Complex Systems Biology
cf. Life as Complicated System: current trend)
Enumeration of molecules, processes
detailed models describing the life process
But understanding??

Life as Complex System:
Understand Universal features at a System with
mutual dependence between parts and whole

Strategy:

1)extension of Dynamical Systems  Statistical Physics

-> Catch consistency between micro-macro levels

2) Constructive Approach: (Exp & Theory)

" construct simple system to catch universal features'
as simple as possible



Consistency between different levels

(1)Cell reproduction vs molecule replication (03-)

(2)Reproduction of multicellular organism vs of cells
(97-

(3)Adaptation vs Reproduction (06-)

(4)Genetic change vs Phenotypic Fluctuation (03-

Simple System
Complex System

S e ) L

Iemble units
rigid units




Constructive Biology Project

theme experiment theory guestion
replicatin in vitro minorit origin of
P d replication with Y heredity;
system _ _ control g
enzymatic reaction evolvability
cell replicating cell universal condition for
system with internal statistics in recursive
reactions reaction dynamics growth

development

cell differentiation.

differentiation
of E Caoil
by interaction

emergence of
differentiation
rule from dynamics

irreversibility
robustness

Spontaneous i Adaptive attractor Robust adaptation
. Artificial gene network : ) : : )
adaptation selection by noise without signalling
Relevance of Genetic assimilation
-ph t
evolution phenotypic fluctuation of phenotype genol p. en(i].ype
and dynamics fluct.and dynamics relationship
Complex Systems Biology Project (JST,ERATO; KK,Yomo,...)




How Is recursive production of a cell sustained
each cell complex reaction network
with diversity of chemicals;
The number of molecules of each species
not so large

T e

Fluctuations



Cell Model with Catalytic Reaction Network
“Crude but whole cell model’

B species of chemicals X,...X
number---n n ...n

E random catalytic reaction network
with the path rate p
for the reaction P X

B some chemicals are penetrable

through the membrane with the
diffusion coefficient D

E resource chemicals are thus
transformed into impenetrable
chemicals, leading to the growth in

2 n; when it exceeds N,
the cell divides into two

C.Furusawa & KK PRL2003
model (Cf. KK&Yomo 94,97)

XO nutrient CE”

reaction
Xi

... -
catalyze

dX1l/dt X0X4; rate equation;
Stochastic model here



In continuum description, the following rate eqn.,
but we mostly use stochastic simulation

dn;/dt = Con(j,i, €)en;ne/N*
j.£
=) Con(i, /, €)en;ng /N?
J-JIEJ
+ Da;(m;/V — n;/N),

where Con(i, j, €) is | if there is a reactioni + £ — j + £,
and 0 otherwise, whereas o, takes 1 if the chemical 1 1s
penetrable, and 0 otherwise. The third term describes the
transport of chemicals through the membrane, where 7; 1s




Growth speed and fidelity in replication
are maximum at Dc

Dc
*
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Furusawa &KK,2003,PRL
Zipf’'s Law Is oberved at D = Dc

N; (number of molecules

(a)10? @

103'5'
: rank

number rank
X1300 5
X2 8000 1
X35000 2
X4 700 4
X5 2000 3
(for example)

numbsaraof malecules

mnk --------

Average number of each chemical 1/(its rank)

(distribution of x P 2



Confirmed by gene expression data

Human Liver Human Heart
1le-01 T L T T T T 1le-01 T L T — T T — T
*\\*M -*\-*
< 1e-02 + <L 1e-02 F e .
2z I Z L
Y Y
S S
% 1e-03 | 4 1le-03 ¢ r
(@] (@]
= =
= 1e-04 F = le-04F E
q-
1e-0 -| . L . M . L . 1e-05 L . A . A . A . A
?e+00 le+01 1le+02 1e+03 1e+00 le+01 le+02 1e+03 le+04
rank rank
Human Kidney Human Colorectal Cancer

1e'01_| T L T T T T T 1e'01_| T L T T T T T T
< i ‘\*‘\’» < -"'\*-0—*
Z le-02 | %o = 1e-02 Raa N .
x L \\ 4 L hane ¥
€ € I
S I s
o 1e-03 o 1e-03p E
=1 I =1 -
S S i

| 1le-04 | ]
le-04 - _ e 3R
| _ A
1e+00 le+01 le+02 1le+03 1e+00 le+01 le+02 1le+03 le+04
rank rank




Mouse ES cell Mouse Fibroblast Cell
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Later confirmed by several other groups




Formation of cascade catalytic reaction

‘\ Catalyze
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With conservation law,
The exponent -1 is explained
Mean-field type (self-consistent) calc.)

catalyzed by 1, synthesized by resource

catalyzed by 2



 Remarks:
Universality

(1) Evolution to the critical state (with Zipf law) Is
confirmed numerically

(2) Evolution to scale-free network appears later
as embedding of power-law abundances into
network (Furusawa,KK, PRE 2006)

3 Self-organization to critical state, If
transport of ‘nutrition chemicals’ is catalyzed by
some chemicals no need for choice of D)
(instead of Simple difoSiOn) (Furusawa,KK,ZOO?)



Evolution of Network to satisfy Zipf's law? Yes
Critical D value depends on connectivity in the network;
mutation of network + selection = approaches Zipf's law
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Furusawa Fig1. rank distribution of chemical concentrations



Zipf's law holds, irrespective of network structure, but

Later, the connectivity in the network approaches
““scale-free”” network through evolution.
statistical properties; embedded into network structure

Dynamics (abundance) first, structure (equation for dynamics) later

evolutionary embedding 4

. . th 1 —
of dynamics into network path out —
", 30 path_cat e
4 T ’ X y=X" path_rande—
> 107} . i
W @ T
[ = 107
probability for a path to
chemical with abundances x Initial
Is selected; q(x) =2 - | [\
transformation of abundance 10 30
distrb. to connectivity distrib. number of paths

Fig2. connectivity distributions
Furusawa KK, PRE, 2006



Furusawa,..
So far average quantity of all components; KK,
Biophysics2005

Next question: fluctuation by cells: e.g.
distribution of each Ni by cells gz::; x 1%%%%

cell3 15000
Log normal distribution ! cell4d 20000

o o R histograrm

Each color
gives
different
chemical
species

cell counts

10000
Mumber of Moleculas
LOG SCALE



Experiment; protein abundances measured by fluorescence

wo et == 0 ] +flow-cytometry
Ire-DsRad withouk induclion e
250 |
—l L(_)g-_norr_nal
: Distribution
2150 .
T Confirmed
1o experimentally

10’ 10 10
flucrescent intansity

Furusawa,Kashiwagi,,Yomo,KK
Figure 3 The number distribntion of the proteing measured by fuorescent intensity, Distributions are
ohtained from three Escherichia eoli cell populations containing different reporter plasmids, 1.e., EGFP
(enhanced green Huorescent protein) under the control of the tetA promoter, DsRed [red fluorescent
protein | under the control of the tre promoter with and without IPTG mduction. Note that, although
the IPTG mduction changes the average Huorescent intensity, both the distribations (with and without
the induetion) can be fitted by log-normal distributions well,

Also studied in GFP synthesis in liposome



Heuristic explanation of log-normal distribution

Consider the case that a component X is catalyzed by
other component A, and replicate; the number --Ny, N,

d N, /dt = N, N,
then

d log( Ny )/dt = N,

If N, fluctuates around its mean <N, , with fluct. N
d log( Ny )/dt = N, @)

log( Ny ) shows Brownian motion =2 N, log-normal distribution

too, simplified, since no direct self-replication exists here

But with cascade catalytic reactions, fluctuations are
successively multiplied, (cf addition in central limit
theorem.);Hence after logarithm, central limit th. applied



Cascade leads to multiplicative propagation of
noise (at critical region)

Propagation of fluctuation, feedback to
itself, leading to log-normal distribution tail.

Cf. If parallel,
N
= =
N
Fluctuations come in parallel:
Usual central limit theorem is valid;

normal distribution.



Replicating artificial cell (experiment)
(&—>theory; fluctuation, minority control)

‘i“ i-h

@\ RNA polymerase
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nt RNA polymerase geneRNA B /C J G/
Yomo's group) G W i B N
N2 c
V2 \/ "V:T’ V2
| \E Va 4
(Sugawara S group)
Tranlation in liposome Continouos division of liposomes

RNAreplication in liposome



Questions
(1) All chemicals have such large fluctuations?
Important ones are protected??
Origin of heredity (genetic information)
why Is there genotype and phenotype
Minority control mechanism (discreteness important)
(KK,Yomo JtheorBiol.2002)

(2)Large phenotypic fluctuation -
relevance to biology ?
ans. evolution (Sato et al., PNAS, 2003) adaptation,....
--- recall in standard evolutionary genetics,
only the distribution of gene is discussed, by assuming
unique phenotype from a given genotype



 Phenotypic Fluctuation = Relationship to Evolution?
selection is based on phenotype
activity, size, protein abundances, fluorescence,...),
but
In standard evolutionary genetics;
gene a -2 phenotype x uniquely determined

mostly discusses the phenotype distribution
as a result of genetic variation

Phenotypic fluctuation of isogenic organisms
>P(x; a) x—phenotype, a — gene



Artificial selection experiment with bacteria
Selection to increase the fluorescence of protein in bacteria

Schematic drawing of selection process

g- 9 2,000 clones

Eyes 1st screening

///// 30 clones
I\/Iutagene5|s

Spectrofluorometer

///// e

2nd screening
Spectrofluorometer

/ The highest clone
|

v
FACS analysis

Ito,Yomao,..



0.20
Sato,lto,
0.15 7 Yomo,KK
E‘ PNAS(2003)
D |
S, 010
2
0.05
0.00

20 -05 0 0.5 0 15
Log|[Fluorescence]
Fluctuation ---- Variance of phenotype of clone

Organisms with larger phenotypic fluctuation higher evolution
speed;

- change of phenotype per generation per mutation --
“"Response against mutation+selection”

Response < -> Fluctuation



So-called fluctuation-dissipation theorem in physics:
Force to change a variable x;
response ratio = (shift of x ) / force
fluctuation of x (without force)
response ratio proportional to fluctuation
originated by Einstein’s paper a century ago...

Generalization::(mathematical formulation)
response ratio of some variable x against the change
of parameter a versus fluctuation of x

P(x;a) x variable, a: control parameter
change of the parameter a =
peak of P(x;a) (i.e.,<x>average ) shifts

|

e = = -
— o e o ———————————
-

<X> o —<X>,

a+Aa

Aa

oc< (OX)° >, =< (X—< X >)* >

[
Imlh""""'--u——-_
x| —



Fluctuation-response relationship (generalized form)

Gaussian distribution of x; under the parameter a

[.J. - ..'1I|:.-| j ::'1'
20,

P(ziag) = Nyexp(— }s at a=a0

Change the parameter from a0 to a
s _-ﬁfn.]:

Pz :a) = Nexp|— 20(a) + oz, al)
' via,r) = Cla — o)z — Xy) + .... with O as a constant,
r— Xy — Gﬂﬂ-ﬂ[ﬂ-[] + &:’I}}?
—p Plx,ay + Aa) = N'ex —(
[ ? []] } P{ 2(1[&[] + .&ﬂ'} }
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< :}u—tru-l—j..tr — < }u—trn
= C'alay + Aa
Ao (ay + ),
Noting that a =< (dz)* >

< :}u_t i a < I }u—t i :

LR L = C < (dz)* >,

Aa



Artificial selection experiment with bacteria
for enzyme with higher catalytic activity
for some protein with higher function
Change in gene (parameter; a)
“"Response’” ------ change of phenotype <x>
(e.qg.,fluorescence intensity)
per generation per (synonymous) mutation rate
Fluctuation ---- Variance of phenotype x of clone
Fluctuation in the phenotype x of clone
= speed of evolution to increase <x>
(proportional or correlated)



Naive expectation: Fluctuation-response relation
Just propt to mutation rate Phenotype fluct. >< mutation rate

arbitrary unit / arbitrary unit .
H I

@ i

I
b

[a—
LA

<<
-
3

1.0

\\

R
oS

Synonymous mutation rate
o

(Synonymous mutation rate)x G
<

(/0.5 105

( F 1 ] | \(

_ 0.0 ~ 0.0 o< evol,
~0.0 0.1 0.2 0.3

wae
Difference of the average value

EEvqution Speed per generatio\n)]
Sato,lto,Yomo,KK, PNAS 2003




e Confirmation by numerical evolution experiment

by the reaction-net cell model

Mutate the network (‘gene’) with mutation rate ju, (rewire the path
of the network with the rate) and select such network

having highest concentration of a specific chemical

1.
2.

phenotype x =log (n,)

Prepare initial mother cells.

From each parent cell, mutant cells
are generated by randomly replacing
reaction paths, with mutation
rate

reaction dynamics of all mutants are
simulated to determine phenotype X

Top 5% cells with regard to
phenotype x are selected as parent
cells of next generation



2 Bo|=x Jo uonenion|4

variance of phenotype

Confirmation of Fluctuation Dissipation
Theorem by reaction-network cell model
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Furusawa, KK 2005



the use of log(fluorescence), because

log X Is close to Gaussian distribution Iin
experiments

( ) New mystery phenotype fluctuation of
clone vs evolution speed In contrast to

evolution speed phenotypic fluctuation by
genetic variation Vg): (fundamental theorem of
natural selection; established)

pheno fluct of clone Vp w

pheno fluct by gene variation Vg \
fluct by noise variation in ‘equatio“ﬁ)/jﬁal ‘

Follow the spirit of Einstein dee
mIcro-macro consistency-> Brownian motion




reprodcution



Consider 2-variable distrb
P(x=phenotype,a=genotype) =exp(-V(x,a))
Keep a single-peak (stability condition).

KK,Furusawa, 2006 JTB

@V /o> '=0; (@*V/oxP) ' >0.
@7V /ox?)(©*V /8a®) — (87 V /dadx)* = 0.

Hessian condition

£ .l"f..;?;;'-: iy
RS
.y;"r"':'ﬁ" i o
'*-:r}:‘,‘,ﬁ"ﬁ'f i
ey ';ﬁ'f 5,

Up to this point pheno
(x) and geno (a) are
treated in the same way.
Then given a, the peak
(average) phenotype is
x0(a)--function of a --

OV )0z |sery = 0



Gene a Is also regarded as variable: Now, we discuss
stability P(x,a) as 2 variables instead of P(x;a).

write as P(x,a)=exp(-V(x,a))
Condition if it keeps a single-peak solution (stability

=]

8’V /8a* > 0 (1)
o*V/ox* >0 (2)
(8*V/02*)(8°V/8a*) — (6*V/Badx)* > 0 (3)

Hessian condition

Up to this point pheno (x) and geno (a) are treated in
the same way. Then given a, the peak (average)

phenotype is x0(a)--functionofa -- 5.5, |



X0(a); the average phenotype x of a clone of
genotype a; X Is given as a function of a

Hessian = Vg Vi
Vg= Variance of x, due to the distribution of gene a

!.j.l'll Ii
-:.:':.' .

Vip Variance of x, for the isogenic organism
(l.e., a= a0,fixed)

Vg increases with mutation rate a4, thus, there is critical
mutation rate 1 beyond which the distributio

becomes flat (error catastrophe).
As Vg M approximately,
V.= (4 HCO)VI
Since Vg evolution speed Fisher theorem)
evolution speed 1 Vi > fluct-response relation

< [T, —Fg)* »=V, =< (da)* > |



We can do the analysis by using Gaussian 2-body distribution
function for phenotype x and gene a; around a=a0, and
x=X0;, with coupling between x and a (variance of a is

the mutation rate

2ae(a)
Stability condition

|!'l:|:|I';:|:|f_'-'"'r . L *
—5 3, gﬂ, 1.e.,
1

H i: [:'fjjﬂ“{ﬂn:] = He

For high mutation rate single-peak
IS not sustained (error catastrophe\j



frequency

(b)

frequency

Change of distribution
through evolution

I 1 1 I
generafion & ———
018 - generation 10
generation 15 ---%---

016 |- eneration 20 —8—- 7] . . .
014 |- generation 30 1 Distribution of phenotype
| 1 xofaclone
0.08 | - - Vp
0.06 = -
0.04 -
0.02 | : i
S e :
1 1.5 2 25 3 3.5
PrenebPeX Log(concentration)
025 T T T T
generafion 5 ——
Sencration 15 - ae- I
[ generation20 —=— 1 Distribution of phenotype
01s F { X over mutants (genetic
il | variation)
- Vg
uﬁ‘j"‘ S
15 2 25 3

1 3.5

phenciype x



Phenotype fluct. (Vp) vs Gene Fluct. (Vg) in the evolution of

toy cell model
Vp: fluct. for given network, Vg: fluct. by network variation

Vg 0.07

0.06

0.05

0.03

variance of genotype

0.02

0.01

0.04 -

mutation rate=0.01

mutation rate=0.05

V

y=x

:Vg

I | |
+

.

variance of log(x),
X Is the concentration of the molecule
Beyond Darwin with the spirit of Einstein!

0.04 0.06 0.08 0.1 010 fClone
variance of phenotype



As |l (mutation rate) increases to UL max,

(1) the distribution collapses (error catastrophe)
(2) evolution no longer progresses beyond |1 max
evolution speed iIs maximal at W ~ U max

(3) Vg approaches Vp

distnbution of genatype

0.2 mutation rate=0,003 ——

=8 mutation rate=0.01
AS 1 .|5 I_ﬂCI’EEISEij. mutation rate=0.02 -~ ﬁ
The distnbution 015 | mutation rate=0.03 -2 t
'CCI”EI[]SEE' . mutation rate=0.05 |
. 0.1 =
Error catastrophe g J
005 F




e 777 to the theory
* P(x,a) rather than conditional probability (TRICK)
"Genetic-Phenotyic correpondence”

what phenotype can vary <->

what gene can change
fluctuation of variable (micro) vs
variation of equation (genetic evolution)
(cf Waddington’s genetic assimilation)
Q: Why error catastrophe when Vg>Vip?
Robust evolution is possible only under noise

-counterintuitive ;it says phenotype noise is
Important

-> gene-net model



A simple model for Geno-Pheno relationship;

Model:Gene-net(dynamics of stochastic gene
expression ) - on/off state

XiI —expression of geneil : + (on)— (off)
M
:iq:f,r'da':tanhﬁz Jyx;| —x;+eanl1),
1=k

j‘_,-,-: — 1, 1.0,
Gaussian white

<n{fim{i )= = &li— ).

M;total number of genes, . output genes

Noise strength o



e Task
Starting from -1,-1,-1,,-1(all off)

Xl 1=1 2

Fithess F= Average number of off x_|

k are +1(on) Target Gene Pattern)

== 1s temporal average between t = Tj,,; and t = T

Genetic Algorithm

Se
to

ect networks with higher <F>

n--<F>=0

Choose top n networks
among total N,and mutate

with rate pato produce N networks/

|1 :fixed mutation rate)

A )
[

L~

>

X

@\%

gt o\r)i_

/

[

4



Result of evolution

Top:reaches the fittest

faster for lower noise(o)

Top Fitness

Lowest; cannot evolve

for low noise(O)

Worst Fitness

Lowest

-
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Existence of critical noise level oc
below which low-fithess mutants accumulate
(error catastrophe)



(1) Vip Vgforo oc

(2) Vg-Vip

asS O - OC

=4

(3) evolution progresse
only for Vip Vg

(4) Vip Vg
through evolution

course &

Theory confirmed
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0.01 01 1

KK,PLosOne, 2007



Why?; difference in basin structure
O oOoc =-> large basin for target attractor
(robust, A distance to basin boudary) T
O O = onlytiny basin around target orbit
A remains small

“!  Basin Volume for
0.35 ]
Ny 1 Each fitness
E 0.2 ’I sigma=.01 —— I- A
% 02 é s;m;=£’ ----------- 5
o | sigma-=. 1 r
0.15 Fi
0.05 E
0 I : :s.':;| .-
8 0 A

fitness F

—>Global constraint to potential landscape(funnel?)



why threshold?

choose paths to avoid turning
pts within o (noise)

Mutation — touches turning
points within range of U

small o
an orbit with small A
can reach the target




Deviation of basin
poundary (turning points)
oy Noise op

oy Mutation -> O

Vg~ (& /A A2
Vip ~ & A2

/\ Increases
robustness
Increases

If O o

mutation destroys A~distance to turning points

the history
-2>Vip>Vg necessary
for evolution of robustness

(basin boundary)



Discussion

 Developmental Robustness to noise ---- Vip

e Robustness to mutation in evolution ----Vg
When Vip>Vg, both decrease, I.e., robustness ./
Noise Is necessary for evolution of robustness

Vip Vg ->Developmental robustness and genetic
(evolutionary) robustness are linked

« Generality of our result; For a system satisfying:

(1) fitness is determined after developmental dynamics
2 developmental dynamics is complex
(eg.,with distributed catastrophic pt leading to error

(3) effective equivalence between mutations and noise
with regards to the consequence to fithess

(= genetic assimilation by Waddington)



Spontaneous Adaptation

e For all possible changes in environment,
signal transduction network is already
provided?

e Or, Is there any general (primitive)
mechanism to make spontaneous
adaptation?

« - Constructive Experiment with artificial
Gene and theory assuming only growth
condition and stochsticity



(ex) Adaptive response without signal transduction

Unexpected beyond designed
Embedded gene network Selection of preferable state

Phenomenological theory of attractor selection

(- oultamie symthetasg r——-—-——s-- N TTeee 5
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i W @ ) E : [>{lacl H afo HginAl i Ptrc rip H tetR HolA

i .' @ : ;__i____;ﬁet I I \ i

\"“ ..‘ 00¢ / X omemem 00 &8 )L Ptgt “Ehzyme Tor Tet )

o
Env. Without Tetrahydro..

Kashiwagi,Y



« Embedded network: each of the two can be selected
equally. However, ‘good’ attractor in each
environment is selected. Why?

Due to hidden signal network?

NO!: verified by exchanging the promoter
o After each state is attracted with 50%,
cells in a ‘bad’ attractor cannot grow,

cells in a good attractor can grow, so that
good attractors are selected?

NO!; the process occurs without (or before) the cell
division process

Novel Mechanism of Spontaneous Adaptation (without
the use of signal transduction) should exist!



e Basic Logic
dx_i/dt=F(Activity f(x_1)-G(Activity)x_1+n(t)
F,G: increase with activity.
active: synthesis, degradation both are fast
N -2 hoise
Active state both Ff and Gx are large
deterministic part >> noise
Poor state  both Ff and Gx are small
deterministic part ~ noise

Switch from Poor state to Active state by noise

(Kashiwagi,Urabe,kk,Yomo; submitted)



The mechanism for adaptive response by attractor selection
d

I M deg(act)x ml+z,
d o t syn(act) = ;deg(act) = act;
dt l+ m1°

@ act = pro _cons x act

dt (« Nut _thread, Nut _thread,

ml-+ Nutrlentl) ) ((m2+ Nutrlentz) D

3.00

. .1 Adaptive Response of the
genetic network to a
environmental change

0.00 ‘ .
0.00
f

I 10400.00 I 20000.00
No Nutrientl

No Nutrient2

No depletion No depletion



d syn(act |
L= ( 2) —deg(act) x ml+n, 1.2
dt 1+m2 1 AttractorW
d syn(act
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 Growth-Induced-Attractor-Selection (Furusawa kk)
e Basic Logic
dx_i/dt=f(x_1)-S{x_jHx_1+N(t)
S-> dilution effect
N -2 hoise
Active state both f and S are large
deterministic part >> noise
Poor state  both f and S are small
deterministic part ~ noise
Switch from Poor state to Active state by noise
Selection before reproduction

General logic in a system with growth and
fluctuation
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Spontaneous selection of optimal growth states
General in a system with noise and growth



Summary
Consistency Principle for Biology
-- replication of molecules and cells :Universal Laws
(-- replication of cells and cell ensembles)
--- genetic and phenotypic changes
(+speciation)
--- adaptation of internal cellular state and growth
Biological relevance of phenotype fluctuations?
->Phenotypic Fluctuation  Evolution Speed
- Relation between
(isogenic)phenotype fluctuation
phenotype variation by mutation

* Robustness to mutation and to developmental noise
are linked

o Growth system - general adaptation by noise
e conseguence of steady growth system
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