
VOLUME 88, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 14 JANUARY 2002

028701-1
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As a model of temporally evolving networks, we consider a globally coupled logistic map with variable
connection weights. The model exhibits self-organization of network structure, reflected by the collective
behavior of units. Structural order emerges even without any interunit synchronization of dynamics.
Within this structure, units spontaneously separate into two groups whose distinguishing feature is that
the first group possesses many outwardly directed connections to the second group, while the second
group possesses only a few outwardly directed connections to the first. The relevance of the results to
structure formation in neural networks is briefly discussed.
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Recently, studies of various types of networks have been
attracting the interest of researchers from a broad range of
scientific disciplines [1,2]. Although in some such studies,
there is a time dependence of the structure of the network
consisting of an increase in the number of units of which
it is composed [2], the elements themselves are essen-
tially static units, with neither their intrinsic properties nor
their interactions with each other evolving in time. Most
networks in the real world, however, consist of dynamic
elements, and the dynamics of the individual elements in-
fluence the formation of network structure. Thus in order
to understand realistic networks, it is necessary to consider
the modeling of networks with such dynamic elements.
In this Letter we study an abstract model of a network
composed of dynamic elements and report its behavior, as
found through numerical simulation, focusing mainly on
the formation of structure.

We consider a network of N dynamic units that interact
with each other through connections with time-dependent
strengths. For simplicity, we describe the dynamics of both
the units and the connection strengths with discrete-time
maps. Hence, our model belongs to a class of globally
coupled maps (GCM) [3]. We denote by f�x� the function
defining the map for the dynamics of each unit. With this,
our model is given by the set of equations
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where xi
n is the state variable of the ith unit (1 # i # N)

at the nth time step. The coupling c represents the strength
of the influence of the other units on the dynamics of unit i
(0 , c , 1), and wij

n is the time-dependent weight of the
connection from the unit j to i at time step n. As the map
providing the dynamics of the units, we adopt the logistic
map f�x� � ax�1 2 x�, but we believe that qualitatively
similar behavior would be displayed by the system for any
form of f�x� that exhibits chaos.

With regard to the dynamics of the connection strengths,
we stipulate that the connections between units i and j
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with similar values xi
n and xj

n are strengthened [4,5]. (This
can be regarded as an extension of Hebb’s rule, which is
widely used in neural network studies [6].) Also, we con-
sider there to be a resource in the system that is used to
establish connections between units. Then, we assume that
there is a limitation on this resource. As a result, there
exists competition among connections for this resource.
Instead of using an explicit variable representing the re-
source, we incorporate this effect into our model through
the normalization of the connection strengths, as
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where d is a parameter that represents the plasticity of the
connection strengths, and g�xi

n, xj
n� is a monotonically de-

creasing function of the absolute value of the difference
between its arguments, whose form we choose here is
g�xi

n, xj
n� � 1 2 2jxi

n 2 xj
nj. Note that, due to the nor-

malization given in Eq. (2), wij is generally not equal to
wji ; i.e., the network is asymmetric.

In the following, we give the results of our numerical
simulations of the model. Throughout this Letter, the num-
ber of units N is set to 100, though the results described
below do not change qualitatively for larger systems except
for the existence of a longer transient behavior. The initial
conditions we used are as follows. First, the initial values
of the self-connections wii

0 were set to 0. Then as deter-
mined by Eq. (2), they remained at 0 for n . 0. Second,
all the remaining connection strengths were set to identi-
cal values. From the constraint of the normalization, this
value is determined to be 1��N 2 1�. Finally, for the state
variables, the initial values were randomly chosen from the
interval �0, 1� with a uniform sampling measure.

In our model, we have three parameters: a, which con-
trols the dynamics of each unit, c, which determines the
overall strength of the interactions between the units, and
d, which governs the connection dynamics. Here we fix
the parameter d to 0.1 [7] and study how the behavior of
© 2002 The American Physical Society 028701-1



VOLUME 88, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 14 JANUARY 2002
the system changes as the function of the values of the pa-
rameters a and c.

It is known that the dynamics of GCM can be classified
into four phases, according to the degree of synchroniza-
tion and clustering among units [3]. In contrast to the con-
ventional GCM, only three of these four phases appear in
our system. The first is the coherent phase, in which all the
units take the same value and oscillate synchronously. The
second is the ordered phase, in which the units split into
a few clusters and all the units within each such cluster
oscillate synchronously. The third is the desynchronized
phase, in which there is no synchronization between any
two units [8].

Corresponding to the different types of collective be-
havior, different network structures emerge. In the co-
herent phase, all connections have almost identical values
and these values do not change over time. In the ordered
phase, due to the formation of clusters of units, connec-
tions between units that belong to the same cluster have
similar finite values, determined by the size of the cluster,
while connections between two units from different clus-
ters tend towards 0. In this case, too, the network is static.
The situation is different, however, in the desynchronized
phase, in which connection strengths can change, and the
network structure is not fixed over time. The structure
of the network in this phase is complicated, but not com-
pletely random. In this Letter we consider only the phe-
nomena observed in this desynchronized phase, because
we are presently interested in the behavior of dynamic net-
works. This phase roughly corresponds to the parameter
ranges 3.7 , a , 4.0 and 0 , c , 0.2. In the simula-
tions reported in the following, parameter values outside
these ranges were not used.

To characterize the global behavior of the network in the
parameter space, we define some characteristic quantities
of the network and study their parameter dependence.

First, as an index of the magnitude of the temporal
change of the network, we define an average variation of
the connection strength per step. We call this the “activity
of the network” and write it
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where tt is the length of the transient period and tm is the
length of the measuring period.

In Fig. 1(a), the activity A of the network is plotted with
respect to the parameters a and c on a gray scale. Here
tt and tm were chosen as 100 000 and 1000, respectively.
A broad band of high activity is seen around the line c �
0.15 3 �a 2 3.7�, corresponding to the bright region in
Fig. 1(a). Note that there is no synchronization between
the dynamics of the units anywhere in the parameter space
shown in Fig. 1(a). Nevertheless, there is a rather wide
region of quite low activity. In most of this region, most
of the units exist in pairs, with the units in each such
pair having nonzero connections only between each other,
forming fixed pairs in the network. While the dynamics
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FIG. 1. Gray scale plots of network quantities with respect to
the parameters a and c, with a discretization of 0.01 for both.
(a) The activity A of the network. Brighter shades correspond
to higher network activity. (See the text for the definition of the
quantity A.) (b) The variance of the total weight of outwardly
directed connections Wi

out. Brighter shades correspond to larger
variance.

of two units forming a pair are not synchronized, they are
highly correlated.

In the regime of high activity, more complex and
dynamic network structure is formed. To observe this,
we consider the average connection matrix, denoted as
Wij and defined as the temporal average of wij

n : Wij �
1

tm

Ptt1tm
n�tt

wij
n , where tm and tt were introduced in

Eq. (3).
If the dynamics of the connection strength are com-

pletely random, it is expected that the average connection
strengths will take almost identical values for each i and
j, and the variance among units will decrease to 0 as the
averaging time increased. In contrast, if there exists struc-
ture in a network with high activity, there should be some
variance among units in Wij . Keeping this in mind, we
consider the sum of the average connection strengths ema-
nating from one unit: Wi

out �
PN

j�1 Wji . We calculated
the variance of Wi

out over i for different parameter values.
The result is displayed in Fig. 1(b) for tt � 100 000 and
tm � 1000. We find that a large variance is observed just
below the line c � 0.15 3 �a 2 3.7�.

In comparing Figs. 1(a) and 1(b), we can see that the
region of high network activity can be decomposed into
two regimes: one with a large variance of Wi

out [for c ,

0.15 3 �a 2 3.7�], and the other with small Wi
out [for c .

0.15 3 �a 2 3.7�]. As mentioned above, a large variance
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in the active regime indicates the existence of some struc-
tural order in a temporally evolving network.

In the following, we investigate the structural charac-
teristics of this dynamic yet ordered network. In par-
ticular, we consider the parameter values a � 3.97 and
c � 0.12, which correspond to the largest variance in the
active regime. However, we point out that the general char-
acteristics of the network do not depend sensitively on this
special choice of the parameter values.

First, we study the structural change over time from the
initial all-to-all-type network to the eventual highly struc-
tured one by considering the dependence on the averaging
time of Wi

out. In Fig. 2, we plot series of Wi
out as func-

tions of the measuring time tm (with fixed transient time
tt � 0) for a single trial [9]. Each line represents a series
of Wi

out for a particular value of i.
This figure shows that units separate into two groups:

one with large values of Wi
out and one with small values

[10]. The separation becomes more distinct as the measur-
ing time increases, although the separation process seems
to be nearly completed by the 3 3 106th step, because af-
ter this time, we do not observe the migration of any unit
between the two groups. Also, this figure shows that the
fluctuations of Wi

out are larger for the large Wi
out group.

This implies that Wi
out for a unit in this group occasionally

takes small values for a certain period. By contrast, a unit
of the small Wi

out group will only very rarely take large
values of the total weight. In this sense, the small Wi

out
group is more stable.

To quantify the detailed properties of the network struc-
ture, we digitize the connections as follows: If wij ex-
ceeds a threshold value, namely, 1��N 2 1�, we assign a
connection from unit j to unit i; otherwise no connection
is assigned. This threshold 1��N 2 1� is equal to the con-
nection value in the case that a unit uniformly connects
to all the others. Hence it is a natural criterion for distin-
guishing “strong” connections.
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FIG. 2. The total weights of outwardly directed connections
Wi

out as functions of the measuring time for the average connec-
tion matrix Wij . Each curve corresponds to a single unit and
represents a series of Wi

out with different measuring times. The
series of Wi

out for all units are superimposed.
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Using this method, we can represent the network by
a graph. We composed graphs from snapshots of wij at
the 500 000th step for many initial conditions. From these
graphs, we calculated distribution of the degree of recep-
tion and emission. The degree of reception is the num-
ber of connections directed at a unit (subsequently referred
to as “inwardly directed” connections) and the degree of
emission is the number of connections emanating from a
unit (subsequently referred to as “outwardly directed con-
nections”). The distributions of these two quantities are
shown in Fig. 3.

The distribution of the degree of reception has a uni-
modal shape, with a peak at about 8 degrees. Hence, with
regard to the inwardly directed connections, this network
has a single scale. This is mainly due to the competition
among inwardly directed connections, resulting from their
normalization.

By contrast, the distribution of the degree of emission
has a bimodal shape, which can be decomposed into two
components. One component is a distribution with expo-
nential decay, corresponding to the small Wi

out group in
Fig. 2. The other component is the unimodal distribution
with a peak at about 45 degrees, corresponding to the large
Wi

out group in Fig. 2.
Considering the appearance of the two components in

the distribution of the outwardly directed connections,
we divide the units into two groups. One group we call
the “core group,” which consists of units with more than
20 connections, and the other we call the “peripheral
group,” which consists of all other units. With the
parameter values used here, the number of units in the
core group is typically 14.

With the partition of units into these two groups, the
connections are naturally classified into four groups. The
group to which a given connection belongs is determined
by the groups to which the two units it connects belong.
With obvious identification, we call these groups the
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FIG. 3. Distributions of the degrees of reception and emission.
A logarithmic scale is used for the vertical axis. The solid curve
is the distribution of the degree of emission, and the broken line
is that of the degree of reception.
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TABLE I. Number and density of connections in each group.
Here, CC, CP, PC, and PP denote the core-to-core, core-to-
peripheral, peripheral-to-core, and peripheral-to-peripheral
groups. (See the text for the definitions of the groups.)

Group No. of connections Density

CC 159 0.6625
CP 792 0.5893
PC 2 0.0015
PP 234 0.0336

“core-to-core group,” the “core-to-peripheral group,”
the “peripheral-to-core group,” and the “peripheral-to-
peripheral group.”

The number and density of connections in each group
are listed in Table I. The most apparent characteristics
seen here are that the peripheral-to-core group has very
few members, while the core-to-peripheral group has many
members. Also, it is seen that the density of core-to-
core connections is quite high and that of peripheral-to-
peripheral connection is quite low. From these results,
we can conclude that the units in the core group interact
strongly with each other and that the dynamics of the core
group strongly influence the peripheral group, but that the
dynamics of the peripheral group have almost no influence
on the core group.

To this point, we have investigated our system mainly
with regard to network structure, largely ignoring the dy-
namics of units underlying the structure formation. How-
ever, it is clear that there must be interdependency of
the unit dynamics and connection dynamics for the struc-
ture formation discussed above to occur. We have con-
firmed this directly through numerical simulations. Using
the somewhat unnatural restriction under which connec-
tion weights depend on the dynamics of the units but that
the dynamics of the units do not depend on the connection
weights, we found that no structure ever appears. More
detailed analysis of this point is now under way and its re-
sults will be presented elsewhere.

To summarize, as a model of temporally evolving net-
works, we have considered a network of dynamic units,
whose dynamics are described by logistic maps and which
are coupled to each other with variable connection weights.
The model exhibits dynamical self-organization of its net-
work structure, reflected by the state of units’ collective
behavior. Even in the parameter region where there is no
synchronization of the unit dynamics, some structural or-
der emerges. There, units spontaneously separate into two
groups, with one group possessing especially many out-
wardly directed connections to the other group.

Because of the simplicity of the model and the univer-
sality among globally coupled maps, we believe that the
phenomena revealed in this study are exhibited generally
by a network whose connections change in a manner gov-
erned by the relationships between its dynamic elements.
One example is neural networks. Though the conventional
understanding has been that the time scale of the change
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of synaptic weights is much slower than that of neuronal
dynamics, more and more evidence is being published pro-
viding evidence that synaptic change occurs over a wide
range of time scales, from hundreds of milliseconds to
months or years [11]. In addition, it is known that, in the
early stage of development, axons arborize excessively and
eventually are trimmed under the influence of neuronal ac-
tivity [12]. Our model seems to be suited to the modeling
of such a situation. The structure formation observed in
this study may provide a basic description of local struc-
ture formation in the brain, such as columnar structure.

As mentioned at the beginning of this Letter, there is yet
little known about dynamic networks. The significance of
our study will be revealed as empirical data about dynamic
networks are obtained.
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