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Noiseless Collective Motion out of Noisy Chaos
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We consider the effect of microscopic external noise on the collective motion of a globally coupled
map in fully desynchronized states. Without the external noise a macroscopic variable shows high-
dimensional chaos distinguishable from random motions. With the increase of external noise intensity,
the collective motion is successively simplified. The number of effective degrees of freedom in the
collective motion is found to decrease adogo? with the external noise variance?®. It is shown
how the microscopic noise can suppress the number of degrees of freedom at a macroscopic level.
[S0031-9007(99)09278-9]
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Chaotic motions have been observed experimentally In the noiseless case (= 0), if the coupling strength
in physical, chemical, and biological systems. Since the is small enough, the motion of each element seems to
evolution of these systems is subjected to external fluche independent from the others. Even in such cases, the
tuations, the observability of deterministic chaos dependmotion in macroscopic variables counterintuitively does
on how the external fluctuations influence it [1,2]. Mo- not vanish in the thermodynamic limitv(— «). This
tivated by this point, extensive studies have been carrieas been studied as “collective motion” in GCM [6—14],
out about the enhancement of predictability and unprewhich implies some sort of coherence between elements.
dictability of chaotic motions [2,3]. Figure 1 gives an example of the collective motion in

So far such studies are restricted to low-dimensional dyGCM (1) without the external noiser(= 0). We adopt
namical systems. Low-dimensional chaotic motion ofterthe mean field,
arises as a macroscopic motion out of microscopic chaos N

: ) 1 ]
with many degrees of freedom. Let us consider external hy, = — Zf(xn(’))’ (2)
fluctuations imposed on the microscopic level rather than N =

the macroscopic level, as is probable in natural systemg,g 5 macroscopic observable. While the microscopic mo-
such as fluid turbulence, or neural systems with a larggon shows high-dimensional chaos in the sense that the
number of neurons. Since chaos can amplify a smallyyanunov dimension is proportional to the number of ele-

scale error, it would be natural to ask a question hownenisy | the macroscopic motion shows a quasi-periodic-
such a low-dimensional macroscopic chaos is possible oy« structure [16] as is shown in Fig. 1. In almost

of high-_dimensional chaotic systems subjected by externa)j ihe parameter values, the mean-field motion shows
fluctuations. _ , _ some coherent structure ranging from quasi-periodic-like
To address the question, we note that in certain coupleg, 5 higher-dimensional one distinguishable from random
dynamical systems a macroscopic variable shows seeffiotions [12]. However, even if the macroscopic motion
ingly low-dimensional motions, while microscopic vari- ook like quasiperiodic, scattered points around the torus-

ables keep high-dimensional chaos. Such a phenomengRe sirycture depicted in Fig. 1 do not vanish even in the
has been extensively studied as a collective motion in a

coupled map lattice [4], globally coupled oscillators [5],

and a globally coupled map [6—14]. In the present Letter, 0.5
we focus on the effect of noise on the collective motion of '
a globally coupled map (GCM).

The present GCM consists &f elements iterated by 0.4
a local dynamicsf(x) with a global coupling among 7
elements and an external noise. The dynamics is given by =&

N
0.3

xe1(() = (1= OF (D) + 1 D fali) + &0,
=1

1)
for the ith element at time stem. Here, we adopt
the logistic mapf(x) = 1 — ax? for the local dynamics
and Gaussian random process (i), with (¢,(i)) = 0

and(&,()&m(f)) = o?8,m8;j. The variance of Gaussian FiG. 1. A return map of the collective motion in GCM (1)
distribution is denoted by-? [15]. without noise. a = 1.86, ¢ = 0.1, o = 0.0, N = 107.
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thermodynamic limit [13,14], suggesting high dimension-With the further increase ofr, the collective motion
ality of the collective motion. So far, the mean-field mo- collapses to a fixed point. Hence, with the increase of the
tion is considered to be an infinite dimensional motionnoise a sort of bifurcation to lower-dimensional motions is
even when the toruslike structure is observed [10—13]. observed.

The addition of noise may, however, destroy such coher- To clarify this point, it seems natural to measure the
ence among elements. One of the authors reported that tiember of effective degrees of freedom in the collective
microscopic external noise leads the mean square deviaotion. We calculate the Lyapunov dimension of the
tion (MSD) of the mean-field distribution decreases withdynamics ofp,(x). The Lyapunov exponents are given
N [6]. (The MSD decreases in proportion tgN? with by the growth rates of tangent vectors around the orbit of
B = 1, when o is larger than a certain constant.) On Eq. (4). For numerical calculatiop,,(x) is approximated
the other hand, it is also reported that the external noisby a sufficiently large dimensional vector, and its linear
sharpens the peak in the power spectrum of the collectivetability around the orbit is studied.
motion [8]. In this Letter, we clarify the effect of noise on In Fig. 3, the Lyapunov dimension denoted B
the collective motion in GCM. is plotted as a function of the noise varianaeé. For

Consider a one-body distribution functign (x) of the  sufficiently largeo, only the stationary state is observed
elements to study the behavior of the collective motion inand D¢ is zero accordingly. With the decrease of
the thermodynamic limitv — «. Since the mean-field we have found the low-dimensional collective motion

value [Dc ~ O(1)] ranging from the motion on a torus to low-
dimensional chaos. With the further decreasesofthe
hn = ff(x)/’n(x)dx’ ()  dimension grows as
is applied commonly for each element, and since the addi- D¢ o« —logo?. (5)

tive noise can be represented as a deterministic diffusiofthis implies that the number of effective degrees of

process of the distribution function in the thermodynamicireedom goes to infinity in the zero noise limit, as is

limit, the evolution ofp, (x) obeys the Perron-Frobenius expected from the analysis of the collective motion in
equation written as GCM without the external noise.

_[4 C[F.(y)—xF/20° 4 In the largeo regime a variety of bifurcations appears,

prri(x) = | dy m=—e Pa(¥): (4 which r:naybstronglly eregd on th(lal psr?dme_tersh. E_O\r/]v-

with F,(x) = (1 — €)f(x) + eh,. ever, the above relation (5) generally holds in the high-

Fiqure 2 gives an examole of return maos of the mea dimensional collective motions in the smatlregime, as
9 9 b P e have examined for several parameters.

field value obtained numerically in GCM with the external Although the evolution rule is originally given for the

noise. Th ram nde are th m in Fig. 1. _. . . T . .
OISE.  1he€ para _etetsa d are the same as . 9. - microscopic variables, our main interest is on the behavior
Numerical calculation was carried out through integration

of Eq. (4) using a sufficiently large dimensional vector toof macroscopic variables which would be the only possible

approximatep, (x). As is shown in Fig. 2, the motion has observable in typical cases. Thus, it is highly desirable

PP &\ x). nrg. 2, s to obtain a closed description of the behavior of the
a clearer structure than the motion without the noise. B¥nacroscopic variables. which could be written as
increasingr, lower-dimensional chaos [Fig. 2(a)], locking '

states, and motions on a torus [Fig. 2(b)], are observed. hy = h(hy—1, hy—2,...), (6)
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FIG. 2. Return maps of the collective motion in GCM (1) with noise.= 1.86 and e = 0.1. The noise variances are (a)
o?=15X%10"% and (b)o? = 2.7 X 107°. The Lyapunov dimension for (a) is estimated at 3.08. Numerical calculation was
carried out with integration of Eq. (4) using a sufficiently large dimensional vector to approximate the distribution function. When
the system size in Fig. 1 is sufficiently large and the noise in this figure is small enough, the difference between these are expected
not to be significant.
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- a=1.627 £=0.01 = | at the points such thd‘tr(lT)()C) = 0. Denoting the typical
RS O value of [dF\" (x)/dx| by d(7), the interval of partitions
20 g @U a=1.0, 6201 ® is estimated atl /d(7), which decreases rapidly with.
o e o a=1.86,€=0.1 © Since the integration in a partition becomes zerp (if)
S15 *l-;;% ...,,,_. stays constant in that partition, the partitions wheyéx)
10 g e @ changes drastically im contribute to the estimation df,
*1*:.\% el much more than the partitions wherg(x) does not change
5 . 3 o . so much.
., g oo R @ In the case of a small noise limit-(— 0), the most
0 'TH% "*_2 °Qé° drastic change op,(x) comes from the inverse square-
10 10 107 o root singularities, which is the characteristic structure of

FIG. 3. The dimension of the collective motion is plotted the distribution function for the logistic map. Hence, the
as a function of noise intensity, obtained by the Lyapunovintegration in the partitions containing the characteristic
dimension. The Lyapunov exponents are calculated as growtstructure inp,(x) is estimated ao[\/m] [18]. d(7)is
E"te? 4)°f the r:ﬁr?]%‘?:ltalvggfgdlaet‘igo“”? )t?seaor?g;(ir?]gttaegebd bYoughly estimated at*” for 7 > 1, where),, is the Lya-

. . n(x .
aqsufficiently large dimensional vergtor, and 5\% tangent veZtor?unOV exponent of the local mapping [19]. Consequ_ently,
are orthonormalized at each time step. the responsd., to the perturbation grows exponentially

with the ratej A,,.

for an idealized example. In most cases, however, it Eveninthe presence of finite amplitude of the noise, the
is quite difficult and may well be impossible to obtain above order estimation fat, is still valid for 7 smaller
such a description. Thus, we examine the linear respongban 7. = —logo/A,, where the typical width of the
of the system against infinitesimal perturbation on thepartitions becomes comparable with the typical amplitude
macroscopic variables and obtain the variational equatioaf the noise, i.e.}/d(7) ~ e™*" = 0.
describing the evolution of the small deviation of the For larger 7 > 7., however, the effect of noise in
macroscopic variables in a neighborhood of a trajectory. smoothening the distribution(x) appears so that, will

In the present case, since the elements interact onligtart to decay withr.
through the mean-field value, it is quite natural to expect Partially integrating (8), we obtain
that the behavior of the mean-field value can be consis-
tently described _by its_elf. We expect t_hat the_ effegtive L, = _ef dx F,(,T)(x) dpn—’r+1()€)’ ©)
number of the dimension of the collective motion gives dx
substantial agreement with the Lyapunov dimension of the - (r) () —) —r) .
macroscopic dynamics estimated in the above mentionedith Fn'(x) = Fu (x) — F,’, whereF, " is the average
way. We concentrate on the smallregime and give a value ofFﬁf)(x) over the support op,(x). With the in-

qualitative explanation for the relation (5). crease of, Fi”)(x) becomes a rapidly oscillating function

If we consider small deviationg,, of ki, thenn, IS ghout zero mean in, and the integration of\” (x) over
refgardfed atsha functlotn {)bﬁ’a‘l’ gﬁ‘?’ e Tr;e evolution 5y finite range within the support pf, (x) will approach
ot 7 from the unpe;ur €d ofbit, 15 given by zero [20]. Sincdd”%;'(x)l is uniformly bounded due to

M= Limu_r + 0(n?), (7) the existence of the noisé, converges to zero. Hence,
=i as far as the linear stability is concerned, the mean-field
whereL, is a coefficient to give the linear response of thevalue is not sensitive to the perturbation on the mean-field
mean-field value at the step to the displacement at the Values of sufficiently long time steps=p () steps] ago.
n — 7 step. The number of the Lyapunov dimension of 1Nus we can consider a dynamics/of as a function of
the mean-field dynamics is estimated from the eigenvalug§'e mean-field values of the pastr.) steps as Eq. (6) at
of this linear regression [17]. least in the neighborhood of the orbit. .

First we estimateL, from the dynamics of the N summary, the amplitude oL, grows with r as
distribution function given by Eq. (4). In the small Lr ~ ¢!"/?*7 for = < O(r.), whereas it starts to decay
noise limit (¢ — 0), from Egs. (3) and (4),h, = for 7> O(7.). Thus for sufficiently larger, i.e., for
[F,(fﬂ)(x)pnﬂ(x) dx, where F,(f)(x) —F, 0F, | o sufficiently smallo, the pumbfer of positive elgenvalues

- o F,_+1(x). Considering an infinitesimal displace- around zero fqr Eq. (7) is estlmated @l7.). Since we
ment applied at the — 7 step.L, is given by have to conS|der_the c_ontrlbutlc_)n only f_rom the latest

O(7.) steps, the dimension of this dynamical system can
dF,(f)(x) be at mostO(r.). Hence, the dimension of the mean-
Ly = Ef dx dx Pn—r+1(x). ®)  field dynamics is within the order af.. Accordingly the
number of effective degrees of freedom of the mean-field

Forr > l,dF,(f)(x)/dx in Eq. (8) changes its sign quite dynamics grows as- logo with the decrease of, and

frequently inx. Now let us consider the partition of  can grow arbitrary large as approaches zero.
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