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Collective Chaos
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An algorithm to characterize collective motion as the orbital instability at a macroscopic level is
presented, including the introduction of “collective Lyapunov exponent.” By applying the algorithm
to a globally coupled map, existence of low-dimensional collective chaos is confirmed, where the
scale of (high-dimensional) microscopic chaos is separated from the macroscopic motion, and the scale
approaches zero in the thermodynamic limit. [S0031-9007(98)07685-6]

PACS numbers: 05.45.+b, 05.70.—a, 64.60.Cn

Low-dimensional chaotic motion often arises from aproblem can be resolved by noting the order of limit to
system with many degrees of freedom. A classicabdefine the Lyapunov exponent.
example is chaos in a fluid system (such as Rayleigh- Since we are concerned with a system of a large
Bénard convection), where very high-dimensional chaotidut finite size, the above order of limit implies that we
motion should underlie at a molecular scale. A canonicahave to keep the disturbance amplitude finite, so that the
answer for the condition to have low-dimensional chaodisturbance is studied at a macroscopic level. (Roughly
at a macroscopic level is given by separation of scalespeaking the disturbance at a macroscopic variable should
distinguishable from a microscopic level. Still it is not be larger thani/</N.) To study such orbital instability,
clear how such separation is possible, since chaos can le#t finite-size Lyapunov exponent introduced by Vulpiani

to the amplification of a small-scale error. et al. [1] is useful. Itis given by
To address the question, we consider a certain dynami- 1 A
cal system that shows some lower-dimensional motion for As,(8) = = log 50/ 1)

a certain macroscopic variable (e.g., average of micro-
scopic variables), whereas (microscopic) variables keepherer is the maximum time such that! — x,| < A
high-dimensional chaos. There the number of positivéor trajectoriesx, and x/ starting from xo and xy =
Lyapunov exponents is proportional to the system sizeyx, + 8 respectively, whilg-) is an average over the tra-
and diverges in the “thermodynamics limit” (infinite sys- jectories starting from different initial values. The length
tem size limit). In this Letter, in order to characterize scaleA can be considered as the scale of observation.
such macroscopic motion, Lyapunov exponent at a macro- Here we consider measurement of the finite-size Lya-
scopic scale is introduced, which specifies the growth ratpunov exponent for macroscopic variables with a certain
of error at macroscopic variables. By studying the dedinite-size disturbance at a macroscopic level. As long as
pendence of the exponent on the length scale in phagbe system size is finite, this finite-size Lyapunov expo-
space and the system size, it is shown how the “collechent reflects not only the macroscopic motion but also the
tive chaos” is compatible with microscopic chaos, andmicroscopic chaos. On the other hand, if low-dimensional
how they are separated at the thermodynamic limit. Herenacroscopic dynamics has a characteristic time scale
chaos in the variables of the dynamical system is referredeparated from the microscopic dynamics, it will be pos-
to as “microscopic” chaos. sible to extract the growth rate of perturbation in the col-
First note that the conventional Lyapunov exponentdective motion from the finite-size Lyapunov exponent for
for the dynamical system are not relevant to the charache macroscopic variable(s). To do so, we postulate the
terization of collective motion. In order to calculate the following assumptions that are expected to hold if the col-
Lyapunov exponent for the collective motion, an infini- lective dynamics is low-dimensional chaos or on a torus.
tesimal limit of disturbance to a trajectory should be First note that in the limitA — 0 and 6o — 0, the
taken at a “macroscopic” level. Rigorously speaking, thefinite-size Lyapunov exponents (A) for macroscopic
macroscopic level appears in the thermodynamic limitvariable in finite system size is expected to converge to
(system sizeV — ). Thus, it is necessary to take the the maximum Lyapunov exponent,, which is deter-
thermodynamic limit first and then the limit of disturbance mined by the conventional Lyapunov exponents for the
scale, to characterize the collective dynamics. Howevemnicroscopic variables directly.
in the conventional computation of the Lyapunov spec- Considering that the collective dynamics appears
trum we first take the infinitesimal limit of disturbance by coarse-grained macroscopic variables, we postu-
applied to the orbit, and see the asymptotic behavior ofate that there are length scales (in the phase space)
the spectrum in the thermodynamic limit. Hence, the exA &€ [A,,, Ac], where the macroscopic variable is char-
ponent cannot characterize the collective motion. Thisacterized by “collective Lyapunov exponenty. Below
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A < A,, the microscopic chaos dominates, while thechoose the logistic mag;(x) = 1 — a(i)x?, where the

orbit is out of the attractor foA > A at a macroscopic

level. To have low-dimensional collective dynamics, it[a, — a,,aq + a,] as a(i) = ag +

is postulated that\¢ is independent oV (as long as it

parametew (i) for the nonlinearity is distributed between

N (R

following, the parameters are indicated by= ay = a,,.)

is large enough), and that,, should approach zero with As a macroscopic variable, we adopt the mean field,

N — oo while A remains finite.

Based on the above assumptions, we can have a form of hy, = —
the finite-size Lyapunov exponent as a function of the scale N

1

N
> filxa (1, (6)
i=1

A. Let d, denote the distance from the original trajectoryin which the collective motion is contained

at time stepn. For the scaleA < A,,, 6, increases
proportionally with expA,,n). Hencer(A) = t log 5%
follows, independently of the collective dynamics.

On the other hand, for the scalg, < A < Ac, 6, IS
given asé, « exp(Acn) for a chaotic case with¢e > 0,
or 6, « n* for a torus case with a certain constant
Corresponding to each collective motion(A) and the
finite-size Lyapunov exponents (A) are given by

A,

1 A 1

Ay - | log 5~ + - log 5+ (chaos, )
7(A) = AN/ 1 A, ()

C(A_,,,) + ™ |Og B0 (tOYUQ,

and
AmAc log §—0

Ac log é—:ﬁv\m log Ai (Ch8.0$,
Xay(8) = A (3)

& (torus,

T A X
— log S +C(=)1/x
Am 9 30 o Am)

where A,,, and A¢, or k and C are fitted parameter to

data, A, is the maximum Lyapunov exponent, ardg
is the value of initial disturbance.
the values of parametera,,, and A¢, or x and C

easily, it is convenient to transform Eq. (3) to remove

8o dependence of the data. For it, we defifd) as

In order to obtain

The study of collective motion in GCM has gathered
much attention [2—5]. When the coupling is small
enough, oscillation of each element is mutually desyn-
chronized, and the effective degrees of freedom increase
in proportion to the number of elemenYs Still, a macro-
scopic variable is found to show some kind of ordered
motion distinguishable from noise, ranging from torus to
high-dimensional chaos [3-5].

For instance, Fig. 1 gives a return map of the mean
field dynamics of the GCM (5), which shows some pattern
that may suggest low-dimensional chaos. Torus motion
is also found for some parameter values [5]. In these
cases, microscopic motion keeps high-dimensional chaos,
i.e., all of theN Lyapunov exponents are positive, even
if there appears quasiperiodic motion for the collective
variableh,, asN goes to infinity [5]. Here we demonstrate
the existence of low-dimensional collective motion by the
above collective Lyapunov exponent and by theN
dependence di,,.

Figure 2 gives the finite-size Lyapunov exponent for the
mean field dynamics of the GCM (5). Here we perturb
the orbit to give rise to a change frokg to iy, = ho + 8¢
(see the caption of Fig. 2 for a detailed description). In

1(A) = 7(A) + -~ log 8, which characterizes the time Fig. 3, ¢ is plotted as a function oAA. As is shown in

m

for amplification of error from a certain scale independen

of 6. From Eq. (2), we obtain

L logA + (- — 1) log A,

C(£)"* + + log A,

(chaos,
(torus .
4)

From data, we can easily obtainA plot (s-logA or

t(A) =

logt-logA plot), in which A,, appears as a shift of
constant, and¢ or « is given by a slope in a suitable plot.
In order to confirm the existence of the low-dimensional

collective motion, it is necessary thaAt, decreases with
N as1/+/N for a constantic.

To demonstrate our method and to show the existence of
some lower-dimensional macroscopic motion, we study a
certain coupled dynamical system, which shows collective
motion [2—7]. Here we adopt a “heterogeneous” globally

coupled map (GCM) with a distributed parameter:
N
5ot (() = (1= Ofil @) + X FiGa(i). ()
j=1

where x,(i) is the variable of theith element { =
1,2,3,...,N) at discrete timez, and f;(x) is an internal

Fig. 3(a), the slope of the semilog plot is independent

of N. The Lyapunov exponeni., characterizing the
collective motion, is given by the inverse of the slope,

05 + 1
04 + 1
P
< 03+ 1
0.2 + 1
0.1 : : : :
0.1 0.2 0.3 04 05
h,

FIG. 1. An example of return map for chaotic collective mo-
tion. a =192 = 0.044,¢ = 0.1,N = 10’. Points(h,, h,+1)

dynamics for each element. For the internal dynamics ware plotted oveB X 10* steps after transient are discarded.
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FIG. 2. 2A4,(A) is plotted for the model (5), &) ao =

192 + 0.044, €=0.1; (X) a=19* 0.025¢€ = 0098 © TS T . AT ~
(A) a=19 = 0.025,€ =(0.%1; () a = 169755 = 0, = - _“;186j§g;}8:11 ¢ N=1073=10"° - rara
0.008). N = 107. Initial perturbation amplitudé, is fixed at N=102,85=1072° o XS
1.0 X 10~7. For computation, displacemenf = hy + & is Nﬂgggoﬂg_n . S .
created by perturbing the orbit ag(i) = xo(i) + #50 X a, 10° 'N;105:58;10-15 . o/
where o is a random number ifi—1,1]. Each point is ob- N=10j:,«30=1oj1 a A
tained by averaging over 100 samples. Specific choice of this 102 _Nf104,80f10_15 * Sy R
perturbation scheme is irrelevant to our results, as long as the N;}83’20;18_7 ; S
collective variable is perturbed. Adopting the algorithm to be N-10350=10711 o« - FEERYAR..
presented, the collective motion is shown to be tomy§, (ow- 10" -N=103:83=10'15 .t [
dimensional chaosy(and X), and high-dimensional chaosly. ’ . , °;’
and is estimated a6.02, which is much smaller than 10° 10 10 10 10
the maximum Lyapunov exponent of the system (see the A
caption of Fig. 4). Note also that no plateau is visible in © 160
the finite-size Lyapunov exponent in Fig. 2 corresponding 2
to Ac. On the other handj,,, given by the shift of 140 | =104 + s 8
the plots, decreases witN, while A- does not show 120 N=102 Z g *
significant change [8]. Thus the scale for the collective 100 |t Nﬂ% - - % ‘
motion A,, < A < A¢ increases withV. In Fig. 4, N - 80 | A & o 1
dependence ofA,, is plotted, which givesA,, ~ \/Lﬁ 60 - o e +
whose form is expected from the central limit theorem. =2 g 8
Hence the emergence of low-dimensional collective chaos 40 o B b " ¥
at the thermodynamic limit is confirmed. 20 g 6 8 :

We have also applied the present algorithm to the case o & 8" 8 8 £ & £, ‘
with a collective torus motion. Figure 3(b):-A plot), 0.001 0.01 0.1
shows thatk, the inverse of the slope, is 0.5, independent A

of N. Indeed, this exponent/2 is expected from the FIG. 3. The normalized time steps(A) are plotted for
d'.ﬁUSIOr.] of phase on_the_torus. The de_creaseAqI N = 10%, 10°, 10° and 107, with the fitted curves Eg. (4).
with N is also plotted in F|g.14, which again shows the(a) Chaotic  case (with a semilog plot): for a =
expected decrease df,, ~ 7y Hence the collective 1.9 + 0.025,e = 0.098. (b) Torus case (with a log-log
torus motion is demonstrated. plot): for a = 1.9 £ 0.025,e = 0.11. The maximum Lya-
punov exponeniA,, = 0.41 (a), 0.39 (b) are obtained directly

In this Letter, we have proposed an algorithm to :
. . . . : from the GCM (5). The parameters obtained by a least-
characterize the collective (chaotic) motion, and applied tgquare fitting algorithm give (a)e = 0.02, and (b)k = 0.5.

it to a GCM. We have introduced the collective LyapUnOV(C) High-dimensiona| casayhich does not Obey Eq (4)’ (Wlth

exponent, to characterize the growth rate of perturbatiom semilog plot): fora = 1.6962 = 0,e = 0.008. In this case,

in the collective motion. The microscopic chaotic motionwhile the return map shows some structurefor N = 10°

exists at a small scale of the macroscopic variable, b "d_l%,%relorlﬂ slgg?srag:eed p?ggt’ea"%;e'the':g;n(g'st;‘;b%?tzirf]rcoem

such scaled,, IS shoyvn .to decrease as'\/ﬁ_ H_ence, _tr?e differe’nce b)’ﬁo is not observed as in (a) and (b). ’

the macroscopic motion is separated from the microscopic

motion and the emergence of low-dimensional collective

motion withN — o is confirmed [9]. [10]. Indeed, for a GCM with homogeneous elements (i.e.,
Existence of low-dimensional collective chaos in thewith a = a9 = 0), such low-dimensional collective chaos

presence of microscopic chaos has often been suspectkds not been observed, and the collective motion there is
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Note added—After the completion of the present
1072 manuscript, the authors are informed of the recent preprint
by M. Cencini, M. Falcioni, D. Vergni, and A. Vulpiani

A [12], where a related study to the collective chaos is
presented.
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