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Collective Chaos
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An algorithm to characterize collective motion as the orbital instability at a macroscopic level
presented, including the introduction of “collective Lyapunov exponent.” By applying the algorith
to a globally coupled map, existence of low-dimensional collective chaos is confirmed, where
scale of (high-dimensional) microscopic chaos is separated from the macroscopic motion, and the
approaches zero in the thermodynamic limit. [S0031-9007(98)07685-6]
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Low-dimensional chaotic motion often arises from
system with many degrees of freedom. A classic
example is chaos in a fluid system (such as Rayleig
Bénard convection), where very high-dimensional chao
motion should underlie at a molecular scale. A canonic
answer for the condition to have low-dimensional cha
at a macroscopic level is given by separation of sca
distinguishable from a microscopic level. Still it is no
clear how such separation is possible, since chaos can
to the amplification of a small-scale error.

To address the question, we consider a certain dyna
cal system that shows some lower-dimensional motion
a certain macroscopic variable (e.g., average of mic
scopic variables), whereas (microscopic) variables ke
high-dimensional chaos. There the number of positi
Lyapunov exponents is proportional to the system siz
and diverges in the “thermodynamics limit” (infinite sys
tem size limit). In this Letter, in order to characteriz
such macroscopic motion, Lyapunov exponent at a mac
scopic scale is introduced, which specifies the growth ra
of error at macroscopic variables. By studying the d
pendence of the exponent on the length scale in ph
space and the system size, it is shown how the “colle
tive chaos” is compatible with microscopic chaos, an
how they are separated at the thermodynamic limit. He
chaos in the variables of the dynamical system is referr
to as “microscopic” chaos.

First note that the conventional Lyapunov exponen
for the dynamical system are not relevant to the chara
terization of collective motion. In order to calculate th
Lyapunov exponent for the collective motion, an infin
tesimal limit of disturbance to a trajectory should b
taken at a “macroscopic” level. Rigorously speaking, th
macroscopic level appears in the thermodynamic lim
(system sizeN ! `). Thus, it is necessary to take the
thermodynamic limit first and then the limit of disturbanc
scale, to characterize the collective dynamics. Howev
in the conventional computation of the Lyapunov spe
trum we first take the infinitesimal limit of disturbance
applied to the orbit, and see the asymptotic behavior
the spectrum in the thermodynamic limit. Hence, the e
ponent cannot characterize the collective motion. Th
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problem can be resolved by noting the order of limit t
define the Lyapunov exponent.

Since we are concerned with a system of a larg
but finite size, the above order of limit implies that we
have to keep the disturbance amplitude finite, so that t
disturbance is studied at a macroscopic level. (Rough
speaking the disturbance at a macroscopic variable sho
be larger than1y

p
N .) To study such orbital instability,

the finite-size Lyapunov exponent introduced by Vulpian
et al. [1] is useful. It is given by

ld0sDd ­

*
1
t

log
D

d0

+
, (1)

wheret is the maximum time such thatjx0
n 2 xnj , D

for trajectoriesxn and x0
n starting from x0 and x0

0 ­
x0 1 d0 respectively, whilek?l is an average over the tra-
jectories starting from different initial values. The length
scaleD can be considered as the scale of observation.

Here we consider measurement of the finite-size Ly
punov exponent for macroscopic variables with a certa
finite-size disturbance at a macroscopic level. As long
the system size is finite, this finite-size Lyapunov expo
nent reflects not only the macroscopic motion but also th
microscopic chaos. On the other hand, if low-dimension
macroscopic dynamics has a characteristic time sca
separated from the microscopic dynamics, it will be pos
sible to extract the growth rate of perturbation in the co
lective motion from the finite-size Lyapunov exponent fo
the macroscopic variable(s). To do so, we postulate t
following assumptions that are expected to hold if the co
lective dynamics is low-dimensional chaos or on a torus

First note that in the limitD ! 0 and d0 ! 0, the
finite-size Lyapunov exponentld0sDd for macroscopic
variable in finite system size is expected to converge
the maximum Lyapunov exponentlm, which is deter-
mined by the conventional Lyapunov exponents for th
microscopic variables directly.

Considering that the collective dynamics appea
by coarse-grained macroscopic variables, we post
late that there are length scales (in the phase spa
D [ fDm, DCg, where the macroscopic variable is char
acterized by “collective Lyapunov exponent”lC. Below
© 1998 The American Physical Society
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D , Dm the microscopic chaos dominates, while th
orbit is out of the attractor forD . DC at a macroscopic
level. To have low-dimensional collective dynamics, i
is postulated thatlC is independent ofN (as long as it
is large enough), and thatDm should approach zero with
N ! ` while DC remains finite.

Based on the above assumptions, we can have a form
the finite-size Lyapunov exponent as a function of the sca
D. Let dn denote the distance from the original trajector
at time stepn. For the scaleD , Dm, dn increases
proportionally with expslmnd. HencetsDd ­ 1

lm
log D

d0

follows, independently of the collective dynamics.
On the other hand, for the scaleDm , D , DC , dn is

given asdn ~ expslCnd for a chaotic case withlC . 0,
or dn ~ nk for a torus case with a certain constantk.
Corresponding to each collective motion,tsDd and the
finite-size Lyapunov exponentld0sDd are given by

tsDd ­

8<:
1

lC
log D

Dm
1

1
lm

log Dm

d0
schaosd ,

Cs D

Dm
d1yk 1

1
lm

log Dm

d0
storusd ,

(2)

and

ld0sDd ­

8>><>>:
lmlC log D

d0

lC log Dm
d0

1lm log D

Dm

schaosd ,

log D

d0
1

lm
log Dm

d0
1Cs D

Dm
d1yk storusd ,

(3)

where Dm, and lC , or k and C are fitted parameter to
data, lm is the maximum Lyapunov exponent, andd0
is the value of initial disturbance. In order to obtain
the values of parametersDm, and lC, or k and C
easily, it is convenient to transform Eq. (3) to remov
d0 dependence of the data. For it, we definetsDd as
tsDd ­ tsDd 1

1
lm

log d0, which characterizes the time
for amplification of error from a certain scale independen
of d0. From Eq. (2), we obtain

tsDd ­

8<:
1

lC
log D 1 s 1

lm
2

1
lC

d log Dm schaosd ,

Cs D

Dm
d1yk 1

1
lm

log Dm storusd .
(4)

From data, we can easily obtaint-D plot (t- logD or
log t- logD plot), in which Dm appears as a shift of
constant, andlC or k is given by a slope in a suitable plot.
In order to confirm the existence of the low-dimensiona
collective motion, it is necessary thatDm decreases with
N as1y

p
N for a constantlC.

To demonstrate our method and to show the existence
some lower-dimensional macroscopic motion, we study
certain coupled dynamical system, which shows collectiv
motion [2–7]. Here we adopt a “heterogeneous” globall
coupled map (GCM) with a distributed parameter:

xn11sid ­ s1 2 edfisssxnsidddd 1
e

N

NX
j­1

fjsssxns jdddd , (5)

where xnsid is the variable of theith element (i ­
1, 2, 3, . . . , N) at discrete timen, andfisxd is an internal
dynamics for each element. For the internal dynamics w
e
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choose the logistic mapfisxd ­ 1 2 asidx2, where the
parameterasid for the nonlinearity is distributed between
fa0 2 aw , a0 1 awg as asid ­ a0 1

aws2i2Nd
N . (In the

following, the parameters are indicated bya ­ a0 6 aw .)
As a macroscopic variable, we adopt the mean field,

hn ­
1
N

NX
i­1

fifxnsidg , (6)

in which the collective motion is contained.
The study of collective motion in GCM has gathere

much attention [2–5]. When the couplinge is small
enough, oscillation of each element is mutually desy
chronized, and the effective degrees of freedom increa
in proportion to the number of elementsN . Still, a macro-
scopic variable is found to show some kind of ordere
motion distinguishable from noise, ranging from torus
high-dimensional chaos [3–5].

For instance, Fig. 1 gives a return map of the me
field dynamics of the GCM (5), which shows some patte
that may suggest low-dimensional chaos. Torus moti
is also found for some parameter values [5]. In the
cases, microscopic motion keeps high-dimensional cha
i.e., all of theN Lyapunov exponents are positive, eve
if there appears quasiperiodic motion for the collectiv
variablehn asN goes to infinity [5]. Here we demonstrate
the existence of low-dimensional collective motion by th
above collective Lyapunov exponentlC and by theN
dependence ofDm.

Figure 2 gives the finite-size Lyapunov exponent for th
mean field dynamics of the GCM (5). Here we pertur
the orbit to give rise to a change fromh0 to h0

0 ­ h0 1 d0
(see the caption of Fig. 2 for a detailed description).
Fig. 3, t is plotted as a function ofD. As is shown in
Fig. 3(a), the slope of the semilog plot is independe
of N. The Lyapunov exponentlC, characterizing the
collective motion, is given by the inverse of the slope

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

h n
+

1

hn

FIG. 1. An example of return map for chaotic collective mo
tion. a ­ 1.92 6 0.044, e ­ 0.1, N ­ 107. Pointsshn, hn11d
are plotted over3 3 104 steps after transient are discarded.
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FIG. 2. ld0 sDd is plotted for the model (5), (Ø) a0 ­
1.92 6 0.044, e ­ 0.1; (3) a ­ 1.9 6 0.025, e ­ 0.098;
(_) a ­ 1.9 6 0.025, e ­ 0.11; ()) a ­ 1.69755 6 0, e ­
0.008). N ­ 107. Initial perturbation amplituded0 is fixed at
1.0 3 1027. For computation, displacementh0

0 ­ h0 1 d0 is
created by perturbing the orbit asx0

0sid ­ x0sid 1
1
N d0 3 s,

where s is a random number inf21, 1g. Each point is ob-
tained by averaging over 100 samples. Specific choice of t
perturbation scheme is irrelevant to our results, as long as
collective variable is perturbed. Adopting the algorithm to b
presented, the collective motion is shown to be torus (_), low-
dimensional chaos (Ø and3), and high-dimensional chaos ()).

and is estimated as0.02, which is much smaller than
the maximum Lyapunov exponent of the system (see t
caption of Fig. 4). Note also that no plateau is visible
the finite-size Lyapunov exponent in Fig. 2 correspondin
to lC . On the other hand,Dm, given by the shift of
the plots, decreases withN , while DC does not show
significant change [8]. Thus the scale for the collectiv
motion Dm , D , DC increases withN . In Fig. 4, N
dependence ofDm is plotted, which givesDm , 1

p
N

,
whose form is expected from the central limit theorem
Hence the emergence of low-dimensional collective cha
at the thermodynamic limit is confirmed.

We have also applied the present algorithm to the ca
with a collective torus motion. Figure 3(b), (t-D plot),
shows thatk, the inverse of the slope, is 0.5, independe
of N . Indeed, this exponent1y2 is expected from the
diffusion of phase on the torus. The decrease ofDm

with N is also plotted in Fig. 4, which again shows th
expected decrease ofDm , 1

p
N

. Hence the collective
torus motion is demonstrated.

In this Letter, we have proposed an algorithm t
characterize the collective (chaotic) motion, and applied
it to a GCM. We have introduced the collective Lyapuno
exponent, to characterize the growth rate of perturbati
in the collective motion. The microscopic chaotic motio
exists at a small scale of the macroscopic variable, b
such scaleDm is shown to decrease as1y

p
N . Hence,

the macroscopic motion is separated from the microsco
motion and the emergence of low-dimensional collectiv
motion withN ! ` is confirmed [9].

Existence of low-dimensional collective chaos in th
presence of microscopic chaos has often been suspe
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FIG. 3. The normalized time stepstsDd are plotted for
N ­ 104, 105, 106, and 107, with the fitted curves Eq. (4).
(a) Chaotic case (with a semilog plot): for a ­
1.9 6 0.025, e ­ 0.098. (b) Torus case (with a log-log
plot): for a ­ 1.9 6 0.025, e ­ 0.11. The maximum Lya-
punov exponentlm ­ 0.41 (a), 0.39 (b) are obtained directly
from the GCM (5). The parameters obtained by a leas
square fitting algorithm give (a)lC ­ 0.02, and (b)k ­ 0.5.
(c) High-dimensional case,which does not obey Eq. (4), (with
a semilog plot): fora ­ 1.6962 6 0, e ­ 0.008. In this case,
while the return map shows some structure,t for N ­ 106

and 107 are not separated any more. For (c), the data fro
d0 ­ 1027, 10211, 10216 are plotted by the same symbol, since
the difference byd0 is not observed as in (a) and (b).

[10]. Indeed, for a GCM with homogeneous elements (i.e
with a ­ a0 6 0), such low-dimensional collective chaos
has not been observed, and the collective motion there
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FIG. 4. The microscopic length scalesDm are plotted as a
function of N for several parameters.Dm is obtained from the
fitting indicated in Fig. 3. The parameters are as follows. (Ø)
a ­ 1.92 6 0.044, e ­ 0.1 (chaos:lC ­ 0.009, lm ­ 0.42);
(3) a ­ 1.9 6 0.025, e ­ 0.098 (chaos: lC ­ 0.02, lm ­
0.41); and (_) a ­ 1.9 6 0.025, e ­ 0.11 (torus: k ­ 0.5,
lm ­ 0.392).

believed to be high dimensional [4,5]. In Fig. 3(c), we
have also applied our algorithm to this case. The sep
ration of scales is not clear, and the data cannot be fitt
with (6). The shift of the plot gets smaller with the in-
crease ofN . At leastDm does not decrease as1y

p
N [11].

The t-D plot provides a tool to distinguish low-
dimensional collective chaos from high-dimensional co
lective chaos. In the former case, the plot shifts a
logs

p
1yN d with N, while for the latter case such a shift is

not observed. This distinction generally holds, even if th
approximation to get Eq. (4) may not be very good [12].

Our present algorithm to extract macroscopic motio
is applicable to any system subjected to microscop
chaos, including a coupled oscillators system [7], spatia
extended systems from coupled map lattice to part
differential equations. It is also expected to be applie
even if we do not know the equation of motion, sinc
the method of [1] is based on Wolf’s algorithm [13]
developed for the estimate of Lyapunov exponents fro
experimental data. Thus, we hope that our metho
developed in this Letter is applicable to data obtaine
from experiments.

The authors thank the Supercomputer Center, Institu
for Solid State Physics, University of Tokyo for the
facilities. This work is partially supported by a Grant
in-Aid for Scientific Research from the Ministry of
Education, Science, and Culture of Japan.
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Note added.—After the completion of the presen
manuscript, the authors are informed of the recent prep
by M. Cencini, M. Falcioni, D. Vergni, and A. Vulpiani
[12], where a related study to the collective chaos
presented.
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