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Dominance of Milnor Attractors and Noise-Induced Selection in a Multiattractor System
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In a multiattractor state of a globally coupled dynamical system, stability of the attractors is studied
by recording the return rates to themselves after perturbations. Besides the basin volume, attractors are
characterized by strength, defined as the threshold perturbation for the full return rate. It is observed
that Milnor attractors with a vanishing strength are dominant in the partially ordered phase. Attractions
to weak attractors are found to be often enhanced with the addition of a noise, selectively for its
amplitude. [S0031-9007(97)02844-5]

PACS numbers: 05.45.+b, 05.40.+]

Multiattractor systems are important in physical, chemi-namical system. In the model, attractors can be coded by
cal, biological, and engineering problems. Although theclustering, the partition of elements into mutually synchro-
(fractal) basin structures [1] have been studied in a lownized clusters, i.e., a set of elements witl{i) = x,( )
dimensional system, dynamics and the phase structure af#]. Attractors in this GCM are classified by the num-
not fully understood for a system with large degrees ober of synchronized clusters and the number of ele-
freedoms, wherstaticstructures of rugged landscape havements for each clusteN;. Each attractor is coded by
been mostly studied. Since performing a direct “anatomy’the clustering conditiohN,(=), No(=), ..., (=)N,] (also
of the phase space structure is difficult there, we introducealled its partition). Because of symmetry, there are at
new quantifiers to characterize the stability (strength) ofeast =—+— [Teetsof v =N L attractors for each cluster-

N;! SCLS i j ome!

attractors and connections among them, besides the ba?Hb coniaitiéh, wheren, is the number of clusters with the

volume.
o . i ' same value oN; [5].
e e oo Wi an ncrase f the noninea pramata e
P y P 9 crease of the coupling, the following phases are known to

E'ée'i’ anLIQt(\)/\: )eittg?ggres d[i{r?(]j '?urr%ﬁeaplggavs\"tgm ilorrnee yappear successively [4] after the collapse of a completely
gio e ent phases. He nchronized state. (prdered phaseall attractors con-

Milnor attractor is defined as a state that some perturbagsi o< few[k = o(N)] clusters. (ii)Partially ordered

ahough a inte measure of mital poinis 1 atracted tol”C) PESE BUTGCLOTS with a variety of clustefings co-
; ug . P ; exist, most of them having many clustdis = O(N)].
it. Since such an asymptotically unstable attractor is ofte%i-

. . . i) Turbulent phaseelements are completely desynchro-
believed to be a rather exceptional state,_ the dominance ‘zed, and all attractors have clusters. In the first two
such attractors is a remarkable observation.

The second is the noise-induced selection of attractor%hases’ there exist a variety of attractors depending on the
By adding a noise for a while, the ratio of the orbits to artition [6]. In the present Letter, we study the multiat-

fall into weak attractors is enhanced, in some paramet tFactor structure for these two phases, fixing= 0.1 and

. . ) o . aryinga.
regime, in contrast with our intuition. Different attractors To study the stability of an attractor against perturba-
are successively selected specific to the noise strengtn

. . on, we introduce the return probabilit] (o), defined
which may reflect on the complex basin structures. Th%s follows: Take an orbit poinx(i)} of an attractor in
relevance of these results to neural dynamics is al '

discussed 8n N-dimensional phase space, and perturb the point to
' . . . . x(i) + % rnd;, where rnd is a random number taken from
As an example of a high-dimensional dynamical syste

ith ootentiall tract doot the alob ””'f—l,l], uncorrelated for all elements Check if this
with potentially many atiractors, we adopt the gioba yperturbed point returns to the original attractor via the de-
coupled map (GCM) [4] given by

terministic dynamics (1). By sampling over random per-
e U turbations and orbit positions, the return probabilt{o)
Xp1(i) = (1 = €)f (x, (i) + I D> fGa(). () s defined as (No. of returngNo. of perturbation trials)
=1 (see Fig. 1). As a simple index for robustness of an at-
wheren is a discrete time step ands the index for ele- tractor, it is useful to definer. as the largestr such that
ments(i = 1,2,...,N = system size Here we choose P(o) = 1, ando,, the smallestr s.t. P(o) < 0.5. These
the logistic mapf(x) = 1 — ax?> (—1 < x < 1) as the indices measure what we call ts&engthof an attractor.
local element in Eq. (1), as it has been investigated ex- The strengthr. gives a minimum distance between the
tensively as a standard model for a high-dimensional dyerbit of an attractor and its basin boundary. Note that
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4321 attractors can have a large basin measure. For both types,
P(Q™) / P(o) sometimes increases with the increaseoof(see
! L e —_ 317 416 22, 16:! of Fig. 1). S
N >\Q\/ In Fig. 2, we have plotted the distribution of strength
5 e . - versus the change af Note the decrease of strength start-
2 A ‘\\ \< \ ing aroundu =~ 1.56, and the dominance of weak attractors
2 32 1 5 o —% N\ ata = (~1.67-1.68). The averages of basin volume and
421 R /\\’\ attractor strengths (over random initial configurations) are
! "r‘p‘/ Sy plotted in Fig. 3. The results are summarized as follows:
o5 ~ / \‘ \\\ (I) @ = 1.61 [11] (ordered phase): Strong attractors
’ 7 ) (o. > 0.1) with 2 or 3 clusters have rather large basin
4 “ volumes. Fragile attractors do not exist, or have a very
02 e~ z N Vo — \ small basin volumé1%) if they do exist.
o 221 \‘ 1\ (I) 1.61 < a < 1.65 [complex ordered (CO) regime]:
' VA \ There are a variety of attractors with different partitions,
005 Y although the number of clusters is not huge [i®X)
“ \ for large N]. Fragile attractors with a large basin volume
002 \L\}._ appear, as well as strong attractors with a small number of
clusters.
001 \ () 1.65 < a < 1.68 (PO phase): The number of
601 .003 o1 03 . ERN clusters is typically larg€O(N)], while the basin volume

for each attractor is much larger than the case (ll). For
FIG. 1. Example ofP(c) for a = 1.61 and N = 10. For example, alz = 1.66 and N = 10, the basin volume of
all the figures, we takea0* initial conditions randomly chosen the attractors witli2?, 1°] occupies 60% of the total, while
gve;[;rﬁ’ lli]nforo‘fg‘;*; O‘Qa“rjsn‘égf’narag?ﬁ%aﬁég S) '?Ofsgggéed that of [1!°] has 30%. Remarkably, these attractors are
T)iqroughgutgthis Letter we ofteFr)1 abbreviate an attractor’sfrag”e(ac <10 4.‘)'. This dominance of fragile qttractors
clustering condition, usin@2213 in place of[3,2,2,1,1,1], for IS preserved a&/ is increased, although the region of the
example. PO phase is slightly shifted.
(IV) At a = 1.69, a single desynchronized attractor
exists.

o. can be small, even if the basin volume is large, if
the attractor is located near the basin boundary. We have ,;
plotted o, versus basin volume, which is measured as the
probability that an orbit with a randomly chosen initial
condition falls onto the attractor. Roughly speaking, the
plot shows the existence of three types of attractors. One
type keeps some relationship betweerand basin volume 2
[7], while the other two types do not. One of the latter
two types is a Milnor attractor [2,3], having. = 0 with
a finite (large) basin measure, and the other is a stron
attractor with a relatively small basin volume.

The Milnor attractor has been recently studied as a rid- |1
dled basin attractor [3,8]. For a coupled system, attraction
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to a (partially) synchronized state is found that has a rid- - g
dled basin [9] and an instability in any neighborhood of - Ordored - - | 00-m | PO
an attractor [3,10]. As has been expected [3,8], all of the %5 152 1s¢ 15 158 16 162 1es 16 1e8 17

Milnor attractors we have found are chaotic. ’

: . _ FIG. 2. Dependence of. on the parametes, for N = 50.
There are two types of Milnor atiractors; one lagg By measuringo. for attractors settled in fromi0* random

2 6 : . .
0 (e.g_.,[2 1] OT Fig. 1), Wh“ere most”tmy perturbations initial conditions, a histogram of lqgo, is constructed with
can kick the orbit out of the “attractor.” Indeed, we havea pin size 0.1. The number of initial conditions leading to
seen that iterations of (1) with any finite precision (i.e.,log,, o, within the bin is plotted as different mark&: (>50%),

by a digital computer) can lead to such an attractor du@ (>10%), O (>5%), + (>1%), and & (>0.1%). For all

g i ati : figures we have estimated,. from 100 possible perturbations:
o artificial synchronization o, (i) [10). For the other o, is regarded to be larger than thevalue adopted in the run,

X 6 X .
type,E(a — 0)is C_Iose to 1 (e.gf4,1%] of F_'g' 1). ltis . as long as all of the 100 trials result in the return to the original
a fragile attractor, in the sense that some tiny perturbatioBttractor, whiles is changed successively with 20% froii*.
kicks an orbit out of it. It should be noted that such fragile The points atr. < 107* just represent that, < 107%.
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FIG. 3. Averages of strengtbu.), (o), and basin volume '°°2( In I b &
are plotted as a function of. The basin volume of each : ) ) ’

attractor is estimated as the rate of initial points leading top|G, 4. Change of average strength.) against the noise
the attractor, divided by the degeneracy [S]. The average igyength. Starting from random initial conditions, we have

taken over10* random initial conditions as in F|g.41.g4m IS computed the model (1) with an additional noise té@y2) X
estimated fromP (o), measured by changing as10~**//* for g (i) over 10* steps, and checked which attractor is selected
(j=0,1,...,16). ForN =50 andN = 100, we have made after the noise is turned off.N is 10, although the same
only 100 possible perturbations instead16f. behaviors are seen for large¥ (e.g., 50). Note that the
parameter for the top line is near the turbulent phase, and

. . . strong attractors have a larger basin volume than Milnor ones,
With the increase oV, o for attractors with a pro- leading to larggo,). Still, the escape from remaining Milnor

portional partition (e.g.[6,4] for N = 10 versus[60,40]  attractors by noise leads to the slight increase of the strength
for N = 100) remains unchanged, while,, — o is de-  arounds = 0.04.

creased. The latter is due to the increase of the dimension
of the path out of the attractor, since the decay af) for
o > o, reflects on the volume of the path. In Fig. 3, the At some noise strengths, the basin volume of some
decrease ofo,,) with N is confirmed at the CO and PO attractors is enhanced rather sharply. In Fig. 5, we have
phases (wherér.) is small). At the PO phase, the domi- plotted the number of initial points falling onto attractors
nance of weak attractors is prominent for lam§je as is  versus the noise strength applied during transient steps.
seen in the decrease @f.) with N. There are successive enhancements of attraction rates to
We have also studied the transition matrix among atsome attractors. This stochastic amplification is a novel
tractors that gives the rate of transition from one attractonoise effect, which is due to complex connection paths
to another when the former is perturbed by a noise. Iramong attractors. The peak aroudd= 0.04 for the
general, weak attractors are connected to a variety of aattractor[3,17] in Fig. 5, for example, is due to the gap
tractors. Small perturbations to such attractors make theetween the thresholds of noise strengths leading to the
orbit fall into a variety of different attractors. transitiong3, 17] — others and the reverse ones.
Coexistence of attractors with different degrees of In high-dimensional dynamical systems, chaotic itiner-
stability makes us expect that noise is relevant to thency (Cl) among several ordered states is often observed
choice of the attractor the GCM settles in. One might[4,14,15]. For Milnor attractors that lose their stability
expect that noise usually leads the system to choose {@(0) < 1] but keep their attraction for large, the to-
settle in strong attractors. We have simulated the modehl system dynamics can be constructed as the successive
(1) for a fixed number of steps with white uncorrelatedalternations between attraction to and escape from them.
noise added to each element and then checked whiddence CI is understood as the connection among many
attractor is selected after the noise is turned off [1&}.)  Milnor attractors.
is plotted in Fig. 4 with the change of the noise strengjth In the present Letter, we have proposed that Milnor
In contrast with the PO phase, relatively weaker attractorattractors dominate the basin volume in the PO phase.
are selected in the CO phase, contrary to our expectatioAlthough our results are based on the GCM (1), it is ex-
[13]. This is possibly because more transient orbits ar@ected that the same qualitative behavior is observed in
attracted to some of the weak attractors due to highenigh-dimensional dynamical systems, including coupled
connectivity with other attractors in the transition matrix. differential equation systems [16]. It is also interesting to
A remarkable feature is its sensitivity in the choice of note the relevance of the present results to neural dynam-
attractors depending on the strength of the noise addeits. Freeman has found a chaotic attractor corresponding
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[4] K. Kaneko, Physica (Amsterdard}LD, 38 (1990);54D, 5
(1991).

[5] For example, the latter factor for the clustering
[2,2,2,1,1,1,1] is 1/(3!4!). This estimation is based on
two assumptions: first, that clusters with the same number
of elements are indistinguishable due to symmetry and,
second, that all attractors with the same partition are
unique. This latter assumption is not exactly true, but
degeneracy is rather rare in practice.

Correspondence of the PO phase with a spin glass has

been studied in K. Kaneko, J. Phys. 24, 2107 (1991);

A. Crisanti, M. Falcioni, and A. Vulpiani, Phys. Rev. Lett.

76, 612 (1996).

[7] The plots scatter around the linear relationship between
the strength and basin volume. As a schematic example,
assume that the basin is given by a hyperellipsoid with the
radii (=), (=),...,(=)ry, and the attractor is localized
at the center of it. Then the strengi is given byr;. If
r1 sensitively depends on parameters or attractors (e.g., as
in the case near the crisis) and(j > 1) remains larger,
we could estimate basin volumear,.

[8] J.C. Sommerer and E. Ott, Nature (LondoBg5 138
(1993); E. Ottet al., Phys. Rev. Lett71, 4134 (1993).

(6]

FIG. 5. Rates of attraction to some attractors with the change[9] Y-C. Lai and R.L. Winslow, Physica (AmsterdanyD,

of transient noise, folV = 10. Computations are carried out

in the same manner as Fig. 4. Only six attractors with larger

attraction rates are plotted.

to a searching state for memories [17]. The weak attrac[—ll]
tors in the CO or PO phases provide a candidate for such
a searching state, because they are connected to a variﬁy]

of stronger attractors, which, in this interpretation, would
play the role of memorized states in Freeman’s work.
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