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Transitions Induced by the Discreteness of Molecules in a Small Autocatalytic System
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The autocatalytic reaction system with a small number of molecules is studied numerically by sto-
chastic particle simulations. A novel state due to fluctuation and discreteness in molecular numbers is
found, characterized as an extinction of molecule species alternately in the autocatalytic reaction loop.
Phase transition to this state with changes of the system size and flow is studied, while a single-molecule
switch of the molecule distributions is reported. The relevance of the results to intracellular processes is
briefly discussed.
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Cellular activities are supported by biochemical reac-
tions in a cell. To study biochemical dynamic processes,
rate equations for chemical reactions are often adopted for
the change of chemical concentrations. However, the num-
ber of molecules in a cell is often rather small [1], and it
is not trivial if the rate equation approach based on the
continuum limit is always justified. For example, in cell
transduction even a single molecule can switch the bio-
chemical state of a cell [2]. In our visual system, a single
photon in retina is amplified to a macroscopic level [3].

Of course, fluctuations due to a finite number of mole-
cules are discussed by stochastic differential equation
(SDE) adding a noise term to the rate equation for the
concentration [4,5]. This noise term sometimes introduces
a nontrivial effect, as discussed as noise-induced phase
transition [6], noise-induced order [7], stochastic reso-
nance [8], and so forth. Still, these studies assume that the
average dynamics are governed by the continuum limit,
and the noise term is added as a perturbation to it.

In a cell, often the number of some molecules is very
small, and may go down very close to or equal to 0. In
this case, the change of the number between zero and
nonzero, together with the fluctuations may cause a drastic
effect that cannot be treated by SDE. The possibility
of some order different from macroscopic dissipative
structure is also discussed by Mikhailov and Hess [9,10]
(see also Ref. [11]). Here we present a simple example
with a phenomenon intrinsic to a system with a small
number of molecules where both the fluctuations and
digitality(“0�1”) are essential.

In nonlinear dynamics, the drastic effect of a single
molecule may be expected if a small change is amplified.
Indeed, autocatalytic reaction widely seen in a cell pro-
vides a candidate for such amplification [12,13]. Here
we consider the simplest example of autocatalytic reaction
networks (loops) with a nontrivial finite-number effect.
With a cell in mind, we consider the reaction of molecules
in a container, contacted with a reservoir of molecules.
The autocatalytic reaction loop is Xi 1 Xi11 ! 2Xi11;
i � 1, · · · , k; Xk11 � X1 within a container. Through the
contact with a reservoir, each molecule Xi diffuses in
and out.
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Assuming that the chemicals are well stirred in the
container, our system is characterized by the number of
molecules Ni of the chemical Xi in the container with the
volume V [14]. In the continuum limit with a large number
of molecules, the evolution of concentrations xi � Ni�V
is represented by

dxi�dt � rixi21xi 2 ri11xixi11 1 Di�si 2 xi� , (1)

where ri is the reaction rate, Di is the diffusion rate across
the surface of the container, and si the concentration of the
molecule in the reservoir.

For simplicity, we consider the case ri � r , Di � D,
and si � s for all i, while the phenomena to be presented
here will persist by dropping this condition. With this
homogeneous parameter case, the above equation has a
unique attractor, a stable fixed point solution with xi � s.
The Jacobi matrix around this fixed point solution has a
complex eigenvalue, and the fluctuations around the fixed
point relax with the frequency vp � rs�p . In the present
paper we mainly discuss the case with k � 4, since it is
the minimal number to see the new phase to be presented.

If the number of molecules is finite but large, the reac-
tion dynamics can be replaced by the Langevin equation by
adding a noise term to Eq. (1). In this case, the concentra-
tion xi fluctuates around the fixed point, with the dynam-
ics of a component of the frequency vp . No remarkable
change is observed with the increase of the noise strength,
that corresponds to the decrease of the total number of
molecules.

To study if there is a phenomenon that is outside of this
SDE approach, we have directly simulated the above auto-
catalytic reaction model, by colliding molecules stochasti-
cally. Taking randomly a pair of particles and examining
if they can react or not, we have made the reaction with
the probability proportional to r . On the other hand, the
diffusion out to the reservoir is taken account of by ran-
domly sampling molecules and probabilistically remov-
ing them in proportion to the diffusion rate D, while the
flow to the container is also carried out stochastically in
proportion to s, D, and V [15]. Technically, we divide
time into time interval dt for computation, where one
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pair for the reaction, and single molecules for diffusion
in and out are checked. The state of the container is al-
ways updated when a reaction or a flow of a molecule
has occurred. The reaction Xi 1 Xi11 ! 2Xi11 is made
with the probability PRi�t, t 1 dt� � rxi�t�xi11�t�Vdt �
rNi�t�Ni11�t�V21dt within the step dt. A molecule dif-
fuses out with the probability POi � DVxi�t� � DNi�t�,
and flows in with PIi � DVs. We choose dt small enough
so that the numerical result is insensitive with the further
decrease of dt. By decreasing Vs, we can control the aver-
age number of molecules in the container, and discuss the
effect of a finite number of molecules, since the average
of the total number of molecules Ntot is around the order
of 4Vs [16]. On the other hand, the “discreteness” in the
diffusion is clearer as the diffusion rate D is decreased.
We set r � 1 and s � 1, without loss of generality (rs�D
and sV are the only relevant parameters of the model by
properly scaling the time t).

First, our numerical results agree with those obtained
by the corresponding Langevin equation if D and V are
not too small. As the volume V (and accordingly Ntot)
is decreased, however, we have found a new state whose
correspondent does not exist in the continuum limit. An
example of the time series is plotted in Fig. 1, where we
note a novel state with N1, N3 ¿ 1 and N2, N4 � 0 or
N2, N4 ¿ 1 and N1, N3 � 0. To characterize this state
quantitatively, we have measured the probability distribu-
tion of z � x1 1 x3 2 �x2 1 x4�. Since the solution of
the continuum limit is xi � s�� 1� for all i, this distri-
bution has a sharp peak around 0, with a Gaussian form
approximately, when Ntot is large enough. As shown in
Fig. 2, the distribution starts to have double peaks around
64, as V is decreased. With the decrease of V (i.e., Ntot),
these double peaks first sharpen, and then get broader with
the further decrease due to too large fluctuation of a sys-
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FIG. 1 (color). Time series of the number of molecules Ni�t�,
for D � 1�256, V � 32. Either the 1-3 or 2-4 rich state is
stabilized. Successive switches appear between N1 . N3 and
N3 . N1 states with N2, N4 � 0. Here a switch from the 1-3
rich to 2-4 rich state occurs around t � 5500.
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tem with a small number of molecules. Hence the new
state with switches between 1-3 rich and 2-4 rich temporal
domains is a characteristic phenomenon that appears only
within some range of a small number of molecules [17].

The stability of this state is understood as follows. Con-
sider the case with 1-3 rich and N2 � N4 � 0. When one
(or few) X2 molecules flow in, N2 increases, due to the
autocatalytic reaction. Then X3 is amplified, and since N2
is not large, N2 soon comes back to 0 again. In short, the
switch from �N1, 0, N3, 0� to �N1 2 D, 0, N3 1 D 1 1, 0�
occurs with some D, but the 1-3 rich state itself is main-
tained. In the same manner, this state is stable against the
flow of X4. The 1-3 rich state is maintained unless ei-
ther N1 or N3 is close or equal to 0, and both X2 and X4
molecules flow in within the switch time. Hence the 1-3
rich state (as well as 2-4 rich state, of course) is stable as
long as the flow rate is small enough.

Within a temporal domain of 1-3 rich state, switches
occur to change from �N1, N3� ! �N 0

1, N 0
3�. In Fig. 3, we

have plotted the probability density for the switch from
N1 ! N 0

1 when a single X2 molecule flows in, amplified,
and N2 comes back to 0, by fixing N1 1 N3 � Nini at 256
initially. (We assume no more flow. Hence N 0

1 1 N 0
3 �

Nini 1 1). The peak around N 0
1 � N1 1 1 means the

reaction from N2 to N3 before the amplification, while
another peak around N 0

1 � N3 � Nini 2 N1 shows the
conversion of the numbers through the amplification of
X2 molecules. Indeed, each temporal domain of the 1-3
rich state consists of successive switches of �N1, N3� !
��N3, N1�, as shown in Fig. 1. Since molecules diffuse out
or in randomly besides this switch, the difference between
N1 and N3 tends to decrease. On the other hand, each
1-3 rich state, when formed, has imbalance between N1
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FIG. 2 (color). The probability distribution of z � �x1 1 x3� 2
�x2 1 x4�, sampled over �2.1 5.2� 3 106 steps. D � 1�64.
For V $ 128, z has a distribution around 0, corresponding to
the fixed point state xi � s�� 1�. For V # 32, the distribution
has double peaks around z � 64, corresponding to the state
N1, N3 ¿ N2, N4��0� or the other way round. The double-peak
distribution is sharpest around V � 16, and with the further
decrease of V , the distribution is broader due to finite-size
fluctuations.
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FIG. 3. Probability density for the switch from �N1, N3� to
�N 0

1, N
0
3� when a single X2 molecule is injected into the system.

N1 1 N3 � Nini is fixed at 256 initially. There is no more flow
and N4 is always kept at 0, so that the switch is completed when
N2 comes back to 0, and N 0

1 1 N 0
3 � Nini 1 1. The probability

to take N 0
1 is plotted against initial N1.

and N3, i.e., N1 ¿ N3 or N1 ø N3, since, as in Fig. 1, the
state is attracted from alternate amplification of Xi , where
only one type i of molecules has Ni ¿ 1 and 0 for others.
However, the destruction of the 1-3 rich state is easier if
N1 ¿ N3 or N1 ø N3, as mentioned. Roughly speaking,
each 1-3 rich state starts with a large imbalance between
N1 and N3, and continues over a long time span, if the
switch and diffusion lead to N1 � N3, and is destroyed
when the large imbalance is restored. Indeed, we have
plotted the distribution of y � x1 2 x3 1 x2 2 x4, to see
the imbalance for each 1-3 rich or 2-4 rich domain. This
distribution shows double peaks clearly around y � 62.8,
i.e., �N1, N3� � �3.4V , 0.6V �, �0.6V , 3.4V �.

Let us now discuss the condition to have the 1-3 or 2-4
rich state. First, the total number of molecules should be
small enough so that the fluctuation from the state Ni �
Nj (for ;i, j) may reach the state with Ni � 0. On the
other hand, if the total number is too small, even N1 or N3
for the 1-3 rich state may approach 0 easily, and the state
is easily destabilized. Hence the alternately rich state is
stabilized only within some range of V .

Note also that our system has conserved quantitiesP
i Ni (and

P
i logxi in the continuum limit), if D is set

at 0. Hence, as the diffusion rate gets smaller, some
characteristics of the initial population are maintained
over a long time. Once the above 1-3 (or 2-4) rich state is
formed, it is more difficult to be destabilized if D is small.
In Fig. 4, we have plotted the rate of the residence at 1-3
(or 2-4) rich state over the whole temporal domain, with
the change of V . Roughly speaking, the state appears for
DV , 1 [18], while for too small V (e.g., V , 4), it is
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FIG. 4. The rate of the residence at 1-3 (or 2-4) rich state over
the whole temporal domain, plotted against DV [18]. Here,
the residence rate is computed as follows. As long as N2 . 0
and N4 . 0 are not satisfied simultaneously, over a given time
interval (8.0; 2.5 times as long as the period of the oscillation
around the fixed point at continuum limit), it is counted as the
1-3 rich state (2-4 rich state is defined in the same way) [23].
The residence rate is computed as the ratio of the fraction of the
time intervals of 1-3 or 2-4 rich state to the whole interval. For
small D, this switching state is observed even for a large number
of molecules, say N � 4 3 104, for V � 104 at D � 1026.

again destabilized by fluctuations. Although the range of
the 1-3 rich state is larger for small D, the necessary time
to approach it increases linearly with V . Hence it would
be fair to state that a properly small number of molecules
is necessary to have the present state.

In conclusion, we have discovered a novel state in re-
action dynamics intrinsic to a small number of molecules.
This state is characterized by alternately vanishing chem-
icals within an autocatalytic loop, and switches by a flow
of single molecules [19]. Hence, this state generally ap-
pears for a system with an autocatalytic loop consisting
of any even number of elements. With the increase of k,
however, the globally alternating state all over the loop is
more difficult to be reached. In this case, locally alternat-
ing states are often formed with the decrease of the system
size (e.g., “2-4-6-8 rich” and “11-13-15 rich” states for
k � 16). This local order is more vulnerable to the flow
of molecules than the global order for the k � 4 loop.

On the other hand, for k � 3, two of the chemical
species start to vanish for small V , since any pair of differ-
ent chemical species can react so that one chemical species
is quickly absorbed into the other. This state of single
chemical species, however, is not stable by a flow of a
single molecule. Indeed, no clear “phase transition” is ob-
served with the decrease of V .

Although in the present Letter we have studied the case
with si � s, we have also confirmed that the present state
with alternately vanishing chemical species is generally
stabilized for small V , even if si , ri , or Di are not identical.

Last, we make a remark about the signal transduction in
a cell. In a cell, often the number of molecules is small,
and the cellular states often switch by a stimulus of a single
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molecule [1]. Furthermore, signal transduction pathways
generally include autocatalytic reactions. In this sense, the
present stabilization of the alternately rich state as well as a
single-molecule switch may be relevant to cellular dynam-
ics. Of course, one may wonder that the present mecha-
nism is too “stochastic.” Then, use of both the present
mechanism and robustness by dynamical systems [20,21]
may be important. Indeed, we have made some prelimi-
nary simulations of complex reaction networks. Often, we
have found the transition to a new state at a small num-
ber of molecules, when the network includes the autocat-
alytic loop of 4 chemicals as studied here [22]. Hence the
state presented here is not restricted to this specific reac-
tion network, but is observed in a class of autocatalytic re-
action network. Furthermore, switches between different
dynamic states (limit cycles or chaos) are possible when
the number of some molecules (that are not directly re-
sponsible to the switch) is large enough. The “switch of
dynamical systems” by the present few-number-molecule
mechanism will be an important topic to be pursued in the
future.
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