
Complex Systems Biology
cf.  Life as Complicated System:  （current trend)

Enumeration of molecules, processes   
detailed models describing the life process

But understanding??

Life as Complex System:
Understand Universal features  at a System with 

mutual dependence between parts and whole

Strategy:
1)extension of Dynamical Systems ＆Statistical Physics

Catch consistency between micro-macro levels
2) Constructive Approach: (Exp & Theory)
` construct simple system to catch  universal features'

as simple as possible



Consistency between different levels
(1)Cell reproduction vs molecule replication   (03-)
(2)Reproduction of multicellular organism vs of cells  

(97-
(3)Adaptation vs Reproduction (06-)
(4)Genetic change vs Phenotypic Fluctuation  (03-
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How is recursive production of a cell sustained？
each cell complex reaction network

with diversity of chemicals;
The number of molecules of each species

not so large
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Fluctuations



Ｔｏｙ Cell Model with Catalytic Reaction Network 
‘Crude but whole cell model’

（nutrient）

reaction

catalyze

cell

medium

diffusion

ｋｋ species of chemicals species of chemicals 、、XXoo……XXｋ－１ｋ－１

number number ------nn００ 、、nn１１…… nnｋ－１ｋ－１

some chemicals are some chemicals are penetrablepenetrable
through the membrane with the through the membrane with the 
diffusion coefficient Ddiffusion coefficient D

resource chemicals are thus resource chemicals are thus 
transformed into impenetrable transformed into impenetrable 
chemicals, leading to the growth inchemicals, leading to the growth in
Ｎ＝Σni,   when it exceeds when it exceeds NNmaxmax

the cell divides into twothe cell divides into two

random catalytic reaction networkrandom catalytic reaction network
with the path rate pwith the path rate p

for the reaction    for the reaction    ＸＸii＋Ｘ＋Ｘjj－＞Ｘ－＞Ｘkk+X+Xjj

modelmodel
C.Furusawa & KK、PRL2003

・・・ K >>1 species

dX1/dt ∝ X0X4;   rate equation;
Stochastic model here

(Cf. KK&Yomo 94,97)



In continuum description, the following rate eqn., 
but we mostly use stochastic simulation



☆☆Growth speed and fidelity in replication Growth speed and fidelity in replication 
are maximum at Dcare maximum at Dc
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Zipf’s Law is oberved at D = Dc
nnii (number(number ofof moleculesmolecules））

rankrank

Furusawa &KK,2003,PRL

Average number of each chemical ∝ 1/(its rank)

(distribution of x：ρ（ｘ）∝ｘ ）
-2

number rank
X1 300     5
X2 8000   1
X3 5000    2
X4 700      4
X5  2000    3
…….. (for example)
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Confirmed by gene expression data



Mouse ES cell

C. elegans

Mouse Fibroblast Cell

Yeast
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Later confirmed by several other groups



Formation of cascade catalytic reactionFormation of cascade catalytic reaction

Rank of Rank of nnii

Catalyze 
chemicals of 
higher rank
mainly
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栄養から直接生成される成分の数
を多くなるようパラメータを変えて、
階層構造が判りやすくした例
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１：１：minority moleculesminority molecules

２：２：catalyzed by 1, synthesized by resourcecatalyzed by 1, synthesized by resource

３：３：catalyzed by 2catalyzed by 2
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nini

With conservation law,
The exponent -1 is explained

Mean-field type (self-consistent) calc.)



• Remarks:
（０）Universality
(1) Evolution to the critical state (with Zipf law) is 

confirmed numerically
(2) Evolution to scale-free network appears later 

as embedding of power-law abundances into 
network   (Furusawa,KK, PRE 2006) 

（3） Self-organization to critical state, if 
transport of ‘nutrition chemicals’ is catalyzed by 
some chemicals （no need for choice of D) 
(instead of simple diffusion) (Furusawa,KK,2007)



Evolution of Network to satisfy  Zipf’s law?     Yes
Critical D value depends on connectivity in the network;
mutation of network + selection approaches Zipf’s law

Furusawa



Later, the connectivity in the network approaches
“scale-free” network    through evolution.

statistical properties; embedded into  network structure

Zipf’s law holds,  irrespective of network structure, but

Furusawa、KK, PRE, 2006

initial

evolved
４

2

evolutionary embedding 
of dynamics into network

Dynamics (abundance) first, structure (equation for dynamics) later

probability for a  path to 
chemical with  abundances x 
is selected;  q(x) 
transformation of abundance 

distrb.  to connectivity distrib.



So  far average quantity of all components;

Next question: fluctuation by cells:
distribution of each Ni by cells

Each color 
gives
different 
chemical
species

LOG SCALE

Furusawa,..
KK,
Biophysics2005

Log normal distribution !

e.g.
cell1 X1   10000
cell2           8000
cell3         15000
cell4        20000

…..
histograrm



Experiment; protein abundances measured by fluorescence

Log-normal
Distribution
Confirmed 
experimentally

Furusawa,Kashiwagi,,Yomo,KK

+flow-cytometry

Also studied in GFP synthesis in liposome



☆☆Heuristic explanation of logHeuristic explanation of log--normal distributionnormal distribution
Consider the case that a component X is catalyzed by Consider the case that a component X is catalyzed by 
other component A, and replicate; the number other component A, and replicate; the number ----NNXX、、NNAA

d Nd NXX //dtdt = N= NXX NNAA

thenthen

d log( Nd log( NXX )/)/dtdt = N= NAA

IfIf、、 NNA   A   fluctuates around its mean < NNAA＞, with fluct. η（ｔ）
d log( Nd log( NXX )/)/dtdt = = ＜NNAA＞ ＋＋η（ｔ）

log( Nlog( NXX ) shows Brownian motion ) shows Brownian motion NNX X loglog--normal distributionnormal distribution

too, simplified, since no direct self-replication exists here
But with cascade catalytic reactions, fluctuations are 
successively multiplied, (cf addition in central limit 

theorem.);Hence after logarithm, central limit th.  applied



☆☆Cascade leads to multiplicative propagation of Cascade leads to multiplicative propagation of 
noise (at  critical region)noise (at  critical region)

ＡＡ ＢＢ ＣＣ ＤＤ ＥＥ

Propagation of fluctuation, feedback to Propagation of fluctuation, feedback to 
itself, leading to logitself, leading to log--normal distribution tail.normal distribution tail.

Cf.  If parallel,Cf.  If parallel,

ＡＡ

Fluctuations come in parallel:Fluctuations come in parallel:

Usual central limit theorem is valid; Usual central limit theorem is valid; 

normal distribution.normal distribution.



Replicating artificial cell (experiment)
( theory; fluctuation, minority control)

RNA polymerase geneRNA

RNA polymerase

Tranlation in liposome
RNAreplication in liposome

translation replication division

By 菅原ら(東大総合分化）By 菅原ら(東大総合分化）

Continouos division of liposomes
(Sugawara’s group)

（Yomo‘s group)



Questions 
(1) All chemicals have such large fluctuations?  

Important ones are protected??
Origin of heredity (genetic information)
why is there genotype and phenotype

Minority control mechanism (discreteness important)
(KK,Yomo JtheorBiol.2002)

(2)Large phenotypic fluctuation 
relevance to biology ?

ans. evolution (Sato et al., PNAS, 2003)  adaptation,….
--- recall in standard evolutionary genetics,
only the distribution of gene is discussed, by assuming 
unique phenotype from a given genotype



• Phenotypic Fluctuation Relationship to Evolution?
selection is based on phenotype

（activity, size, protein abundances, fluorescence,…),
but

in standard evolutionary genetics;
gene  a phenotype x uniquely determined

mostly discusses the phenotype distribution 
as a result of genetic variation

Phenotypic fluctuation of isogenic organisms
P(x; a)  x—phenotype, a – gene

-------------------------------------------------------------------



・・・・・

FACS analysis

Mutagenesis

～2,000 clones

～30 clones

5～8 clones

The highest clone

Spectrofluorometer

Spectrofluorometer

1st screening

2nd screening

Eyes

Schematic drawing of selection process

Artificial selection experiment with bacteria
Selection to increase the fluorescence of protein in bacteria

Ito,Yomo,..



Fluctuation ---- Variance of phenotype of  clone
Organisms with larger phenotypic fluctuation higher evolution 

speed;   
- change of phenotype per generation per mutation --

``Response against mutation+selection’’
Response     Fluctuation

Sato,Ito,
Yomo,KK

PNAS(2003)



So-called fluctuation-dissipation theorem in physics:
Force to change a variable x;

response ratio = (shift of x ) / force
fluctuation of x (without force) 

response ratio proportional to    fluctuation
originated by  Einstein’s  paper  a century ago…

2 2( ) ( )a a a
a

x x x x x
a

δ+∆< > − < >
∝< > =< − < > >

∆

P(x;a)   x variable,  a: control parameter
change of the parameter a 

peak of P(x;a)  ( i.e.,<x>average ) shifts

Generalization::(mathematical formulation)
response ratio of some variable x against the change 

of parameter a versus     fluctuation of x



Fluctuation-response relationship (generalized form)

Gaussian distribution of x; under the parameter a

at a=a0

Change the parameter from a0 to a



Artificial selection experiment with bacteria
for enzyme with higher catalytic activity
for some protein with higher function

Change in gene    (parameter; a) ⇒

``Response’’ ------ change of phenotype <x>
(e.g.,fluorescence intensity)    

per generation per (synonymous) mutation rate
Fluctuation ---- Variance of phenotype x of  clone   

Fluctuation in the phenotype x of clone
⇔ speed of evolution to increase <x>
(proportional or correlated)



(Evolution Speed per generation)

Naïve expectation:
Just propt to mutation rate

Fluctuation-response relation
Phenotype fluct. × mutation rate

Sato,Ito,Yomo,KK, PNAS 2003



• Confirmation by numerical evolution experiment 
by the reaction-net cell model

Mutate the network (‘gene’) with mutation rate μ,  (rewire the path 
of the network with the rate) and select such network

having highest concentration ｃ of  a specific chemical

1. Prepare initial mother cells.

2. From each parent cell, mutant cells 
are generated by randomly replacing 
reaction paths, with mutation 
rate μ

3. reaction dynamics of all mutants are 
simulated to determine phenotype x

4. Top 5% cells with regard to 
phenotype x are selected as parent 
cells of next generation 

phenotype x = log (ns)



Confirmation of Fluctuation Dissipation 
Theorem by reaction-network cell model

Furusawa,KK 2005

μ=0.01
0.03

.0.05

Fluctuation of x=log c

Increase in average x



（１）the use of log(fluorescence), because
log x   is close to Gaussian distribution in 
experiments

(２) New mystery？ phenotype fluctuation of 
clone    vs evolution speed  in contrast to
evolution speed ∝ phenotypic fluctuation by 
genetic variation（Vg): (fundamental theorem of 
natural selection; established)

pheno fluct of clone Vp
∝ pheno fluct by gene variation Vg？

（fluct by noise ∝ variation in ‘equation’)
Follow the spirit of Einstein；
micro-macro consistency Brownian motion





Consider 2-variable distrb
P(x=phenotype,a=genotype) =exp(-V(x,a))
Keep a single-peak  (stability condition).  

Hessian condition

Up to this point  pheno
(x) and geno (a) are 
treated in the same way.  
Then given a, the peak 
(average) phenotype is 
x0(a)--function of a --

KK,Furusawa, 2006 JTB



Gene a is also regarded as variable: Now, we discuss 
stability P(x,a) as 2 variables instead of P(x;a).
write as P(x,a)=exp(-V(x,a))

Condition if it keeps a single-peak solution (stability 
problem as in thermodynamics).  

Hessian condition

Up to this point  pheno (x) and geno (a) are treated in 
the same way.  Then given a, the peak (average) 
phenotype is x0(a)--function of a --



x0(a); the average phenotype x of a clone of 
genotype a;  x is given as a function of a

Hessian Vg    ≦ Viｐ
Vg= Variance of x, due to the distribution of gene a

Vip＝Variance of x, for the isogenic organism
(i.e., a= a0,fixed)

Vg increases with mutation rate μ,  thus, there is critical 
mutation rate μｃ beyond which the distribution 
becomes flat (error catastrophe).

As   Vg ∝μ approximately,
Vｇ = (μ／μc) Viｐ

Since Vg ∝ evolution speed （Fisher theorem)
evolution speed ∝ μ Viｐ fluct-response relation



We can do the analysis by using Gaussian 2-body distribution
function for phenotype x and gene a; around a=a0, and
x=X0;, with coupling between x and a (variance of a is 
the mutation rate μ

Stability condition

For high mutation rate single-peak
is not sustained  :error catastrophe?



Distribution  of phenotype
x of a clone

Vp

Distribution of phenotype
x over mutants (genetic
variation)

Vg

Log(concentration)

Change of distribution
through evolution



Phenotype Phenotype fluctfluct. (. (VpVp) ) vsvs Gene Gene FluctFluct. (Vg)  in the evolution of . (Vg)  in the evolution of 
toy cell modeltoy cell model

Vp
Phenotype fluctuation of clone

variance of log(x),
x is the concentration of the molecule 

Beyond Darwin with the spirit of Einstein!

Vp: fluct.  for given network, Vg: fluct. by network variation 
μ ～μmax

μ

Vｐ=Vg

Vg





• ??? to the theory 
• P(x,a) rather than conditional probability (TRICK)
‘’Genetic-Phenotyic correpondence’’

what phenotype can vary  
what gene can change 

fluctuation of variable  (micro)  vs
variation of equation (genetic evolution)

(cf Waddington’s genetic assimilation)
Q: Why error catastrophe when Vg>Vip?

Robust evolution is possible only under noise
-counterintuitive ;it says phenotype noise is 

important 
gene-net model



A simple model for Geno-Pheno relationship;
Model:Gene-net(dynamics of stochastic  gene 

expression ) on/off state

Gaussian white

M;total number of genes, ｋ: output genes

Noise strength σ

Xi – expression of gene i   :   +  (on) – (off)



• Task
Starting from -1,-1,-1,,-1(all off)

xi  i=1、2、‥・・、k are +1(on) （Target Gene Pattern)

Genetic Algorithm
Select networks with higher <F>
top--<F>=0
Choose top n networks
among total N,and mutate
with rate μto produce N networks
（μ:fixed mutation rate)

Fitness F= －（Average number of off x_i）



Result of evolution
Top:reaches the fittest

faster for lower noise(σ)

Lowest; cannot evolve

for low noise(σ)

Top

Lowest

σ



Fitness Distribution

σ＜σｃ --low fitness mutants distributed
σ＞σｃ － eliminated

through evolution

σ＜σｃ



Existence of critical noise level σc
below which low-fitness mutants accumulate
(error catastrophe)



(1) Vip≧Vg forσ≧σc

(2) Vg→Vip
as σ→σc

(3) evolution progresses
only for Vip≧Vg

(4) Vip∝Vg
through evolution

course

Theory confirmed

Vp=Vg

Vp

Vg σc

KK,PLosOne,2007



Why?;  difference in basin structure
σ＞σc large basin for target attractor

(robust, Δ（distance to basin boudary) ↑
σ＜σｃ only tiny basin around target orbit

Δ remains small

Basin Volume for
Each fitness 

Global constraint to potential landscape(funnel?)



why threshold?

choose paths to avoid turning 
pts within σ (noise)

Mutation→ touches turning
points within range of μ

small σ －＞
an orbit with small Δ
can reach the target

Δ

Δ

Δ

Δ



Deviation of basin
boundary (turning points)
by Noise －＞δp
by Mutation -> δｇ

Vg ~ (δｇ/ Δ）^2
Vip ~（δｐ/Δ)^2

Δ increases
ーー＞robustness

increases
if δｇ＞δｐ, 
mutation destroys
the history

Vip>Vg necessary
for evolution of robustness

Δ~distance to turning points
(basin boundary)



Discussion
• Developmental Robustness to noise  ---- Vip
• Robustness to mutation in evolution   ----Vg
When Vip>Vg, both  decrease, i.e., robustness 
Noise is necessary for evolution of robustness

Vip ∝ Vg Developmental robustness and genetic 
(evolutionary) robustness are linked

• Generality of our result;  For a system satisfying:
(1) fitness is determined after developmental dynamics
（2）developmental dynamics is complex  

(eg.,with distributed catastrophic pt leading to error
(3) effective equivalence  between mutations and noise 

with regards to the consequence to fitness  
( genetic assimilation by Waddington)



Spontaneous Adaptation

• For all possible changes in environment, 
signal transduction network is already 
provided?

• Or, is there any general (primitive) 
mechanism to make spontaneous 
adaptation?

• Constructive Experiment with artificial 
Gene and theory assuming only growth 
condition and stochsticity



(ex) Adaptive response without signal transduction

Ptrc

Ptet

rfp tetR folA

lacI gfp glnA

Ptrc

Ptet

rfp tetR folA

lacI gfp glnA

Ptrc

Ptet

rfp tetR folA

lacI gfp glnA

Ptrc

Ptet

rfp tetR folA

lacI gfp glnA

Env. Without glutamine

Ptrc

Ptet

rfp tetR folA

lacI gfp glnA

Ptrc

Ptet

rfp tetR folA

lacI gfp glnA

fluctuation

Metabolic activity

Env. Without Tetrahydro..Rich environment

Gultamine synthetase

Enzyme for Tet

Theory of attractor selection by 
activity and noise

Embedded gene network
Unexpected； beyond designed
Selection of preferable state

M
utual inhibition

Phenomenological theory of attractor selection

Kashiwagi,Yomo



• Embedded network: each of the two can be selected 
equally.  However, ‘good’ attractor in each 
environment is selected.  Why?

• Due to hidden signal network?
NO!: verified by exchanging the promoter

• After each state is attracted with 50%,
cells in a ‘bad’ attractor  cannot grow, 
cells in a good attractor can grow, so that 
good attractors are selected?
NO!; the process occurs without (or before) the cell 
division process

Novel Mechanism of Spontaneous Adaptation (without 
the use of signal transduction) should exist!



• Basic Logic
dx_i/dt=F(Activity）f(x_i)-G(Activity)x_i+η(t)

F,G: increase with activity.
active: synthesis, degradation both are fast
η noise

Active state ： both Ff and Gx are large
deterministic part >> noise

Poor state ： both Ff and Gx are small
deterministic part ~ noise

Switch from Poor state to Active state by noise
(Kashiwagi,Urabe,kk,Yomo; submitted)
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Adaptive Response of the 
genetic network to a 

environmental change
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• Growth-Induced-Attractor-Selection (Furusawa kk)

• Basic Logic
dx_i/dt=f(x_i)-S({x_j})x_i+η(t)

S dilution effect
η noise

Active state ： both f and S are large
deterministic part >> noise

Poor state ： both f and S are small
deterministic part ~ noise

Switch from Poor state to Active state by noise
Selection before reproduction

General logic in a system with growth and 
fluctuation



Gene network -> a huge number of attractors coexist with different 
growth speeds



Spontaneous selection of optimal growth states
General in a system with noise and growth



Summary
Consistency Principle for Biology
-- replication of molecules and cells :Universal Laws
(-- replication of cells and  cell ensembles)
--- genetic and phenotypic changes

(+speciation)
--- adaptation of internal cellular state and growth 
・Biological relevance of phenotype fluctuations?  

Phenotypic Fluctuation ∝ Evolution Speed
Relation between

(isogenic)phenotype fluctuation ｖｓ
phenotype variation by mutation

• Robustness to mutation and to developmental noise 
are linked

• Growth system general adaptation by noise
• consequence of  steady growth system
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