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Globally Coupled Chaos Violates the Law of Large Numbers but Not the Central-Limit Theorem
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The title statement is numerically shown for a globally coupled chaotic system. With an increasing
number of elements /V, the distribution of the mean field approaches a Gaussian distribution, but the de-
crease of its mean-square deviation with N stops for large N. This violation of the law of large numbers
is found to be caused by the emergence of a subtle coherence among elements, as is measured by the mu-
tual information. With the inclusion of noise, the law of large numbers is restored. The mean-square
deviation decreases in proportion to N 7 with an exponent 8 < 1 depending on the noise strength.

PACS numbers: 05.45.+b, 05.90.+m, 87.10.+¢

Dynamical systems with global coupling have to be ex-
plored in detail as a novel, important field. This class of
dynamical systems has been seen in broad branches of
science.!? Coupled nonlinear oscillators (pendula) with
global feedback give a good model for a Josephson-
junction array or charge-density wave with constant elec-
tric current. Vortex dynamics in fluids has a long-
ranged nonlinear interaction. Globally coupled dynami-
cal systems are also seen in evolutionary dynamics and
economics.

Such dynamical systems also provide a novel complex
system for biological information processing. In neuro-
dynamics, even a single neuron and a small ensemble of
neurons® are known to exhibit chaotic behavior. Most of
the neural-network studies, however, have adopted very
simple dynamical elements. From the standpoint of sta-
tistical physics, it is natural and important to study a
model with complex dynamical elements (with a chaotic
response) and global couplings as an abstraction from
neurodynamics.

In this Letter, we study a globally coupled map
(GCM). 1t is a dynamical system of N elements with
discrete time. The dynamics consists of local mappings
and interactions among all the elements. The GCM has
originally been introduced'? as a mean-field-type exten-
sion of coupled map lattices (CML).*?

Here we focus on the following form of the GCM:!

N
xne1 (D=0 —e)f(xn(i))+7f,— GG, )
=1

where n is a discrete time step and i is the index of ele-
ments (i =1,2,...,N). The function f(x) is chosen to
be the logistic map

f(x)=1—ax?, 2)

since it has been thoroughly investigated as a prototype
of dissipative chaos.

Our GCM (1) has a remarkably rich behavior, partly
similar but much richer than the mean-field model for
the spin glass by Sherrington and Kirkpatrick.® It ex-
hibits successive phase transitions among coherent, or-
dered, intermittent, and turbulent phases, as the non-
linearity is increased. Attractors with dynamical tree
structures are found in the intermittent phase. Coding
and bifurcation of the attractors are discussed in Ref. 1,
as well as switching among them.

Our model has two conflicting tendencies; destruction
of coherence by chaotic instability in each element, and
synchronization by global averaging. If the nonlinearity
a is large enough, the former tendency wins and none of
the elements are synchronized.

In the present Letter we study this turbulent state,
where any coherence is completely destroyed by chaos.
All elements take different values, without any explicit
symptom of correlation among elements. Neither inter-
mittent time series nor any § peaks in the power spec-
trum are observed. All of the Lyapunov exponents are
positive.’

Let us consider the fluctuation of the mean field
(1/N) X f(x(i)). Since the x (i) take random values al-
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FIG. 1. Distribution function of mean field A, for N =100,
400, 103, 5x 103, and 2% 10%. Histograms for the last two sizes
agree within statistical error. @ =1.99 and ¢=0.1. The histo-
gram is obtained from a sampling over 10° time steps, after
discarding the initial 10* steps, using a bin width 10 >,

most independently in the turbulent phase, one might ex-
pect that the aggregate

h=(/N)Y f(x,(j)) 3)
J

obeys the law of large numbers and the central-limit
theorem. If this were true, the mean-square deviation
(MSD) of the mean field A would decrease with N as
N ~'. The interaction term in (1) could be replaced by a
noise whose root mean square is O(1/VN). Then, in the
limit of N— oo, the dynamics (1) would reduce to V-
independent logistic maps given by x,+;()=(1—¢)
x f(x,(i))+€C, with a constant mean field C=(1/N)
X Z,-f(x ().

To examine the above expectation, we have numerical-
ly measured the distribution of the mean field A,. As
shown in Fig. 1, the distribution function P(h) agrees
with a Gaussian form, when N is large. Thus the cen-
tral-limit theorem is valid here.

For the verification of the law of large numbers, we
plot the MSD of the mean field (6h)%=(h% —(h)?
where (- --) is the average over the distribution P(y);
(A)=[P(h)A(h)dh. If each element x(i) is approxi-
mated by an uncorrelated random number, it is expected
that (§h) %« 1/N.

In Fig. 2, the MSD is plotted with the change of V.
The decrease of the MSD with N stops around a cross-
over size N=N.(a).® (N, depends on a.) This observa-
tion means that globally coupled chaos violates the law
of large numbers, but not the central-limit theorem.

The existence of a size-independent fluctuation sug-
gests the emergence of some order in our dynamics.
First, the dynamics of the mean field A, is studied. Al-
though its motion is aperiodic, there are broad peaks in
the power spectrum for h,. The peaks get sharper with
increasing of N up to N, (see Fig. 3), while the spectrum
is invariant under a change of NV for ¥V > N,. This shar-
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FIG. 2. Mean-square deviation (MSD) of the distribution
of mean field A, plotted as a function of system size. The MSD
is calculated over 10° time steps after 10 transients. €=0.1.
The parameter a is 1.80 (@), 1.83 (@), 1.85 (#), 1.92 (a),
1.95 (A), and 1.99 (x).

|

pening of peaks suggests the emergence of a partly
coherent motion. In the power spectrum of x,(i) for a
single element i, such sharpening of peaks is not observed
with an increase of the size.

Second, we compute the mutual information among
elements to measure the correlation. The application of
mutual information to dynamical systems has been
pioneered by Shaw,” and has been extended to spatio-
temporal chaos.'® For the calculation of the mutual in-
formation, we introduce a single-point probability P;(y)
that x (i) takes the value y, and a two-point joint proba-
bility p; ;(y,z) that x (i) takes the value y and x () takes
the value z (i=j). The mutual information u;, is

defined by
p,,(x,y)
y= Lt i d
ff "p.Copr,5) Y
10°
=
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FIG. 3. Power spectra of the time series of mean field A,
for N=200, 10°, 2x10% and 2x10°. The last two spectra
agree within the accuracy. They are calculated from 100 sets
of 1024-step time series (in total, 1024x 100 steps after 10*
transients).
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Here the probability is defined through a long-time
sampling. In the turbulent phase, however, ergodicity is
found to hold numerically. Thus the above probability
functions and the mutual information are independent of
elements i. To increase the sampling size, we can intro-
duce both temporal sampling and averaging over the ele-
ments. Hence the mutual information is computed by

u= 2 fflgjlnp,d(x,y)dxdy

T NV=1)

+%le:lnP, (x)dx . (4)

In Fig. 4, we have plotted u with the change of size V.
As is seen, there remains a finite mutual correlation even
when NV gets large. Although the correlation is very
small (the order of 10 77), it is distinguished from 0.
Indeed, u is less than the order of 10 ~> within the sam-
pling of the same time interval, if a small noise is applied
to our system. The remaining finite correlation among
elements can cause the breakdown of the law of large
numbers.

In the intermittent phase, similarity with the spin-
glass phase has been pointed out in Ref. 6. To search for
a possible frozen order as in the spin glass, we introduce
a quantity similar to the Edwards-Anderson order pa-
rameter for the spin glass.® For this, we define the fol-
lowing relative closeness S}/ between two elements:

Shi= 1if |x()—x()] <6,
0 otherwise,

where § is a precision to judge the relative closeness. We
study the following temporal correlation function:

C(t) =2 (S, Sk — (SN ) . (5)
[aY)

In our simulation for the turbulent state, C(¢) decays to
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FIG. 4. Two-point mutual information. Calculated from
2x107/N time steps after discarding 10* transients. Obtained
from GCMs without noise (O), and with random numbers
homogeneously distributed over [—0.01,0.01] (A). a=1.99
and €=0.1.

zero exponentially with time, if the precision & is not
large (<0.5). Thus there is no relationship of freezing
between two elements.

Is the law of large numbers recovered with the addi-
tion of noise? To answer this question, we simulate the
model

N
X1 =(1 —e)f(x,,(i))+ﬁ Y G, (D) +on),
=1

with an uncorrelated random number 7/, homogeneously
distributed over [—1,1]. In Fig. 5, the MSD (=(6h?2))
is plotted as a function of size /V. If the noise strength o
is larger than a threshold o, (=0.004 for the parame-
ters in the figure), the MSD decreases with the size NV,
implying the recovery of the law of large numbers.
What is striking here, however, is that the MSD de-
creases with size according to (6h2) N 77 with g < 1.
The exponent S approaches unity with increasing o.

This kind of anomalous power-law dependence may
originate in the hierarchical structure of our attractor
discussed in Ref. 1, since the diffusion in a treelike struc-
ture shows an anomalous power-law dependence. '

To conclude, the law of large numbers is violated in
our globally coupled chaotic system. Its origin is as-
cribed to the emergence of a subtle correlation among
elements. To confirm the universality of our results, we
have also studied GCMs with a local tent map [f(x)
=a(0.5—|x—0.5])] and a circle map [2,1]. Again, the
fluctuation of the mean field does not decrease with the
size, implying a violation of the law of large numbers.

Our conclusion is in contrast with fluctuations in a
short-ranged CML, where a finite correlation length &
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FIG. 5. Mean-square deviation of the distribution of mean
field A, in our GCM with the addition of noise, plotted as a
function of system size. @=1.99 and €=0.1. The noise
strength o is 0.02, 0.01, 0.007, 0.005, 0.0045, 0.004, 0.0008,
and 0.0001 from bottom to top. For 6> o, = 0.004, MSD de-
cays as N "2, The power B is estimated to be 0.92, 0.82, 0.65,
0.40, and 0.02 for 0=0.02, 0.01, 0.007, 0.005, and 0.0045, re-
spectively. The MSD is calculated over 10° time steps after
10* transients.
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exists for almost all parameters. The existence of & leads
to a decrease of the averaged mutual information u [Eq.
(4)], in proportion to &/N. In a globally coupled dynam-
ical system, a correlation length is not defined, and a
finite ratio of correlation may remain even for large V.
If this scenario is valid, the conclusion of the present
Letter may be a general feature in globally coupled
chaos.

A detailed study of the mechanism and universality of
our results will be reported elsewhere, as well as the con-
struction of the thermodynamics for globally coupled
chaos. "2

I would like to thank K. Ikeda, I. Tsuda, Y. Taka-
hashi, K. Nemoto, T. Konishi, and T. Ikegami for useful
discussions. I would also like to thank the National In-
stitute for Fusion Study at Nagoya for the computation-
al facility of FACOM M380 and ¥YP200. This work is
partially supported by Grant-in-Aids for Scientific
Research from the Ministry of Education, Science and
Culture of Japan.

K. Kaneko, Phys. Rev. Lett. 63, 219 (1989); Physica (Am-
sterdam) 41D, 137 (1990).
2P. Alstrom and R. K. Ritala, Phys. Rev. A 35, 306 (1987):

1394

P. Hadley and K. Wiesenfeld, Phys. Rev. Lett. 62, 1335
(1989).

3See, e.g., W. Freeman, Brain Res. Rev. 11, 259 (1986).

4K. Kaneko, Prog. Theor. Phys. 72, 480 (1984); 74, 1033
(1985); Collapse of Tori and Genesis of Chaos in Dissipative
Systems (World Scientific, Singapore, 1986); Physica (Am-
sterdam) 34D, 1 (1989), and references cited therein.

*J. P. Crutchfield and K. Kaneko, in Directions in Chaos,
edited by B.-L. Hao (World Scientific, Singapore, 1987).

8Spin Glass Theory and Beyond, edited by M. Mezard, G.
Parisi, and M. A. Virasoro (World Scientific, Singapore,
1987).

"We have numerically calculated Lyapunov spectra up to
N =100.

8To check the accuracy, we have run the same program ex-
cept with f(x) as an uncorrelated random number distributed
over [—1,1]. The MSD decays as 1/N in the same range of
system size as in Fig. 2.

9R. Shaw, Z. Naturforsch. 36a, 80 (1981).

10K, Kaneko, Physica (Amsterdam) 23D, 436 (1986); K. Ike-
da and K. Matsumoto, Phys. Rev. Lett. 62, 2265 (1989).

''M. Kerszberg and B. Huberman, J. Phys. A 18, 2338
(1985).

I2For thermodyramic approaches for CLMs, see L. A. Buni-
movich and Ya. G. Sinai, Nonlinearity 1, 491 (1989): K.
Kaneko, Phys. Lett. A 139, 47 (1989):. Prog. Theor. Phys.
Suppl. 99, 263 (1989); J. M. Houlerik, I. Webman, and M. H.
Jensen, Phys. Rev. A 41,4210 (1990).



