach a periodic pattern in th

downstream in the absence of noise. Denoting this spa
period byL, the lattice pointi u is given by the pointi such
that ( l 50

L21lS( i 2l )/L is positive for i , i u and negative for
i> i u . As can be also expected by considering Figs. 1 an

se

FIG. 3. BCD of the RMS andi u2 i g(1,s5231024) for the
downstream dynamics. NSS appears aroundx050.52 and 0.97. Ex-
cept these two regions for the boundary value,xn

i in the downstream
falls on fixed points. Different lines correspond to different noi
intensities:s5231026(h),231025(s),231024(n). With the
increase in the strength of the noise, the size of the region in wh
NSS is found increases. In the regioni u2 i g.0 ~for s5231024),
there exists noise-sustained structure. Heree50.842, and the fixed
point pattern is spatially period 2.
8-2
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i u is strongly correlated with the relaxation scale of the s
tial map. If the convergence of the spatial map to its attrac
is more rapid,i u is generally smaller.~See Fig. 1: for ex-
ample,i u512 for x050.60 indicated byd, while i u536 for
x050.52 indicated by3.!

On the other hand, the scalei g required for the amplifica-
tion of a tiny noise toO(1) can be estimated by

s expS (
i 51

i g

lS~ i !D;1. ~5!

Then, the condition@6# for the formation of NSS is simply
given by

i u2 i g>0. ~6!

In Fig. 3, we have plottedi u2 i g and the RMS of down-
stream dynamics as function of the boundary valuex0. The
numerical results clearly support the conclusion that the c
dition for NSS is given byi u2 i g>0. Although this condi-
tion concerns only the sign ofi u2 i g , the amplitude of the
NSS is also highly correlated with the value ofi u2 i g , as
shown in Fig. 3. In the case of Fig. 3, the downstream
dynamics are of spatial period 2, where NSS appears aro
x050.52 and 0.97. The BCD here is simple, with just tw
regions allowing for NSS.

III. SENSITIVE BOUNDARY CONDITION DEPENDENCE

For the case of spatial period 4, as shown in Fig. 4~a!,
there are many undulations, and this BCD has a self-sim
fine structure, to be shown as fractals@see the blow-up of
Fig. 4~a!#. The complexity of this self-similar structure of th
BCD increases with the period, as shown in Fig. 4~b! for the
case of spatial period 16. With this self-similar structure
small difference in the boundary value results in a large
ference in the downstream dynamics.

Note that the loss of convective instability in the dow
stream ~for the noiseless case! is necessary to have suc
BCD. If the downstream without noise is CU, then the BC
becomes weaker as the distance from the boundary incre
and in an infinitely large system, this BCD eventually di
away completely. To check the convective instability of t
downstream, we have computed Lyapunov exponent of
spatial map in Eq.~2! @8# and the spatial instability exponen
lS of the fixed points averaged over 16 lattice points at
downstream. In Fig. 5, we are plotted as a function of c
pling strengthe. Since the absolute stability of the down
stream is necessary to have BCD, it exists only at separ
intervals in the parameter space@14#.

In Fig. 6, dependence of RMS on the noise strength
boundary condition is plotted. The region in which the NS
with a large value of RMS form a tongue-like structures. F
a smalls, say, less thans510212 NSS is not formed for any
boundary condition. Ins51023 some tongues merge as Fi
6~b! and the complexity of the BCD decreases. Note that
complexity of the boundary condition dependence, measu
by the number of ups and downs in the boundary condit
dependence, takes its maximal value at the medium leve
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noise intensity, as shown in Fig. 7. It takes its maximal va
at the medium level of noise intensity. If the intensity of th
noise is too small, NSS is difficult to be formed, while if it
too large, the parameter domain to give each NSS is bro
ened as shown in Fig. 3 and Fig. 6, and the neighbor
domains are fused successively with the increase of n
intensity, leading to the decrease in the number of undula
in the BCD. Accordingly, the BCD is most complex at som
finite noise intensity, where the number of undulation in t
BCD, shown in Fig. 4, of downstream amplitude takes
maximal value. The noise intensity that gives a peak of co
plexity in Fig. 7 depends one. This is explained in terms o
thee dependence of the convective instabilitylS(,0) at the
downstream, shown in Fig. 5. AslS increases toward 0, the
~downstream! region with convective instability is longer
Hence,i u ~accordinglyi u2 i g) gets larger. As shown in Eqs
~5! and~6!, the increase ofi u2 i g gives the same influence o
the dynamics as the increase ofs. Hence the noise intensity
that gives the most complex BCD, is shifted to a smal
value, as shown by the shift frome50.9108~solid line with
3) to e50.928198~dotted line withs) in Fig. 7.

We now discuss the origin of such sensitive BCD. A
seen from Fig. 4, this BCD is due to the complicated str
ture of the BCD of i u2 i g . Here, i g has a rather smooth
dependence onx0, and the complicated structure is du
mainly to i u . In fact, there are~infinitely! many local

FIG. 4. ~a! shows BCD of the RMS ofx200 (s) and i u2 i g

(3), with e50.9108, spatial period5 4, and s5231024. ~b!
shows BCD of the RMS ofx200 with e50.928198, spatial period
516, ands5231028. For each, the lower figure is the blow-up o
the upper figure, and each figure represents 5000 data points t
at equal intervals.
8-3
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maxima of i u considered as a function ofx0, in analogy to
the plot of i u2 i g in Fig. 4~a!.

Recall that the scalei u is highly correlated with the dura
tion of the transient process of the spatial map Eq.~2!, i.e.,
the number of steps required for an orbit. It is generated
the dynamics of the map starting fromx0 and falling into a
periodic attractor. When the period of the attractor of t
map g(x) is L, there areL stable fixed points for the ma
x→gL(x). Each stable fixed point corresponds to a differe
phase of the periodic attractor of the spatial mapg(x). For
each value of the initial conditionx0 in the spatial map, the
fixed point to which thegL(x) map is attracted@i.e., the
phase of the cycle in the mapg(x)# is different.

When multiple attractors coexist, it is often the case t
the basin structure for each attractor is fractal@15#. This is
true for gL(x), and here there can be infinitely many bas
boundary points. For the spatial period 2 case, there a
such points, while there are infinitely many points and
basin boundary is fractal for the case of spatial period 4~or
higher!. Note that at unstable fixed points ofgL(x), the phase
of the attracted cycle slips. Successive preimages of s
fixed points are nothing but the basin boundary of the m
gL(x), with which fractal basin boundary is formed.

For each basin boundary point, the number of trans
steps before the attraction of an orbit to an attractor diverg
Hence,i u takes a local maximum at each point. These poi
correspond to the local minima of the tongues in Fig.
Accordingly, there are infinitely many local maxima ofi u ,
organized in a self-similar manner. Now, the sensitive
pendence onx0 is understood resulting from a fractal bas
boundary in the spatial map. Since this formation of a frac
basin boundary is rather common in one-dimensional m

FIG. 5. Lyapunov exponent of the spatial map in Eq.~2! ~dotted
line! and the spatial Lyapunov exponent averaged over some r
of lattice points( l 50

15 lS( i 2l )/2 (i @1) ~solid lines! are plotted as
a function ofe for the noiseless cases50. Here, temporally fixed
points are spatially period 2~SP2! for e,0.898, spatially period 4
~SP4! for 0.898,e,0.922, spatially period 8~SP8! for 0.922,e
,0.926, and spatial chaotic fore.0.931. The spatial Lyapunov
exponent shows that the attracted spatial pattern SP2 is abso
stable ~AS! for 0.822,e,0.867, and the SP4 pattern is AS fo
0.907,e,0.913, while the spatial chaos ate.0.931 is always con-
vectively unstable. There are separated parameter regions in w
the downstream is absolutely stable.
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~with topological chaos!, sensitive BCD is expected to be
general phenomenon. It should be stressed that although
mechanism here is based on the fractal basin in the sp
map, the sensitive dependence is explained as a depend
on the boundary conditionrather than the initial condition
@16#.

IV. CONCLUSION

In conclusion, we have demonstrated the existence o
sensitive BCD of noise-sustained structure in a system c

FIG. 6. The RMS of downstream dynamics is plotted as a fu
tion of noise strengths ~vertical axis! and boundary conditionx0

~horizontal axis!, with e50.9108. The value of the RMS is plotte
by the gray scale, where the darkest pixel shows the case
RMS;1, and the brightest the value less than 1024. ~b! is a
blow-up of ~a!. For s;10216, the downstream dynamics is a fixe
point for any boundary value ofx0. On the other hand, for a larg
value of s around 1023 some tongues merge with each other
shown in~b!.

FIG. 7. The noise strength dependence of the number of
undulation in BCD. We have computed the BCD given in Fig. 4
each noise intensity, using 10000 data points taken at equal in
vals, and then counted the number of undulation~ups and downs! in
the figure. Plotted are the data for the spatial period 4~solid line
with 3) and 16~dotted line withs), corresponding to Fig. 4.
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acterized by convective instability in the upstream. The o
gin of boundary condition sensitivity is found to be the co
plex transient dynamics in the spatial map, which lead t
fractal basin boundary. Accordingly, the sensitive BCD
generally expected as long as the spatial map exhibits to
logical ~or transient! chaos. The analysis presented here c
be extended to the case in which, in the absence of noise
downstream does not possess fixed points, but, rather
sesses a stable cycle.

Although we have studied the sensitive BCD for the si
plest case with a CML, our analysis can be straightforwar
extended to systems of coupled ODEs and of partial dif
ential equations. It can also be extended to a system wi
bi-directional coupling, as long as there is spatial asymme
i,

th
ai
th
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Convective instability in open flow is observed in a wid
variety of systems with fluctuations, including chemical r
action networks@12,17#, optical networks@18#, traffic flow,
neural network@19#, and open fluid flow. Sensitive BCD i
expected to be observed in an such systems. In partic
sensitive BCD in chemical reaction networks may be imp
tant in understanding diverse responses in signal transduc
systems of cells.
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