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Dominance of Milnor Attractors and Noise-Induced Selection in a Multiattractor System
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In a multiattractor state of a globally coupled dynamical system, stability of the attractors is studied
by recording the return rates to themselves after perturbations. Besides the basin volume, attractors are
characterized by strength, defined as the threshold perturbation for the full return rate. It is observed
that Milnor attractors with a vanishing strength are dominant in the partially ordered phase. Attractions
to weak attractors are found to be often enhanced with the addition of a noise, selectively for its
amplitude. [S0031-9007(97)02844-5]

PACS numbers: 05.45.+b, 05.40.+ j
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Multiattractor systems are important in physical, chem
cal, biological, and engineering problems. Although t
(fractal) basin structures [1] have been studied in a lo
dimensional system, dynamics and the phase structure
not fully understood for a system with large degrees
freedoms, wherestaticstructures of rugged landscape ha
been mostly studied. Since performing a direct “anatom
of the phase space structure is difficult there, we introd
new quantifiers to characterize the stability (strength)
attractors and connections among them, besides the b
volume.

Two main discoveries are reported: The first one sta
that the probability of initial points to fall onto “fragile”
(i.e., “Milnor”) attractors [2,3] is rather high within some
region between ordered and turbulent phases. Here
Milnor attractor is defined as a state that some pertur
tions of arbitrary small size can kick the orbit out of
although a finite measure of initial points is attracted
it. Since such an asymptotically unstable attractor is of
believed to be a rather exceptional state, the dominanc
such attractors is a remarkable observation.

The second is the noise-induced selection of attract
By adding a noise for a while, the ratio of the orbits
fall into weak attractors is enhanced, in some parame
regime, in contrast with our intuition. Different attracto
are successively selected specific to the noise stren
which may reflect on the complex basin structures. T
relevance of these results to neural dynamics is a
discussed.

As an example of a high-dimensional dynamical syst
with potentially many attractors, we adopt the globa
coupled map (GCM) [4] given by

xn11sid ­ s1 2 edf sssxnsidddd 1
e

N

NX
j­1

f sssxns jdddd , (1)

wheren is a discrete time step andi is the index for ele-
mentssi ­ 1, 2, . . . , N ­ system sized. Here we choose
the logistic mapfsxd ­ 1 2 ax2 s21 , x , 1d as the
local element in Eq. (1), as it has been investigated
tensively as a standard model for a high-dimensional
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namical system. In the model, attractors can be coded
clustering, the partition of elements into mutually synchr
nized clusters, i.e., a set of elements withxnsid ­ xns jd
[4]. Attractors in this GCM are classified by the num
ber of synchronized clustersk and the number of ele-
ments for each clusterNj . Each attractor is coded by
the clustering conditionfN1s$d, N2s$d, . . . , s$dNkg (also
called its partition). Because of symmetry, there are
least N!Qk

i­1
Ni !

Q
sets of Ni­Nj

1
m,! attractors for each cluster

ing condition, wherem, is the number of clusters with the
same value ofNj [5].

With an increase of the nonlinear parametera or a de-
crease of the couplinge, the following phases are known to
appear successively [4] after the collapse of a complet
synchronized state. (i)Ordered phase: all attractors con-
sist of a fewfk ­ osNdg clusters. (ii)Partially ordered
(PO) phase: attractors with a variety of clusterings co
exist, most of them having many clustersfk ­ OsNdg.
(iii) Turbulent phase: elements are completely desynchro
nized, and all attractors haveN clusters. In the first two
phases, there exist a variety of attractors depending on
partition [6]. In the present Letter, we study the multia
tractor structure for these two phases, fixinge ­ 0.1 and
varyinga.

To study the stability of an attractor against perturb
tion, we introduce the return probabilityPssd, defined
as follows: Take an orbit pointhxsidj of an attractor in
an N-dimensional phase space, and perturb the poin
xsid 1

s

2 rndi , where rndi is a random number taken from
f21, 1g, uncorrelated for all elementsi. Check if this
perturbed point returns to the original attractor via the d
terministic dynamics (1). By sampling over random pe
turbations and orbit positions, the return probabilityPssd
is defined as (No. of returns)y(No. of perturbation trials)
(see Fig. 1). As a simple index for robustness of an
tractor, it is useful to definesc as the largests such that
Pssd ­ 1, andsm the smallests s.t. Pssd , 0.5. These
indices measure what we call thestrengthof an attractor.

The strengthsc gives a minimum distance between th
orbit of an attractor and its basin boundary. Note th
© 1997 The American Physical Society
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FIG. 1. Example ofPssd for a ­ 1.61 and N ­ 10. For
all the figures, we take104 initial conditions randomly chosen
over f21, 1g for each value of parametera. Pssd is estimated
by sampling over 103 random perturbations for eachs.
Throughout this Letter we often abbreviate an attracto
clustering condition, using32213 in place off3, 2, 2, 1, 1, 1g, for
example.

sc can be small, even if the basin volume is large,
the attractor is located near the basin boundary. We h
plottedsc versus basin volume, which is measured as
probability that an orbit with a randomly chosen initia
condition falls onto the attractor. Roughly speaking, t
plot shows the existence of three types of attractors. O
type keeps some relationship betweensc and basin volume
[7], while the other two types do not. One of the latt
two types is a Milnor attractor [2,3], havingsc ­ 0 with
a finite (large) basin measure, and the other is a str
attractor with a relatively small basin volume.

The Milnor attractor has been recently studied as a r
dled basin attractor [3,8]. For a coupled system, attract
to a (partially) synchronized state is found that has a r
dled basin [9] and an instability in any neighborhood
an attractor [3,10]. As has been expected [3,8], all of
Milnor attractors we have found are chaotic.

There are two types of Milnor attractors; one hassm ­
0 (e.g., f22, 16g of Fig. 1), where most tiny perturbation
can kick the orbit out of the “attractor.” Indeed, we hav
seen that iterations of (1) with any finite precision (i.e
by a digital computer) can lead to such an attractor d
to artificial synchronization ofxnsid [10]. For the other
type,Pss ! 0d is close to 1 (e.g.,f4, 16g of Fig. 1). It is
a fragile attractor, in the sense that some tiny perturba
kicks an orbit out of it. It should be noted that such frag
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attractors can have a large basin measure. For both typ
Pssd sometimes increases with the increase ofs (see
f22, 16g of Fig. 1).

In Fig. 2, we have plotted the distribution of strengthsc

versus the change ofa. Note the decrease of strength start
ing arounda ø 1.56, and the dominance of weak attractor
at a ­ s,1.67 1.68d. The averages of basin volume and
attractor strengths (over random initial configurations) a
plotted in Fig. 3. The results are summarized as follows

(I) a & 1.61 [11] (ordered phase): Strong attractor
ssc . 0.1d with 2 or 3 clusters have rather large basi
volumes. Fragile attractors do not exist, or have a ve
small basin volumes1%d if they do exist.

(II) 1.61 & a & 1.65 [complex ordered (CO) regime]:
There are a variety of attractors with different partitions
although the number of clusters is not huge [i.e.,osNd
for largeN]. Fragile attractors with a large basin volume
appear, as well as strong attractors with a small number
clusters.

(III) 1.65 & a & 1.68 (PO phase): The number of
clusters is typically largefOsNdg, while the basin volume
for each attractor is much larger than the case (II). F
example, ata ­ 1.66 and N ­ 10, the basin volume of
the attractors withf22, 16g occupies 60% of the total, while
that of f110g has 30%. Remarkably, these attractors a
fragile ssc , 1024d. This dominance of fragile attractors
is preserved asN is increased, although the region of the
PO phase is slightly shifted.

(IV) At a * 1.69, a single desynchronized attracto
exists.

FIG. 2. Dependence ofsc on the parametera, for N ­ 50.
By measuringsc for attractors settled in from104 random
initial conditions, a histogram of log10 sc is constructed with
a bin size 0.1. The number of initial conditions leading to
log10 sc within the bin is plotted as different marks:n s.50%d,
s s.10%d, h s.5%d, 1 s.1%d, and e s.0.1%d. For all
figures we have estimatedsc from 100 possible perturbations:
sc is regarded to be larger than thes value adopted in the run,
as long as all of the 100 trials result in the return to the origin
attractor, whiles is changed successively with 20% from1024.
The points atsc , 1024 just represent thatsc , 1024.
2737
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FIG. 3. Averages of strengthkscl, ksml, and basin volume
are plotted as a function ofa. The basin volume of each
attractor is estimated as the rate of initial points leading
the attractor, divided by the degeneracy [5]. The averag
taken over104 random initial conditions as in Fig. 1.sm is
estimated fromPssd, measured by changings as10241jy4 for
s j ­ 0, 1, . . . , 16d. For N ­ 50 andN ­ 100, we have made
only 100 possible perturbations instead of103.

With the increase ofN , sc for attractors with a pro-
portional partition (e.g.,f6, 4g for N ­ 10 versusf60, 40g
for N ­ 100) remains unchanged, whilesm 2 sc is de-
creased. The latter is due to the increase of the dimen
of the path out of the attractor, since the decay ofPssd for
s . sc reflects on the volume of the path. In Fig. 3, th
decrease ofksml with N is confirmed at the CO and PO
phases (wherekscl is small). At the PO phase, the dom
nance of weak attractors is prominent for largeN, as is
seen in the decrease ofkscl with N .

We have also studied the transition matrix among
tractors that gives the rate of transition from one attrac
to another when the former is perturbed by a noise.
general, weak attractors are connected to a variety o
tractors. Small perturbations to such attractors make
orbit fall into a variety of different attractors.

Coexistence of attractors with different degrees
stability makes us expect that noise is relevant to
choice of the attractor the GCM settles in. One mig
expect that noise usually leads the system to choos
settle in strong attractors. We have simulated the mo
(1) for a fixed number of steps with white uncorrelat
noise added to each element and then checked w
attractor is selected after the noise is turned off [12].kscl
is plotted in Fig. 4 with the change of the noise strengthd.
In contrast with the PO phase, relatively weaker attract
are selected in the CO phase, contrary to our expecta
[13]. This is possibly because more transient orbits
attracted to some of the weak attractors due to hig
connectivity with other attractors in the transition matrix

A remarkable feature is its sensitivity in the choice
attractors depending on the strength of the noise ad
2738
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FIG. 4. Change of average strengthkscl against the noise
strength. Starting from random initial conditions, we hav
computed the model (1) with an additional noise termsdy2d 3
rndnsid over 104 steps, and checked which attractor is select
after the noise is turned off.N is 10, although the same
behaviors are seen for largerN (e.g., 50). Note that the
parameter for the top line is near the turbulent phase, a
strong attractors have a larger basin volume than Milnor on
leading to largekscl. Still, the escape from remaining Milnor
attractors by noise leads to the slight increase of the stren
aroundd ø 0.04.

At some noise strengths, the basin volume of som
attractors is enhanced rather sharply. In Fig. 5, we ha
plotted the number of initial points falling onto attractor
versus the noise strength applied during transient ste
There are successive enhancements of attraction rate
some attractors. This stochastic amplification is a nov
noise effect, which is due to complex connection pat
among attractors. The peak aroundd ø 0.04 for the
attractorf3, 17g in Fig. 5, for example, is due to the gap
between the thresholds of noise strengths leading to
transitionsf3, 17g ! others and the reverse ones.

In high-dimensional dynamical systems, chaotic itine
ancy (CI) among several ordered states is often obser
[4,14,15]. For Milnor attractors that lose their stabilit
fPs0d , 1g but keep their attraction for larges, the to-
tal system dynamics can be constructed as the succes
alternations between attraction to and escape from the
Hence CI is understood as the connection among ma
Milnor attractors.

In the present Letter, we have proposed that Miln
attractors dominate the basin volume in the PO pha
Although our results are based on the GCM (1), it is e
pected that the same qualitative behavior is observed
high-dimensional dynamical systems, including couple
differential equation systems [16]. It is also interesting
note the relevance of the present results to neural dyna
ics. Freeman has found a chaotic attractor correspond
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FIG. 5. Rates of attraction to some attractors with the chan
of transient noise, forN ­ 10. Computations are carried ou
in the same manner as Fig. 4. Only six attractors with larg
attraction rates are plotted.

to a searching state for memories [17]. The weak attra
tors in the CO or PO phases provide a candidate for su
a searching state, because they are connected to a va
of stronger attractors, which, in this interpretation, wou
play the role of memorized states in Freeman’s work.
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