e First Talk

 General Introduction to Complex Systems
Biology

 Recursive Production of Cells

« (A few Basic Problemsin Origin of Life)
 Development--Cell Differentiation
 Coupled Dynamical Systems

e Summary

2"d: phenotype evolution; robustness,
evolovabllity,....



Complex Systems Biology

cf. Life as Complicated System: (current trend)
Enumeration of molecules, processes
detailed models describing the life process
Life as Complex System:
Understand Universal features at a System with
mutual dependence between parts and whole
Simplistic Physicists’ Approach

Strategy:

1) Dynamical Systems ++ & Statistical Physics ++

—> Catch consistency between micro-macro levels

2) Constructive Approach: (Exp & Theory)

" construct simple system to catch universal features'
as simple as possible



Ecosystem

Phenotypic Plasticity vs Symbiosis
Or Ecological diversification

Multicelluadit

Consistency between Evolutionary relationship on

Multicelluar development
and cell reprodcution

Cell

Adaptation as
a result of consistency
between cell growth an
gene expression dyn

Robustness and Fluctuation

Genotyp+ <:> Phenotype

Consisteny between Cell reproduction
nd molecule replication

action network




Consistency between different levels

(1)Cell reproduction vs molecule replication (03-)

(2)Reproduction of multicellular organism vs of cells
(97-

(3)Adaptation vs Reproduction (06-)

(4)Genetic change vs Phenotypic Fluctuation (03-

Simple System
Complex System

S o ) LT

lexlble units
‘& feed bac rigid units




Constructive Biology Project

theme experiment theory guestion
replicatin In vitro minorit origin of
P J replication with 4 heredity;
system _ _ control .
enzymatic reaction evolvability
cell replicating cell universal condition for
system with internal statistics in recursive
reactions reaction dynamics growth

development

cell differentiation.

differentiation
of E Call
by interaction

emergence of
differentiation
rule from dynamics

irreversibility
robustness

Spontaneous L Adaptive attractor Ubiquitous ability in
, Artificial gene network : ) _
adaptation selection by noise adaptation
: Laboratory evolution | Fluctuation-response Robustness,
evolution . : : : .
using bactreia relationship evolvability
Complex Systems Biology Project (JST,ERATO; KK,Yomo,...)




Replicating artificial cell (experiment)
(&—>theory; fluctuation, minority control)

@ RNA polymerase

B €
i fl RNA polymerase geneRNA B /C J Gy

A

(Yomo's group) I R 2

/V o C
R,
Va2 V2 !
\/ - ' \;{2___.
(Sugawara S group)
Tranlation in liposome Continouos division of liposomes

RNAreplication in liposome



How is recursive production of a cell sustained ?
each cell complex reaction network
with diversity of chemicals;
The number of molecules of each species
not so large

Fluctuations

Naiive Physicist View



Toy Cell Model with Catalytic Reaction Network
‘Crude but whole cell model’

F k species of chemicals \ X,***X,._+

number ---ng Ny ... N, _4

E random catalytic reaction network
with the path rate p
for the reaction  Xi+X—>X+X;

E some chemicals are penetrable

through the membrane with the
diffusion coefficient D

B resource chemicals are thus
transformed into impenetrable
chemicals, leading to the growth in

N=2n, when itexceeds N
the cell divides into two

max

C.Furusawa & KK, PRL2003

#fa
model (Cf. KK&Yomo 94,97)

Xo(nutrlent) cell

reaction
Xi

T
catalyze

diffug

medium

dX1/dt oc X0X4; rate equation;
Stochastic model here




s Simulation procedure

1:Pick up randomly 2 molecules at each time step, if the
pair reactions, change the substratre molecule into

productt (with the probability of the reaction rate)
otherwise leave as it is

2 With a certain rate per time step ((=1./D), exchange a
molecule of inside in the cell by that in an

enviromenment. If the molecule is impermeable, it stays

3 :If the total number of molecules N goes beyodn Nmax

cells are divided into two, eahc of which consists of
molecules chosen randomly



In continuum description, the following rate eqn.,
but we mostly use stochastic simulation

dn;/dt = Con(j,i, €)en;ne/N*
ji.£
— ) Con(i, j, {')en;ng [N’
jj.fj
+ Da;(m;/V — n;/N),

where Con(i, j, £) is 1 if there is a reactioni + { — j + £,
and 0 otherwise, whereas ¢r; takes 1 if the chemical 1 s
penetrable, and 0 otherwise. The third term describes the
transport of chemicals through the membrane, where 7; is




e Cf:
e Use of ODE (+ fluctuation)
versus stochastic model with discreteness of molecules

 Basically same Iif the number of molecules N therein is
sufficiently large.

If N Is small (in comparison with the number of species
K), then several molecule species can be zero at
some time, then there appears a qualitatively distinct
pehavior

N>>K we are used in physics
N ~K or N<<K needs different view

e --- Discreteness Induced Transition ---
(Togashi,KK, PRL 2002, Awazu, KK PRE 2007)



v Growth speed and fidelity in replication
are maximum at Dc

Dc
*
0 T owih ope b : 0
g S|m|?grety - P Growth & No Growth
0.15 108 :
Elhand] (only nutrients)
& T
o 1065,
> =
o 0.10F =
E | 0'4% >ksimilarity is defined from inner
o 0.05 - products of composition vectors
= P 402 between mother and daughter
Dc cells
0.00 ‘—".*‘."'.‘*.’."T.T e 0
0.001 0.01 0.1
diffusion coefficient D




Furusawa &KK,2003,PRL
Zipf’s Law Is oberved at D = Dc

N; (number of molecules)

(&)1 g— T T

1n:1|‘3E
: rank

number rank
X1300 5
X2 8000 1
X35000 2
X4700 4
X5 2000 3
........ (for example)

numbearof maleculas

rank

Average number of each chemical o< 1/(its rank)

(distribution of x: p (x) o x_2)



Confirmed by gene expression data

Human Liver Human Heart
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Mouse ES cell Mouse Fibroblast Cell
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Later confirmed by several other groups




Formation of cascade catalytic reaction

\ Catalyze
ni

|gherrank
qainly

>
Rank of n,
1 :minority molecules
With conservation law, 2 :catalyzed by 1, synthesized by resource
The exponent -1 is explained 3: catalyzed by 2

Mean-field theory in phase transition (self-consistent) calc.)



As a first step mean-field approximation;
assume that the nutrient chemicals have s

ds/dt = D(Sy — s) — epk'sx — sD(sg — $) (1)

Recalling that k'z + s = 1,
fixed point solution is given by either s =1 or

§" = Dso/(D + ep) (2)

The stability of this solution is computed by putting s = s* + ds(¢), and
arize by ds(t). This leads to the equation

s =(D(sp — 1) — ep)ds (3)

Hecne the solution with s # 1 exists for

D < D,.==ep/(sg—1) (4)



As a next step to increase the mean-field approximation, we distinguish
the chemicals that are directly synthesized from the nutrients and others. The
number of the former chemicals are pk' and the latter are (1 — p)k’. Setting
the concentrations of the former by z, and the latter z,, the equations can
be written as

dzy/dt = exs + epk(z* — zzy) — 20 D(5) — 5) (5)

dz, /dt = epk' (z* — z21) — 21 D(59 — $) (6)

where z is the average concentration of non-nutrient chemicals, and thus
given by 2 = pzy + (1 — p)z’ ( and again satsify k'z + s = 1).

DSUG
D + pe
The fixed point solution is computed from these equations. At D — D,,

the solution satisfies 2o — 1/pz. Note that the fraction of chemicals at the
first layer 7, is p. Hence the relative abundance of chemicals is inversely

' B Y . T D . . [ .

dxy/dt = (z — pxo) + epk'z(z — 29) =0 (7)



 Remarks:
(O)Universality

(1) Evolution to the critical state (with Zipf law) Is
confirmed numerically

(2) Evolution to scale-free network appears later
as embedding of power-law abundances into
network (Furusawa,KK, PRE 2006)

(3) Self-organization to critical state, if
transport of ‘nutrition chemicals’ is catalyzed by
some chemicals (no need for choice of D)
(instead of Simple difoSiOn) (Furusawa,KK,2007)



Model with transporter
facilitate transport of
nutrient
(active ransport) -

Adaptation to Criticality

-— self-tune the balance 7}
of concentrations of &

nutrier_'lt and catalytic Hn,_,{**:?ﬁ ;\
chemicals 6 o
Facilit Lo¥e v %
- = ir: " VT
> self-organize critical | © Q j_:\u j '\
state, adaptive to i }"!\:}
environment TRANSPORTER

(Furusawa,KK, in prep) v 1900 chomicas



Evolution of Network to satisfy Zipf's law? Yes
Critical D value depends on connectivity in the network;
mutation of network + selection = approaches Zipf's law
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Furusawa

frequency ranking
Fig1. rank distribution of chemical concentrations



Zipf's law holds, irrespective of network structure, but

Later, the connectivity in the network approaches
“scale-free” network through evolution.
statistical properties; embedded into network structure

Dynamics (abundance) first, structure (equation for dynamics) later

evolutionary embedding ;¢

. . th 1 —
of dynamics into network path out —
A path cat e
4 A T -~ y=)(3'D path_rande—
> 107} i
W @ ‘
[ = 107}
probability for a path to
chemical with abundances x Initial
IS selected; q(x) > 02 | [\
transformation of abundance 10 30
distrb. to connectivity distrib. number of paths

Fig2. connectivity distributions
Furusawa. KK, PRE, 2006



Relationship between Zipf's law (abundance) and scale-free
network (structure): ???

(1) Abundance x: density p (x) oc x/-2

(2) x; a path to molecule species with abundances x have more
Influence on growth speed: the simplest case

variation of growth speed to a path going out of a chemical with
abundance x -> is x times higher ;

the evolution speed of a path from a chemical with x is effectively
amplified by x: Iin general accelerated by some function g(x),
say xM a ]

(3) as the path number is larger, there are some better networks.
Then the distribution of paths k by transformation q(x) =2 k

(4) Distribution of k ; P(k) o< (dx/dk) o (x)

If q(x) =x, then P(k) kN-2}, if a=1/2 then k™-3}

NOTE abundance dynamics first, topology of network (scale-free

network) is later embedded accordingly



w Distribution of paths in reaction network  Furusawa
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Fluctuation of each chemical e
Abundance; celll X1 10000

_ : cell2 8000
- long-tail to abundant size cell3 15000

cell4 20000

histograrm

Frequency of n,

O DY
XX %

_____ T

500 1000 1500 2000 2500 3000

N; (abundances)



Furusawa,..

So far average quantity of all components; KK,
Biophysics2005
Next question: fluctuation by cells: e.g.

celll X1 10000
cell2 8000
cell3 15000

Log normal distribution ! cell4 20000

distribution of each Ni by cells

— e R histograrm

Each color
gives
different
chemical
species

cell counts

10000
Mumber of Maolecules

LOG SCALE



wHeuristic explanation of log-normal distribution

Consider the case that a component X is catalyzed by
other component A, and replicate; the number --Ny. N,

d N, /dt = N, N,
then

d log( Ny )/dt = N,

If. N, fluctuates around its mean <N, >, with fluct. n (t)
d log( Ny )/dt = <N,> + 71 (t)

log( Ny ) shows Brownian motion = N, log-normal distribution

too, simplified, since no direct self-replication exists here

But with cascade catalytic reactions, fluctuations are
successively multiplied, (cf addition in central limit
theorem.);Hence after logarithm, central limit th. applied



wHeuristic explanation of log-normal distribution

w Cascade leads to multiplicative propagation of
noise (at critical region)

SUCCeSV L

I~ Ca—/“/ffb’éd"uw
d Nx/dt=Ny N z A

with cascade catalytic reactions, fluctuations are
successively multiplied,

(cf addition in central limit theorem.);

Hence after logarithm, central limit th. applied



w Cascade leads to multiplicative propagation of
noise (at critical region)

A—B —C—D—E

| -

Propagation of fluctuation, feedback to
itself, leading to log-normal distribution tail.

Cf. If parallel, Cf??
~
=A== weight — log-normal
//" g height -- normal

Fluctuations come in parallel:
Usual central limit theorem is valid;

normal distribution.



Experiment; protein abundances measured by fluorescence

o fret et ==" """~ L +flow-cytometry
Ire-DsRad without inducticn sl
250k
. L(_)g—_norr_nal
E Distribution
150 .
b Confirmed
e experimentally

10’ 10 10
flucrescent inteansity

Furusawa,Kashiwagi,,Yomo,KK
Figure 3: The number distribution of the proteimns measured by Huorescent intensity, Distribotions are
ohtained from three Escherichia colf cell populations containing different reporter plasmids, 1e., EGFP
(enhanced green Huorescent protein) nnder the control of the tetA promoter, DsRed (red norescent
protedn | under the control of the tre promoter with and withont IPTG induction. Note that, althongh
the IPTG mduction changes the average Huorescent intensity, both the distribotions (with and withoot

the induetion) can be fitted by log-normal distributions well.

Also studied in GFP synthesis in liposome



Statistics in gene expression in the present cell

(b)
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Log-normal like distribution at each Doxycycline concentration

Tsuru,lchinose,Kashiwagi,KK, Yomo (in prep.)



Cf. Recent studies on fluctuations:
log-normal or not?
Cell Growth has to be seriously considered
In theory and experiment.
X Just stochastic gene expression
X condition suppressing cell growth

Condition for steady growth state --- should be
carefully prepared In experiment

Size itself is lognormal: either selection by some
size, or normalized by size

Analysis for all gene expressions in yeast (Bar—
Even etal., 2006)



Growth Fluctuation induces log-normal-type distrb.

Figure 1

Fluctuations in a Cell; Cell Volume Growth effect

(%) (%)
/l\ VAN
(o o) (&) (300) @@@

==

Concentration Concentration

Consequence of

Cell volume growth
fluctuation tha we are
Interested

Stochastic gene
expression that are
current concern of many

Tsuru,lchinose,Kashiwagi,Ying,KK,Yomo



Growtn tluctuation can lead to Log-tailed
phenotypic fluctuation

e protein concentration x
o dx/dt=f(X)-(u+n)x
dilution term by cell volume growth
U — — growth rate
n  —— fluctuation (noise)
multiplicative noise - log-tailed distribution
(exp; Tsuru etal)

Growth rate ¢ Is a result of an ensemble of
gene expression u (x1,x2,x3,...) --
(consistency)?



Replicating artificial cell (experiment)
(&—>theory; fluctuation, minority control)

@ RNA polymerase
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(Yomo's group) I R 2
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Va2 V2 !
\/ - ' \;{2___.
(Sugawara S group)
Tranlation in liposome Continouos division of liposomes

RNAreplication in liposome



e A Lesson:

Necessity of mutual dependency to form
self-consistent reproduction system

Liposome growth<-> synthesis of proteins

so far, not consistent->
too large fluctuations
(not necessarily log-normal)

g
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00000

0.01 0.1 1
GFPlog- FSlog

GFP synthesis in liposome and in bacteria



e Basic question related with Protocells (origin-of-life)

-- origin of genetic information (genetic take over?)
(Minority control, kk,Yomo JTB 2002,kk PRE2003,,))

-- dynamics versus algorithmic: discreteness induces
seguential procedure -- Discreteness Induced
Transition, Togashi,kk; PRL2002, Awazu,kk 2007+)

-- ‘lamming’ problem in reaction dynamics?
(Awazu,kk; PRE 2007 +)

-- how non-equlibrium condition Is sustained?
(Awazu,kk; PRL 2004, + arXiv2008)



Question :
All molecules have such large fluctuation?
Important ones are ‘protected’? (DNA?)

e Q: Origin of heredity?
e *some molecules in a cell are regarded as
“Important”, and control the behavior of cell

e.g., differentiation in roles between DNA and protein,
Minority Control hypothesis (KK & Yomo, 2002)

In a replicating system composing of mutually catalytic
molecules, minority molecules play the

role of heredity-carrier

preservation
controllability



; o X and Y mutually catalyze
1TE§>< the synthesis of each other;
0 Ll Y Is synthesized much
— - sSlower than X molecules.

Rate equation may lead
to (active) Y molecule
of the concentr. < 1/N

Selected are ‘rare’ states
with a few Y molucules

Active Y molecules;
(1) Preserved well,
(i)Control the behavior

Carrier of heredity
N molecules N molecules



* Hypothesis based on Minority Control
minority ( preservation+ control) -
evolution of

machinery of faithful transmission of minority
molecule. -

more chemicals are synthesized with it
Package life-critical info. Into minority molecule.

From compositional information to sequence
iInformation

**Evolvablity: “mutation” of minority molecule
- large influence Genetic Takeover

(from loose reproduction to tight replication)



Mutual Catalytic Reaction network

Stochastic collision

Awazu,KK,PRE2007

@\/®\ \E

Total number of molecules N
Number of molecules species M

If not N >>M, the number of some
species can be 0 = discreteness

Random catalytic network
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Reaction Rate RR =
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'“'T"W“' | ‘ total number of molecules

0 2000 4000 6000 8000
Time
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Jamming In reaction by crowding often suppresses the
process, especially when complex reaction is put

Qoo

. 00 !F GRs <%o
Amino acg%o !’ MTF
O%OtRNAs ®f_

?
50S
ribosomal
subunit

30S
A ribosomal IF1
subunit IF3

IF2

C

] !'i OO{)EF-TU-GTP
4 A

EETUGTP o Matsuura
X ) et al
= A Yomo's
p— ' group
< !F o%‘s-o

Self-replicating

RN’ : V

v ~

2%
883 o8

B subunit

EF-Tu
EF-Ts >
8 ®
QB replicase

GDP

AMP ATP PPi GTP
K2 ADP PPase
ZCreatlne
phosph e P'

2 Creatine

Creatlne Cre
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biological molecules for the in
vitro self-replication.



How Is non-equilibrium condition sustained?
Our tentative answer: a large class of Catalytic network
exhibits ‘glassy’ (slow,)relaxation with bottlenecks

< negative correlation between substrate and catalysts
General Iin catalytic networks - ‘Chemical Net Glass’

(Awazu-kk)
with spatial pattern -- further hindered --good news

Reinforcement ?

nonequilibrium condition *
< -> Structure formation in network and in space
- Compartmentalization

—>reproduction of molecules & of compartment

Reproduction of Non-equilibrium Condition Itself ? 2

But there appear reaction bottlenecks (bad news) +

successive switch --- may underlie ‘slow dynamics’ in
Nnrecant celle?



Proposal of ‘Chemical Reaction Net Glass”

Simple catalytic reaction network With A.Awazu
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RELEVANT parameter 8 €

Equilibrium distribution exp(- 8 Ei) : (<detailed balance)
Relaxation process: Initial : 8 =0(high temp) for all
species, I.e., equal probability for all chemical species.
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FIG. 1: (a)(b) Relaxation time course for four sets of networks

(M = 24, K = 8) for several j3. i .
Two salient features In
relaxation analogous to
‘glass’
(1) Log-t slow relaxation
(rather than exponential)
(2) Existence of plateaus

((X(0)= X)X (©0)- X))
(X - X*)*)




Why Log-t slow relaxation?
due to energy distribution, the relaxation time

( kinetic coefficients exp(- 8 E)) distribute extensively
C(t)~ Jh_ D(E)a(E) exp(—e "!'f]dE

py © = exp(—FE)t ' (1/4) J'} _ge(1l/u)e ~u dy > log(t)
e \Why plateaus?

« Local equilibrium within cluster
« Equilibrated with other clusters
IS suppressed by deficiency of
catalytic molecules

. ] ] X2.,X8 small:
 negative-correlation with Larger in the molecules X5
In the cluster
abundances versus catalysts Say catalysts X2.X7

o AX T S AJOUt l e Are suppressed

General in catalytic networks - ‘Chemical Net Glass’



Consolidation (Reinforcement) ?

nonequilibrium condition -,

<-> Structure formation in network and in space

> Compartmentalization ™.

>reproduction of molecules & of ‘eompartment

> increase inhomegeneity in space.
Reproduction of Non-equilibrium Condition Itself
But reaction can be easily stopped (bad news?)

Bottlenecks in reactions + successive switch ---
may underlie ‘slow dynamics’ in present cells?

True In irreversible reactions/ open systems?
-> Study Irreversible Catalytic Reaction Network



Multicelluarity:Ques tion on
Cell differentiation:

Insight by Conrad Waddington

Waddington’s
Canalization

Cell types as
Attractors?

h\\\\\\\\\\\\\\\\\\\\\id\\ i “ “ m How genes guide

this process?




Multicelluarity:Question on
Cell differentiation:

dx™
1 diversification of cell types
2 Loss of Pluripotency

(plasticity)

(‘time’s arrow’?)
3 Robustness in cell types and o S—
Their distribution e ——

= fm(

Coupled Dynamical Systems
with growth in dimension

Proposal of Isologous Diversification:
(KK,Yomo,Furusawal997/-)
(Oscillatrory) Gene expression dynamics
* cell-cell interaction + Reproduction of a cell
Growth as a multicellular organism
- Irreversible and robust developmental process



Isologous Diversification:
Internal dynamics and interaction : development  phenotype
Instability

distinct phenotypes

Interaction-induced

Example: chemical reaction network ‘ @

melahaliles

specialize in the use of some path APl o o e o e e o 0°

Coupled Dynamical Systems

- development

Internal chemical reaction dynamics
and interaction and cell division



synchronous division:
no differentiation

Concentration of Chemical 3

Instability of homogeneous state
through.cellzcell interaction

Concentration of Chemical 2 Concentration of Chemical 2

Assuming oscillatsiy/ dynamics as a single cell

Concentration of Chemical 3

recursive production

Concentration of Chemical 3

l
l Concentrotion of Chemical 2
M formation of discrete types
=mmacns\WITN different chemical
conmositions:
stabilize each other

Concentration of Chemical 1

©)



(1) Synchronous oscillations of identical units

Up to some threshold number of units, all of them oscillate
synchronously, and their states are identical.}

(2) Differentiation of the phases of oscillations of internal
states. When the number of units exceeds the threshold, they
lose identical and coherent dynamics.  Although the state of
units are different at an instance, averaged behaviors over
periods are essentially the same. Only the phase of oscillations
differs by units.

(3) Differentiation of the amplitudes of internal states. At this
stage, the states are different even after taking the temporal
average over periods. It follows that the behavior of states
(e.g., composition of chemicals, cycles of oscillations, and
soon) are differentiated.

(4) Transfer of the differentiated state to the offspring by
reproduction. This “"memory" is made possible through the
transfer of initial conditions (e.g., of chemicals) during the
reproduction ( e.g., cell division).

(5) Hierarchy of organized groups. This stage is the result of
successive differentiation with time. Thus, the total system
consists of units of diverse behaviors, which forms a
cooperative society.



129With the Increase of the number

Concentration of chemical 2

0
Tnstability of a %D

homogenecus state
R —
L% Stabilize each other

Concent ration of chemica

Concentration of chamical i
Concentration of chemicall

tinct types are formed through instaflity in ‘developmental

ynamics’ and interaction (both typeS are necessary)

Concantration of chemical3
Concentration of chemical3

Single cell dynamics --- bifurcation
Interaction term works as bifurcation parameter
Self-consistent choice of bifurcation parameter



Bifurcation parameter is given by interaction —self-consistent state

du;(t) 1 u(t) ) , i
= — L — Uy A, for i =1,....N. 1
dt = flui,v) T (H;—} + v (t) +u(t) uilt) + T (1)
v (t
H,;EE*JI = glur,...,un,v). (2)
To(t
t;g = g3y, ..., U, v)
N i N 3
i I:J.'.';I K
= Cyl — — eyt 1) — v(t)
For fixedv ---Bifurcation ; K +uf(t) el CERTAG
al i
08| N .
I

06| | - _ _

S o Self-consistent choice of
04T o I Bifurcation parameter
02r I ,"’r I n

|:| | | | |
0 02 V™ V*2 06 0.8 1 A.Nakajima,KK(2007)
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Robustness of developmental process

both states of each cell type and number
distribution of each cell type

(1) against molecular fluctuations,

(a few % fluctuations, ( ~ 100-1000 molecules))
(2) against macroscopic damage,

l.e., type A and type B, determined

but If type A Is eliminated, then B de-
differentiates

and initial A-B cell ensemble is recovered
(since A,B is stabilized each other)



Differentiation of E Coli ;

RFP Log

10° 10° 10
GFP LOG

Measurement by fluoresecent
proteins

Character of bacteria differentiate in a crowded condition

(Kashiwagi, Yomo,...)



Hierarchical differentiation from
‘'stem cell’;by taking initially
dynamics with instability (e.g.,
chaotic)

(higher order catalysis)

conoEnralion

birne

S
.:.;4 | e :i :
o hﬁm

|:| FR—
100000 130000 {e0000 180000 100000 20000 A0
tre e

conoenraion

Furusawa & KK
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chemicalid

Hierarchical differentiation from ‘stem cell’;
by taking initially dynamics with instability (e.g., chaotic)
(higher order catalysis) Furusawa&KK
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Hierarchical differentiation
from ‘stem cell’;by taking
Initially dynamics with
Instability (e.g., chaotic)
(higher order catalysis)

probability depends on # distrib. of cell types
with prob. pA forS 2> A
If #(A) decreases then pA Increases: STABILITY



Generated Rule of Differentiation (example)

B Cf hematopoietic system

(1)hierarchical differentiation: stem cell system
(2) Stochastic Branching:
stochastic model proposed in hematopoietic system

(3) probability depends on # distrib. of cell types

with prob. pA forS 2> A

it #(A) \ then pA /

—— global info. iIs embedded into internal cell states

—>STABILITY

(4) Differentiation of cell ensemble (tissue)
——multiple stable distrib. { N/}



Explained:

Robustness in development under large fluctuation
iIn molecule numbers

Recall: (signal) molecules of few number -- relevant;

Loss of potency from totipotent cell (ES),
to multipotent stem cell, and to determination

Irreversibility in cell differentiation process
characterized by the loss of phenotypic variation




e Loss of pluripotency Is characterized by
Decrease in the degrees of expressed genes
(chemical diversity)
Decrease in cell-cell variation
Decrease in temporal variation in
gene expression ( loss of chaos)

To recover pluripotency
Increase the degrees of freedom
(# of excpressed genes)
prediction confirmed by IPS (Yamanaka)

To confirm the theory

Measure gene expression dynamics
(oscillatory gene expression and

its change through differentiation)
partially observed by Sui Huang’s (Nature 2008)




Universality?
checked a huge number of networks; only some fraction of

them show chaotic dynamics & differentiation

= 0.015 (- ' . 1
&
% 0.01
Cells with such networks P
with differentiation € 0.005
higher growth speed as E
an ensemble %’ .
& 0 0.05 0.1 0.15

growth speed of a single cell (a.u.)

Such networks are selected



Mechanism: approach to Milnor attractor?
(that touches with basin boundary)

As long as the stem cell state Is st
reproduces Iitself

—2>With the increase In the cell number, the
attractor touches with its basin - differentiate
to other types

- 1f the number of differentigted cells increases
then the stabllity of the stgm cell is recovered,
and it reproduces itself

le, It



Globally Coupled Hap
B.T. ogistic ma

l

SWVISAS [ediwreulq ul wisiueyodsin bulAiapun




)
%, (1) = (1= f(x,()) + 5 T £(x,()).
(1)

Globally coupled map (no spatial structure)

logistic map f(x)=1—ax*

Cf Coupled map lattice - space-time chaos

+ e[ flx, (i + 1))+ f(x,(i = 1))].
(2)

Cf. synchronized state is stable if Ao +log{l —¢) <0.

Synchronization of all elements with chaos is possible
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Clustering

Example 1
3-clusters, with each synchronized oscillatios

Differentiation of behavior from identical

»  elements and identical interaction

Cluster of synchrnoized elemens
+ non-synchronized elements

Desycnhronized



IR |

Fig. 1. Schematuic figure for clusterings: (a) Coherent attractor.
(b) Few clusters (k= 3). (¢) Many-cluster attractor with un-
cqual partition. (d) Many-cluster atlractor with £ = N




Onset of chaos
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high—-dimensjonal chaos

high—dimensional
chaos
A
X(2)

high—dimensional

-.,H_Elliﬂs
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UNDERSTANDING Q(Prm Collaborators
COMPLEX SYSTEMS COMPLE ]
Chikara Furusawa

experiment
Kunihiko Kaneko
c. . Tetsuya Yomo
I"fe i Saburo Tsuru
An Introduction Akiko Kashiwagi
to Complex
Systems
Biology Most papers (biology,
Dynamical systems)
Avallable at

http://chaos.c.u-tokyo.ac.jp

@ Springer

ERATO Complex Systems Biology Project
(2006,Auqgust)


http://chaos.c.u-tokyo.ac.jp/

e Why?
Conjecture by combinatorial explosion of basin boundaries

Simple separation x(1)>x* or x(i)<x*; one can separate 2 *N
attractors by N planes.

In this case the distance between attractor and the basin
boundary does not change with N ---- Order of (N-1)!

The boundary makes combinatorial explosion

On the other hand. consider a boundary given by some
condition for [x(1}), ....,x(N)]. In the present system with
zlobal (all-to-all) couplings, many of permutahonal change
of x(i) m the condiion zive also basin boundanes. Here the
condihon for the basin can also have clustenng
(N1.....Ng). since the attractors are clistered as such
Then there are M{N;,....N,) parithons by boundanes
equit=lant e nermmtabians The momhar af resiene parti-

M(Ny, ... Ny)=(NVII;_ 1Vl Ml ovmsats of = { Lim g1 )



GCM y

feli=-ela 4 3 sl -
] |

COHERENT

2

where 7 1 the discrete time and i being the mdex for
elements (i=12, ... .N= dimension of the system). For [/~ 2=
elements we choose f(v)=1-ax”, since the model has b2~ = = T
Cluster: group of elements such that x(1)=x(j); N % 5
Number of elements in each cluster; N1,N2,...,Nk NN
eat some parameter region many attractors with different clusterings
Due to the symmetry there are

M(Nl > - - - aNk):(N!/HleNz‘!)Hoversetsole:Nj( l/mf')

attractors of the same clusterings --

combinatorially many increase with the order of (N-1)!
or SO (KK,PRL89)



Milnor attractor
( I.e., Attractor in the sense of Milnor minus
usual attractor with asymptotic stabllity);
attractor and its basin boundary touches,

l.e., any small perturbation from it can kick the
orbit out of the attractor, while it has a finite
measure of basin ( orbits from many initial
conditions are attracted to it)

Observed; Milnor attractors large portion of basin
for the partially ordered phase in GCM (kk,97,98)



The fraction of basin
(I.e. initial values) for
Milnor attractors,
Plotted as a function of
Logistic map parameter

Note! Fraction is almost
1 for some region

Result for N=10,50,100

1- T
i'._f:g_ﬁ |
i ol i I\“'-\
; o AR

.'3;;
M’ai d_uﬂ N

LR i L= |

Fig. 9. The basin volume ratic of Milner amiraciors wigh the
change of a. For each a, we lake 1000 inicial conditices, 2nd
iEeane the dynmics aver 10KH0AD steps to gei om attracior. We

check if the orbit recams Il.:-1rrl.‘- ierigireil stiracion, by pertuching
rach atiracior by @ = 107" ower 10K mails. 1F the orbsi does

relurn o Jeasl for one of the irsils the aitraceor s counied a5 &
Ml For VW = Ik rmlssmnmeasared o 1 5 <~ a <« 1.7

with the incremeni (L0001, while for larper sazes il i measunod
anly far 162 = a = |.7 with the mcremend 000



The Milnor attractors become dominant around N>~(7—8)

-I 1
| - .:.:. u..
08 N=3 —— 1 | “ i_:_:'lilf"i"‘! 1 N=3, almost 0
0Nl AR [SAiEW cases
| f* | I c,' 7,8,9,.. dominant

0.4 F

0.2

Basin Fraction of Milnor attractors

156 1.58 16 162 164 166 168 1.7 1.72
&

FIG. 1. The basin fraction of Milnor attractors plotied as a func-
1on of the parameter a, for N¥=3,5. 7, and 9. For the present
ammilations, we take 1000 randomly chosen mmtial conditions, and
terate 10° steps. Then the orbit is perturbed as x,(7)+ 10" o,



The Milnor attractors become dominant around N >~(5—8)

§ 0.35 — : : .

Y .

5 025 | 'R | Dependence
= 05 | On the

s v Number of

% Lol Elements N

L 0.1

E 0.05 (accumulation
2 0 ——s — s

= 10 1.55<a<1.72)

N

FIG. 2. The average fraction of the basin ratio of Milnor attrac-
tors. After the basin fraction of Milnor attractor 15 computed as i

Fig. 1, the average of the ratios for parameter values a
=1.550,1.5521.554, .., 1.72 15 taken This average fraction is

(kk. PRE,2002)



« Why?
Conjecture by combinatorial explosion

changes with N. Consider a one-dimensional phasze space,
and a basin boundarv that separates the remions of x(1)
>x¥ and x{1)=<x*, while the atfractor in concern exists af
around x{1)=x,<x* and the neighboring one at around
x(1)=x5z>>x%* Now consider a region of N-dimensional
phase space x, ;< x{(i)<xp. If the region 15 partitioned by
(basm) boundanes at x{7) =x¥* for i=1,...N, it is parti-
tioned into 2" units. Since this partifion 15 just a direct prod-

On the other hand, consider a boundary given by some
condition for [x(1), ...,x{N)]. In the present system with
global (all-to-all) couphngs, many of permutatonal change
of x(i) m the condition grve also basin boundanes. Here the
condihon for the basin can also have clustenng

(N7, ....Ni)., since the attractors are clustered as such
Then there are M(N,;,... N.) parbhons by boundanes
equivalent by p

M(Ny, ... Np)=(NUIE_ (N gt o v, = ( Lim g1}



Chemical Gradient for Positional Information is generated

cell differentiation €<-> graidient for pattern

9. 5
Consolidation to Patterns
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