
• First Talk
• General Introduction to Complex Systems 

Biology
• Recursive Production of Cells
• （A few Basic Problems in Origin of Life）
• Development--Cell Differentiation
• Coupled Dynamical Systems
• Summary 
-----------------------------------------------------------
2nd;  phenotype evolution; robustness, 

evolovability,….



Complex Systems Biology

cf.  Life as Complicated System:  （current trend)
Enumeration of molecules, processes   
detailed models describing the life process

Life as Complex System:
Understand Universal features  at a System with 

mutual dependence between parts and whole
Simplistic Physicists’ Approach

Strategy:
1) Dynamical Systems ++＆Statistical Physics ++

Catch consistency between micro-macro levels
2) Constructive Approach: (Exp & Theory)
` construct simple system to catch  universal features'

as simple as possible



Consisteny between Cell reproduction
and molecule replication

Adaptation as
a result of consistency
between cell growth and
gene expression dynamics

Consistency between 
Multicelluar development
and cell reprodcution

Genotype

Catalytic reaction network

Phenotype

Evolutionary relationship on 
Robustness and Fluctuation

Phenotypic Plasticity vs Symbiosis
Or Ecological diversification

Gene regulatio
networkMolecule

Cell

Multicelluarity

Ecosystem

Stochsatic dynamics



Consistency between different levels
(1)Cell reproduction vs molecule replication (03-)
(2)Reproduction of multicellular organism vs of cells  

(97-
(3)Adaptation vs Reproduction (06-)
(4)Genetic change vs Phenotypic Fluctuation  (03-



Constructive Biology Project 

theme experiment theory question

replicating
system

in vitro
replication with

enzymatic reaction

minority
control

origin of
heredity;

evolvability

cell
system

replicating cell
with internal

reactions

universal
statistics in

reaction dynamics

condition for
recursive
growth

cell differentiation.
development

differentiation
of E Coil

by interaction

emergence of
differentiation

rule from dynamics

irreversibility
robustness

Spontaneous 
adaptation

Artificial gene network Adaptive attractor 
selection by noise

Ubiquitous ability in
adaptation

evolution
Laboratory evolution 

using bactreia
Fluctuation-response

relationship
Robustness, 
evolvability

Complex Systems Biology Project (JST,ERATO;  KK,Yomo,…)



Replicating artificial cell (experiment) 
( theory; fluctuation, minority control)

RNA polymerase geneRNA

RNA polymerase

Tranlation in liposome
RNAreplication in liposome

translation replication division

By 菅原ら(東大総合分化）By 菅原ら(東大総合分化）

Continouos division of liposomes
(Sugawara’s group)

（Yomo‘s group)



How is recursive production of a cell sustained？
each cell complex reaction network

with diversity of chemicals;
The number of molecules of each species 

not so large

●●●
●●●●
●●●●
●●●

●●●●
●●●●

●●●●

●●●
●●●●
●●●●
●●●

●●●●
●●●●
●●●●

●●●●
●●●●

●●●●

●●●
●●●●

●●●●
●●

？

Fluctuations
Naiive Physicist View
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Cell Model with Catalytic Reaction Network 
‘Crude but whole cell model’

（nutrient）
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medium

diffusion
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some chemicals are some chemicals are penetrablepenetrable
through the membrane with the through the membrane with the 
diffusion coefficient Ddiffusion coefficient D

resource chemicals are thus resource chemicals are thus 
transformed into impenetrable transformed into impenetrable 
chemicals, leading to the growth inchemicals, leading to the growth in
Ｎ＝Σni,   when it exceeds when it exceeds NNmaxmax

the cell divides into twothe cell divides into two

random catalytic reaction networkrandom catalytic reaction network
with the path rate pwith the path rate p

for the reaction    for the reaction    ＸＸ
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modelmodel
C.Furusawa & KK、PRL2003

・・・ K >>1 species

dX1/dt ∝ X0X4;   rate equation;
Stochastic model here

(Cf. KK&Yomo 94,97)



☆Simulation procedure

１：Pick up randomly 2 molecules at each time step, if the 
pair reactions, change the substratre molecule into 
productt (with the probability of the reaction rate) 
otherwise leave as it is

2 With a certain rate per time step (（≈１／Ｄ）, exchange a 
molecule of inside in the cell by that in an 
enviromenment. If the molecule is impermeable, it stays 

３：If the total number of molecules N goes beyodn Nmax 

cells are divided into two, eahc of which consists of 
molecules chosen randomly



In continuum description, the following rate eqn., 
but we mostly use stochastic simulation



• Cf:  
• Use of ODE (+ fluctuation) 
versus  stochastic model with discreteness of molecules
• Basically same if the number of molecules N therein is 

sufficiently large.  
If N is small (in comparison with the number of species 

K), then several molecule species can be zero at 
some time, then there appears a  qualitatively distinct  
behavior

N>>K  we are used in physics
N ~K or N<<K  needs different view  

• --- Discreteness Induced Transition ---
(Togashi,KK, PRL 2002, Awazu, KK PRE 2007)



☆☆Growth speed and fidelity in replication Growth speed and fidelity in replication 
are maximum at Dcare maximum at Dc
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Zipf’s Law is oberved at D = Dc
nnii (number(number ofof moleculesmolecules））

rankrank

Furusawa &KK,2003,PRL

Average number of each chemical ∝
 

1/(its rank)

(distribution of x：ρ（ｘ）∝ｘ

 
）

-2

number rank
X1 300     5
X2 8000   1
X3 5000    2
X4 700      4
X5  2000    3
…….. (for example)
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Confirmed by gene expression data



Mouse ES cell

C. elegans

Mouse Fibroblast Cell

Yeast
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Later confirmed by several other groups



Formation of cascade catalytic reactionFormation of cascade catalytic reaction

Rank of Rank of nnii

Catalyze 
chemicals of 
higher rank 
mainly
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栄養から直接生成される成分の数

 を多くなるようパラメータを変えて、

 階層構造が判りやすくした例

１１

２２

３３４４

１：１：minority moleculesminority molecules

２：２：catalyzed by 1, synthesized by resourcecatalyzed by 1, synthesized by resource

３：３：catalyzed by 2catalyzed by 2

：：

★★

nini

With conservation law,
The exponent -1 is explained

Mean-field theory in phase transition  (self-consistent) calc.)







• Remarks:
（０）Universality
(1) Evolution to the critical state (with Zipf law) is 

confirmed numerically
(2) Evolution to scale-free network appears later 

as embedding of power-law abundances into 
network   (Furusawa,KK, PRE 2006) 

（3）
 

Self-organization to critical state, if 
transport of ‘nutrition chemicals’ is catalyzed by 
some chemicals （no need for choice of D) 
(instead of simple diffusion) (Furusawa,KK,2007)





Evolution of Network to satisfy  Zipf’s law?     Yes
Critical D value depends on connectivity in the network;
mutation of network + selection approaches Zipf’s law

Furusawa



Later, the connectivity in the network approaches
“scale-free” network    through evolution.

statistical properties; embedded into  network structure

Zipf’s law holds,  irrespective of network structure, but

Furusawa、KK, PRE, 2006

initial

evolved
４

2

evolutionary embedding 
of dynamics into network

Dynamics (abundance) first, structure (equation for dynamics) later

probability for a  path to 
chemical with  abundances x 
is selected;  q(x) 
transformation of abundance 

distrb.  to connectivity distrib.



Relationship between Zipf’s law (abundance) and scale-free 
network (structure): ???

(1) Abundance x: density ρ（ｘ）
 

∝
 

x^-2
(2) ｘ；

 
a path to molecule species with abundances x have more 

influence on growth speed:  the simplest case
variation of growth speed to a path going out of  a chemical with 

abundance x ->  is  x times higher ;
the evolution speed of a path from a chemical with x is effectively 

amplified by ｘ:  in general accelerated by some function ｑ(x), 
say x^{α｝

（３）
 

as the path number is larger, there are some better networks.  
Then the distribution of paths k  by transformation ｑ（ｘ） ｋ

(4) Distribution of k ; P(k) ∝
 

(dx/dk) ρ（ｘ）

if q(x) =x, then P(k)  k^{-2},    if α=1/2 then k^{-3}
NOTE  abundance dynamics first, topology of network (scale-free 

network) is later embedded accordingly 



☆☆Distribution of paths in reaction networkDistribution of paths in reaction network

頻度頻度

反応パスの数反応パスの数

Furusawa



Fluctuation of each chemicalFluctuation of each chemical
Abundance;Abundance;

longlong--tail to abundant sizetail to abundant size
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e.g.
cell1 X1   10000
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cell3         15000
cell4        20000

…..
histograrm



So  far average quantity of all components;

Next question: fluctuation by cells:
distribution of each Ni by cells

Each color 
gives
different 
chemical
species

LOG SCALE

Furusawa,..
KK,
Biophysics2005

Log normal distribution !

e.g.
cell1 X1   10000
cell2           8000
cell3         15000
cell4        20000

…..
histograrm



☆☆Heuristic explanation of logHeuristic explanation of log--normal distributionnormal distribution
Consider the case that a component X is catalyzed by Consider the case that a component X is catalyzed by 
other component A, and replicate; the number other component A, and replicate; the number ----NNXX、、NNAA

d Nd NXX //dtdt = N= NXX NNAA

thenthen

d log( Nd log( NXX )/)/dtdt = N= NAA

IfIf、、
 

NNA   A   fluctuates around its mean < NNAA＞, with fluct. η（ｔ）

d log( Nd log( NXX )/)/dtdt = = ＜NNAA＞ ＋＋ η（ｔ）

log( Nlog( NXX ) shows Brownian motion ) shows Brownian motion NNX X loglog--normal distributionnormal distribution

too, simplified, since no direct self-replication exists here
But with cascade catalytic reactions, fluctuations are 
successively multiplied, (cf addition in central limit 
theorem.);Hence after logarithm, central limit th.  applied



☆☆Cascade leads to multiplicative propagation of Cascade leads to multiplicative propagation of 
noise (at  critical region)noise (at  critical region)

ｄNx/dt=Ny Nｚ

with cascade catalytic reactions, fluctuations are 
successively multiplied, 
(cf addition in central limit theorem.);
Hence after logarithm, central limit th.  applied

☆☆Heuristic explanation of logHeuristic explanation of log--normal distributionnormal distribution



☆☆Cascade leads to multiplicative propagation of Cascade leads to multiplicative propagation of 
noise (at  critical region)noise (at  critical region)

ＡＡ ＢＢ ＣＣ ＤＤ ＥＥ

Propagation of fluctuation, feedback to Propagation of fluctuation, feedback to 
itself, leading to logitself, leading to log--normal distribution tail.normal distribution tail.

Cf.  If parallel,Cf.  If parallel,

ＡＡ

Fluctuations come in parallel:Fluctuations come in parallel:

Usual central limit theorem is valid; Usual central limit theorem is valid; 

normal distribution.normal distribution.

Cf??

weight – log-normal
height -- normal



Experiment; protein abundances measured by fluorescence

Log-normal
Distribution
Confirmed 
experimentally

Furusawa,Kashiwagi,,Yomo,KK

+flow-cytometry

Also studied in GFP synthesis in liposome
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concentration

Tsuru,Ichinose,Kashiwagi,KK, Yomo (in prep.)



Cf.  Recent studies on fluctuations:
log-normal or not?

Cell Growth has to be seriously considered
In theory and experiment.

X   just  stochastic gene expression  
X  condition suppressing cell growth

Condition for steady growth state --- should be 
carefully prepared in experiment

Size itself is lognormal:  either selection by some 
size, or normalized by size

Analysis for all gene expressions in yeast （Bar－
 Even etal., 2006)



Figure 1

Concentration Concentration

A B

Fluctuations in a Cell;  Cell Volume Growth effect

Stochastic gene 
expression  that are
current concern of many

Consequence of
Cell volume growth 
fluctuation tha we are
interested

Tsuru,Ichinose,Kashiwagi,Ying,KK,Yomo

Growth Fluctuation induces log-normal-type distrb.



Growth fluctuation can lead to Log-tailed 
phenotypic fluctuation

• protein concentration x
• dx/dt=f(x)-(μ+η）ｘ

dilution term by cell volume growth
μ －－ growth rate
η －－ fluctuation (noise)
multiplicative noise log-tailed distribution

(exp；
 

Tsuru ｅｔａｌ）
Growth rate μ

 
is a result of an ensemble of 

gene expression μ(x1,x2,x3,…) -- 
(consistency)?



Replicating artificial cell (experiment) 
( theory; fluctuation, minority control)

RNA polymerase geneRNA

RNA polymerase

Tranlation in liposome
RNAreplication in liposome

translation replication division

By 菅原ら(東大総合分化）By 菅原ら(東大総合分化）

Continouos division of liposomes
(Sugawara’s group)

（Yomo‘s group)



• A Lesson:
Necessity of mutual dependency to form 
self-consistent reproduction system

Liposome growth synthesis of proteins
so far, not consistent

too large fluctuations
(not necessarily log-normal)
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• Basic question related with Protocells (origin-of-life)

-- origin of genetic information (genetic take over?)
(Minority control, kk,Yomo JTB 2002,kk PRE2003,,,)

-- dynamics versus algorithmic: discreteness induces 
sequential procedure -- Discreteness Induced 
Transition, Togashi,kk; PRL2002, Awazu,kk 2007+)

-- ‘jamming’ problem in reaction dynamics?
(Awazu,kk; PRE 2007 +)

-- how non-equlibrium condition is sustained?
(Awazu,kk;  PRL 2004, + arXiv2008)



Question :
All molecules have such large fluctuation?
Important ones are ‘protected’? (DNA?)

• Q:    Origin of heredity?
• * some molecules in a cell are regarded as 

‘’important’’, and control the behavior of cell
e.g., differentiation in roles between DNA and protein,
Minority Control hypothesis (KK & Yomo, 2002)
in a replicating system composing of mutually catalytic 
molecules, minority molecules play the
role of heredity-carrier

Condition for heredity
preservation
controllability



X and Y mutually  catalyze 
the synthesis of each other;
Y is synthesized  much 
slower than X molecules.

divsion

N molecules N molecules

Rate equation may lead 
to (active) Y molecule 
of the concentr.  < 1/N

A few Y molecules are necessary 
to continue reproduction

Selected are ‘rare’ states
with a few Y molucules

Active Y molecules;
(i) Preserved well,
(ii)Control the behavior

Carrier of heredity



• Hypothesis based on Minority Control   
minority ( preservation+ control) 

evolution of
machinery of faithful transmission of minority 
molecule. 
more chemicals are synthesized with it

Package life-critical info. Into minority molecule.
From compositional information to sequence 

information
**Evolvablity:    ‘’mutation’’ of minority molecule 

large influence  Genetic Takeover
(from loose reproduction to tight replication)



Mutual Catalytic Reaction network
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Total number of molecules N
Number of molecules species  M

If not N >>M,  the number of some 
species  can be 0 discreteness Random catalytic network
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F

I
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Stochastic  collision

Awazu,KK,PRE2007

Reaction Rate RR =

reaction evens per time
total number of molecules



Plot of   N(i)  for species i   same network, with different N

species i species i

time time

N(i) / N N(i) / N

（Species：
 

M=100、
 

path：
 

K=12）

N=800 N=12

Intermittent switch among states

An example in network

Steady state + small fluct.

0
0.01
0.02

0                       50                   100
0

0.02

0.04

0                       50                   100

<N(i)/N>
<N(i)/N>

i i

N=800 N=12（）
（~ rate eqn）

Average composition differs drastically



More than 5000 reaction steps 
run with 144 components of 
biological molecules for the in 
vitro self-replication.
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Jamming in reaction by crowding often suppresses the 
process, especially when complex reaction is put

Matsuura
et al

Yomo’s
group



How is non-equilibrium condition sustained?
Our tentative answer: a large class of Catalytic network 

exhibits ‘glassy’ (slow,)relaxation with bottlenecks
negative correlation between substrate and catalysts 

General in catalytic networks ‘Chemical Net Glass’
(Awazu-kk)

with spatial pattern  -- further hindered   --good news
Reinforcement？
nonequilibrium condition

Structure formation in network and in space
Compartmentalization

reproduction of molecules & of compartment

Reproduction of Non-equilibrium Condition Itself？？
But there appear reaction bottlenecks  (bad news) + 

successive switch --- may underlie ‘slow dynamics’ in 
present cells?



Proposal of ‘Chemical Reaction Net Glass’’
Simple catalytic reaction network

Ei distributed : stnd deviation  ε
RELEVANT parameter βε

Equilibrium distribution exp(-βEi) :  ( detailed balance)
Relaxation process:   Initial : β=0(high temp) for all 
species, i.e., equal probability for all chemical species.

With A.Awazu



Two salient features in 
relaxation  analogous to

‘glass’
(1) Log-t slow relaxation

(rather than exponential)
(2) Existence of plateaus



• Why plateaus?
• Local equilibrium within cluster 
• Equilibrated with other clusters 
is suppressed  by deficiency of 
catalytic molecules
• negative-correlation with 
abundances versus catalysts
• ΔX ↑ ΔJout ↓ ？

X5

X3

X4
X0

X1
X2

X7

X7 X5 X2

X6

X1

x3
X8

X2,X8 small:
Larger in the molecules
In the cluster
Say catalysts X2,X7
Are suppressed

Why Log-t slow relaxation?
due to energy distribution, the relaxation time
( kinetic coefficients exp(-βＥ）) distribute extensively

C(t)~

by log(t)

General in catalytic networks ‘Chemical Net Glass’



Consolidation  (Reinforcement)？
nonequilibrium condition

Structure formation in network and in space
Compartmentalization

reproduction of molecules & of compartment
increase inhomegeneity in space

Reproduction of Non-equilibrium Condition Itself
But reaction can be easily stopped (bad news?)

Bottlenecks in reactions + successive switch --- 
may underlie ‘slow dynamics’ in present cells?

True in irreversible reactions/ open systems?
Study irreversible Catalytic Reaction Network



Waddington’s
Canalization 

Cell types as
Attractors?

How genes guide
this process?

Multicelluarity:Ｑｕｅｓｔｉｏｎ
 

ｏｎ

Ｃｅｌｌ
 

ｄｉｆｆｅｒｅｎｔｉａｔｉｏｎ：

Insight by Conrad Waddington



Multicelluarity:Ｑｕｅｓｔｉｏｎ
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ｄｉｆｆｅｒｅｎｔｉａｔｉｏｎ：

1 diversification of cell types
2 Ｌｏｓｓ

 
ｏｆ

 
Ｐｌｕｒipotency

(plasticity)
(‘time’s arrow’?)
3 Robustness in cell types and
Their distribution

Proposal of Isologous Diversification: 
(KK,Yomo,Furusawa1997-)
(Oscillatrory) Gene expression dynamics
* cell-cell interaction + Reproduction of a cell
Growth as a multicellular organism

irreversible and robust developmental process

1 2( , ,.., )
m

k
m

dx f x x x
dt

=

GROWTH

Coupled Dynamical Systems
with growth in dimension



Isologous Diversification:

internal dynamics and  interaction : development      phenotype

instability

distinct phenotypes

interaction-induced

Example:  chemical reaction network

specialize in the use of some path 

1 2( , ,.., )
m

k
m

dx f x x x
dt

=

Coupled Dynamical Systems
development

Internal chemical reaction dynamics 
and  interaction  and cell division



synchronous division: 
no differentiation Instability of homogeneous state 

through cell-cell interaction

formation of discrete types 
with different chemical 
compositions: 
stabilize each other

recursive production

Assuming oscillatory dynamics as a single cell



• (1)  Synchronous oscillations  of  identical units
Up to some threshold number of units, all of them oscillate 
synchronously, and their states are identical.}

• (2)  Differentiation  of the phases of oscillations  of  internal 
states.   When the number of units exceeds the threshold, they 
lose identical and coherent dynamics. Although the state of 
units are different at an instance, averaged behaviors over 
periods are essentially the same. Only the phase of oscillations 
differs by units.

• (3)  Differentiation  of the amplitudes of internal  states. At this 
stage, the states are different even after taking the temporal 
average over periods. It follows that the behavior of states 
(e.g., composition of chemicals, cycles of oscillations, and  
soon) are differentiated.

• (4)  Transfer  of the differentiated state to the  offspring  by 
reproduction. This ``memory" is made possible through the 
transfer of initial conditions (e.g., of chemicals) during the 
reproduction ( e.g., cell division).

• (5)  Hierarchy of organized groups. This stage is the  result  of 
successive differentiation with time.  Thus, the total system 
consists of units of diverse behaviors, which forms a 
cooperative society.



With the increase of the number

Distinct types are formed through instability in ‘developmental 
dynamics’ and interaction    (both types are necessary)

Single cell dynamics --- bifurcation
interaction term works as bifurcation parameter
Self-consistent choice of bifurcation parameter



A.Nakajima,KK(2007)

Self-consistent choice of
Bifurcation parameter

For fixed v   ---Bifurcation

Bifurcation parameter is given by interaction –self-consistent state







Robustness of developmental process

both states of each cell type and number 
distribution of each cell type

(1) against molecular fluctuations;
(a few % fluctuations, ( ~ 100-1000 molecules))

(2) against macroscopic damage;
i.e.,  type A and type B, determined
but if type A is eliminated, then B de- 

differentiates
and initial A-B cell ensemble is recovered
(since A,B is stabilized each other)



Character of bacteria differentiate in a crowded condition

Measurement by fluoresecent
proteins

Differentiation of E Coli

(Kashiwagi, Yomo,…)
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Hierarchical differentiation 
from ‘stem cell’;by taking 
initially dynamics with 
instability (e.g., chaotic) 
(higher order catalysis)

probability depends on # distrib. of cell types 
with prob. pA for S A
if  #(A)  decreases     then  pA increases:        STABILITY

pA
pS

pB



Generated Rule of Differentiation (example)
A1

A     A2
A3

S
B

(1)hierarchical differentiation:              stem cell system
(2) Stochastic Branching:   

stochastic model proposed in hematopoietic system
(3) probability depends on # distrib. of cell types 

with prob. pA for S A
if  #(A)              then  pA

―― global info. is embedded into internal cell states
STABILITY

(4) Differentiation of cell ensemble (tissue) 
――multiple stable distrib.  { Ni }

Cf hematopoietic system



Explained:

Robustness in development under large fluctuation
in molecule numbers

Recall: (signal) molecules of few number -- relevant; 

Loss of potency from totipotent cell (ES), 
to multipotent stem cell, and to determination

Irreversibility in cell differentiation process 
characterized by the loss of phenotypic variation



• Loss of pluripotency is characterized by
Decrease in the degrees of expressed genes

(chemical diversity)
Decrease in cell-cell variation
Decrease in temporal variation in
gene expression ( loss of chaos)

To recover pluripotency
increase the degrees of freedom 
(# of excpressed genes)
prediction confirmed by iPS (Yamanaka)

To confirm the theory
Measure gene expression dynamics
(oscillatory gene expression and
its change through differentiation)
partially observed by Sui Huang’s (Nature 2008)



Universality?
checked a huge number of networks;  only some fraction of 

them show chaotic dynamics & differentiation

Cells with such networks 
with differentiation
higher growth speed as
an ensemble

Such networks are selected



Mechanism: approach to Milnor attractor?
(that touches with basin boundary)
As long as the stem cell state is stable, it 

reproduces itself
With the increase in the cell number, the 
attractor touches with its basin differentiate 
to other types
If the number of differentiated cells increases

then the stability of the stem cell is recovered,
and it reproduces itself



U
nderlying M

echanism
 in D

ynam
ical S

ystem
s

Ｋａｎｅｋｏ，１９８９－



Globally coupled map (no spatial structure)

Cf Coupled map lattice   space-time chaos

Cf. synchronized state is stable if

Synchronization of all elements with chaos  is possible



Clustering

Example 1 
3-clusters,  with each synchronized oscillatios

Differentiation of behavior from identical
elements and identical interaction

Cluster of synchrnoized elemens
+ non-synchronized elements

Desycnhronized





Onset of chaos



Chaotic Itinerancy

Almost-2 cluster

High-dimensional
disordered

High-dimensional
disordered Almost-3 cluster





(2006,August)

Collaborators
Chikara Furusawa

experiment

Tetsuya Yomo
Saburo Tsuru
Akiko Kashiwagi

Most papers (biology,
Dynamical systems) 
Available  at
http://chaos.c.u-tokyo.ac.jp

ERATO Complex Systems Biology Project

http://chaos.c.u-tokyo.ac.jp/


• Why?
Conjecture by combinatorial explosion of basin boundaries

Simple separation   x(i)>x* or x(i)<x*;  one can separate 2 ^N 
attractors by N planes.

In this case the distance between attractor and the basin 
boundary does not change with N  ---- Order of (N-1)!

The boundary makes combinatorial explosion



Cluster: group of elements such that  x(i)=x(j);  
Number of elements in each cluster;   N1,N2,…,Nk
•at some parameter region many attractors with different clusterings
Due to the symmetry there are 

attractors of the same clusterings --
combinatorially many  increase with the order of (N-1)!   
or so            (KK,PRL89)

GCM

a

ε



Milnor attractor
( i.e., Attractor in the sense of Milnor  minus
usual attractor with asymptotic stability);

attractor and its basin boundary touches,
i.e., any small perturbation from it can kick the 

orbit out of the attractor, while it has a finite 
measure of basin ( orbits from many initial 
conditions are attracted to it)

Observed; Milnor attractors large portion of basin
for the partially ordered phase in GCM (kk,97,98)



The fraction of basin
(i.e. initial values) for
Milnor attractors,
Plotted as a function of
Logistic map parameter

Note! Fraction is almost
1 for some region

Result for N=10,50,100
…. a

1



The Milnor attractors become dominant around N＞~（7－８）

N=3, almost 0
5,  few cases
7,8,9,.. dominant



The Milnor attractors become dominant around N ＞~（５－８）

Dependence
On the
Number of
Elements N

(accumulation
over 
1.55<a<1.72)

（ｋｋ、PRE,200２)



• Why?
Conjecture by combinatorial explosion



図９．５

Chemical Gradient for Positional Information is generated

cell differentiation graidient for pattern

Consolidation  to Patterns
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